Экстремальное управление проектами (XPM). Экстремальное управление проектами Среди основных преимуществ методологии нужно отметить такие

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Экстремальные системы управления

Экстремальные СУ - это такие САУ, в которых один из показателей качества работы нужно удерживать на предельном уровне (min или max).

Классическим примером экстремальной СУ является система автоподстройки частоты радиоприёмника.

Рис.1.1 - Амплитудно-частотная характеристика:

1.1 Постановка задачи синтеза экстремальных систем

Объекты описываются уравнениями:

Экстремальная характеристика дрейфует во времени.

Необходимо подобрать такое управляющее воздействие, которое позволяло бы автоматически находить экстремум и удерживать систему в этой точке.

U: extr Y=Y o (1.2)

Рис.1.2 - Статическая экстремальная характеристика:

Необходимо определить такое управляющее воздействие, которое обеспечило выполнение свойства:

1.2 Условие экстремума

Необходимое условие экстремума - равенство нулю первых частных производных.

Достаточное условие экстремума - равенство нулю вторых частных производных. При синтезе экстремальной системы необходимо оценить градиент, но вектор вторых частных производных оценить невозможно, и на практике, вместо достаточного условия экстремума используют соотношение:

Этапы синтеза экстремальной системы:

Оценка градиента.

Организация движения в соответствии с условием движение к экстремуму.

Стабилизация системы в точке экстремума.

Рис.1.3 - Функциональная схема экстремальной системы:

1.3 - Виды экстремальных характеристик

1) Унимодальная экстремальная характеристика типа модуля

Рис. 1.4 - Экстремальная характеристика типа модуля:

2) Экстремальная характеристика типа параболы

Рис. 1.5 - Экстремальная характеристика типа параболы:

3) В общем случае экстремальную характеристику можно описать параболой n-го порядка:

Y = k 1 |y-y o (t)| n + k 2 |y-y o (t)| n -1 + …+k n | y-y o (t)| + k n +1 (t).(1.9)

4) Векторно-матричное представление:

Y = y T By(1.10)

1.4 Способы оценки градиента

1.4.1 Способ деления производных

Рассмотрим его на унимодальной характеристике, y - выход динамический части системы.

yR 1 , Y = Y(y,t)

Найдём полную производную по времени:

При медленном дрейфе, таким образом

Достоинство: простота.

Недостаток: при малых 0 нельзя определить градиент.

Дифференцирующий фильтр.

Рис. 1.6 - Схема оценки частной производной:

1.4.2 Дискретная оценка градиента

Рис. 1.7 - Схема дискретной оценки частной производной:

1.4.3 Дискретная оценка знака градиента

При малом шаге дискретизации заменяем:

1.4.4 Метод синхронного детектирования

Метод синхронного детектирования предполагает добавление ко входному сигналу на экстремальный объект дополнительного синусоидального сигнала малой амплитуды, высокой частоты и выделение из выходного сигнала соответствующей составляющей. По соотношению фаз этих двух сигналов можно сделать вывод о знаке частных производных.

Рис. 1.8 - Функциональная схема оценки частной производной:

Рис. 1.9 - Иллюстрация прохождения поисковых колебаний на выход системы:

y 1 - рабочая точка, при этом разность фаз сигналов равна 0.

y 2 - разность фаз сигналов, в качестве простейшего ФЧУ можно использовать блок перемножения.

Рис. 1.10 - Иллюстрация работы ФЧУ:

В качестве фильтра выбирают усредняющий на периоде фильтр, который позволяет получить на выходе сигнал, пропорциональный значению частной производной.

Рис. 1.11 - Линеаризация статической характеристики в рабочей точке:

Следовательно уравнение экстремальной кривой можно заменить уравнением прямой:

Сигнал на выходе ФЧУ:

k - коэффициент пропорциональности - тангенс угла наклона прямой.

Сигнал на выходе фильтра:

Таким образом:

Метод синхронного детектирования годится для определения не только одной частной производной, но и градиента в целом, при этом на вход подаётся несколько колебаний различной частоты. Соответствующие фильтры на выходе выделяют реакцию на конкретный поисковый сигнал.

1.4.5 Специальный фильтр оценки градиента

Этот метод предполагает введение в систему специальную динамическую систему, промежуточный сигнал которой равен частной производной.

Рис. 1.12 - Схема специального фильтра оценки частной производной:

T- постоянная времени фильтра:

Для оценки полной производной Y используют ДФ - дифференцирующий фильтр, а затем эта оценка полной производной применяется для оценки градиента.

1.5 Организация движения к экстремуму

1.5.1 Системы первого порядка

Организуем закон управления пропорционально градиенту:

Запишем уравнение замкнутой системы:

Это обычное дифференциальное уравнение, которое можно исследовать методами ТАУ.

Рассмотрим уравнение статики системы:

Если с помощью коэффициента усиления k обеспечить устойчивость замкнутой системы, то автоматически в статике мы придём в точку экстремума.

В некоторых случаях с помощью коэффициента k можно кроме устойчивости обеспечить определённую длительность переходного процесса в замкнутой системе, т.е. обеспечить заданное время выхода на экстремум.

Где k - устойчивость

Рис. 1.13 - Функциональная схема градиентной экстремальной системы первого порядка:

Этот способ годится только для унимодальных систем, т.е. систем с одним глобальным экстремумом.

1.5.2 Метод тяжёлого шарика

По аналогии с шариком, который скатывается в овраг и проскакивает точки локальных экстремумов, система АУ с колебательными процессами также проскакивает локальные экстремумы. Для обеспечения колебательных процессов в систему первого порядка вводим дополнительную инерционность.

Рис. 1.14 - Иллюстрация метода “тяжёлого” шарика:

Уравнение замкнутой системы;

Характеристическое уравнение системы:

Чем меньше d тем длиннее переходный процесс.

Анализируя экстремальную характеристику, задаются необходимые перерегулирование и длительность переходного процесса, откуда задаются:

1.5.3 Одноканальные системы общего вида

Закон управления:

Подставив закон управления в управление объекта, получим уравнение замкнутой системы:

В общем случае, для анализа устойчивости замкнутой системы необходимо использовать второй метод Ляпунова, с помощью которого определяется коэффициент усиления регулятора. Т.к. 2 й метод Ляпунова даёт лишь достаточное условие устойчивости, то выбранная функция Ляпунова может оказаться неудачной и регулярную процедуру расчёта регулятора здесь предложить нельзя.

1.5.4 Системы со старшей производной в управлении

Общий случай экстремума объектов:

Функции f, B и g должны удовлетворять условиям существования и единственности решения дифференциального уравнения. Функция g - должна быть многократно дифференцируемой.

С - матрица производных

Задача синтеза разрешима, если матрица произведений будет не вырожденная, т.е.

Анализ условия разрешимости задачи синтеза позволяет определить производную выходных переменных, которая явно зависит от управляющего воздействия.

Если выполняется условие (1.31), то такой производной является первая производная, а следовательно требования к поведению замкнутой системы можно формировать в виде дифференциального уравнения для y, соответствующего порядка.

Сформируем закон управления замкнутой системы, для чего сформируем закон управления, подставив в правую часть управления для:

Уравнение замкнутой системы относительно выходной переменной.

Рассмотрим ситуацию, когда

При соответствующем выборе коэффициента усиления мы получаем желаемое уравнение и автоматический выход на экстремум.

Параметры регулятора выбираются из тех соображений, что и для обычных САУ, т.е. (СВК) i = (20*100), что позволяет обеспечить соответствующую ошибку.

Рис. 1.15 - Схема системы со старшей производной в управлении:

В системе для оценки полной производной по времени в систему вводят дифференцирующий фильтр, поэтому для оценки градиентов в таких системах удобно использовать фильтр оценки градиента. Т.к. оба этих фильтра имеют малые постоянные времени, то в системе могут возникать разнотемповые процессы, выделить которые можно с помощью метода разделения движений, причём медленные движения будут описываться уравнением (1.34), которое соответствует желаемому при. Быстрые движения нужно анализировать на устойчивость, причём в зависимости от соотношения постоянной времени ДФ и фильтра оценки частных производных (ФОЧП), можно выделить следующие виды движений:

1) Постоянные времени этих фильтров соизмеримы.

Быстрые движения описывают комбинированные процессы в этих двух фильтрах.

2) Постоянные времени различаются на порядок.

В системе наблюдаются кроме медленных движений, быстрые и сверх- быстрые движения, соответствующие наименьшей постоянной времени.

На устойчивость необходимо анализировать оба случая.

2. Оптимальные системы

Оптимальные системы - это системы, в которых заданное качество работы достигается за счет максимального использования возможностей объекта, иными словами это системы, в которых объект работает на пределе своих возможностей. Рассмотрим апериодическое звено первого порядка.

Для которого необходимо обеспечить минимальное время перехода у из начального состояния y(0) в конечное y k . Переходная функция такой системы при K=1 выглядит следующим образом

Рис. 2.1 - Переходная функция системы при U= const:

Рассмотрим ситуацию, когда на вход объекта подаем максимально возможное управляющее воздействие.

Рис. 2.2 - Переходная функция системы при U=A= const:

t 1 - минимально возможное время перехода y из нулевого состояния в конечное для данного объекта.

Для получения такого перехода существует два закона управления:

Второй закон более предпочтителен и позволяет обеспечить управление при помехах.

Рис. 2.3 - Структурная схема системы с законом управления типа обратной связи:

2.2 Постановка задачи синтеза оптимальных систем

2.2.1 Математическая модель объекта

Объект описан переменными состояния

Где функция f(x,u) непрерывна, дифференцируема по всем аргументам и удовлетворяет условию существования и единственности решения дифференциального уравнения.

Эта функция является нелинейной, но стационарной. В качестве частных случаев объект может иметь вид нелинейной системы с аддитивным управлением:

Либо линейной системой

Объект должен быть представлен в одной из трех форм, представленных выше.

2.2.2 Множество начальных и конечных состояний

Задача оптимального перехода из начального состояния в конечное представляет собой краевую задачу

Где начальные и конечные точки могут быть заданы одним из четырех способов, представленных на рис. 2.4.

а) задача с фиксированными концами,

б) задача с фиксированным первым концом (фиксированная начальная точка и множество конечных значений),

в) задача с фиксированным правым концом,

г) задача с подвижными концами.

Рис.2.4 - Фазовые портреты перехода системы из начального состояния в конечное для различных задач:

Для объекта множество начальных состояний может в общем случае совпадать с о всем множеством состояний либо с рабочей областью, а множество конечных состояний является подпространством множества состояний или рабочей области.

Пример 2.1 - В любую ли точку пространства состояний можно перевести объект, описываемый системой уравнений?

Подставив во второе уравнение значение U из первого уравнения u = x 2 0 - 2x 1 0 , получим -5x 1 0 + x 2 0 = 0;

Получили множество конечных состояний, описываемое уравнением x 2 0 = 5x 1 0 ;

Таким образом, множество конечных состояний, задаваемое для объекта (системы), должно быть реализуемым.

2.2.3 Ограничения на состояния и управление

Рис. 2.5 - Общий вид рабочей области пространства состояний:

Выделяется рабочая область пространства состояний, которая оговаривается. Как правило, эта область описывается ее границами с помощью модульных соглашений.

Рис.2.6 - Вид рабочей области пространства состояний, заданной модульными соглашениями:

Также задается U - область допустимых значений управляющего воздействия. На практике область U задается также с помощью модульных соотношений.

Задача синтеза оптимального регулятора решается при условии ограничений на управление и ограниченном ресурсе.

2.2.4 Критерий оптимальности

На этом этапе оговариваются требования, предъявляемые к качеству работы замкнутой системы. Требования задаются в обобщенном виде, а именно в виде интегрального функционала, который носит название критерия оптимальности.

Общий вид критерия оптимальности:

Частные виды критерия оптимальности:

1) критерий оптимальности, обеспечивающий минимум времени переходного процесса (решается задача оптимального быстродействия):

2) критерий оптимальности, обеспечивающий минимум затрат энергии:

По одной из компонент:

По всем переменным состояниям:

По одному управляющему воздействию:

По всем управляющим воздействиям:

По всем компонентам (в самом общем случае):

2.2.5 Форма результата

Необходимо оговорить в каком виде будем искать управляющее воздействие.

Возможны два варианта оптимального управления: u 0 = u 0 (t), используется при отсутствии возмущения, u 0 = u 0 (x), оптимальное управление в виде обратной связи (замкнутое управление).

Формулировка задачи синтеза оптимальной системы в общем виде:

Для объекта, описанного переменными состояниями с заданными ограничениями и множеством начальных и конечных состояний, необходимо найти управляющее воздействие, обеспечивающее качество процессов в замкнутой системе, соответствующее критерию оптимальности.

2.3 Метод динамического программирования

2.3.1 Принцип оптимальности

Исходные данные:

Необходимо найти u 0:

Рис. 2.7 - Фазовый портрет перехода системы из начальной точки в конечную в пространстве состояний:

Траектория перехода из начальной точки в конечную будет оптимальной и единственной.

Формулировка принципа: Конечный участок оптимальной траектории есть также оптимальная траектория. Если бы переход из промежуточной точки в конечную не осуществлялся бы по оптимальной траектории, то для него можно было бы найти свою оптимальную траекторию. Но в этом случае переход из начальной точки в конечную проходил бы по другой траектории, которая должна была бы быть оптимальной, а это невозможно, так как оптимальная траектория единственная.

2.3.2 Основное уравнение Беллмана

Рассмотрим объект управления произвольного вида:

Рассмотрим переход в пространстве состояний:

Рис. 2.8 - Фазовый портрет перехода системы из начальной точки в конечную x(t) - текущая (начальная) точка, x(t+Дt) - промежуточная точка.

Преобразуем выражение:

Заменим второй интеграл на V(x(t+Дt)):

При малом значении Дt введем допущения:

2) Разложим вспомогательную функцию

Выполняя дальнейшие преобразования, получим:

Где min V(x(t)) и есть критерий оптимальности J.

В результате получили:

Разделим обе части выражения на Дt и устраним Дt к нулю:

Получим основное уравнение Беллмана:

2.2.3 Расчетные соотношения метода динамического программирования:

Основное уравнение Белмана содержит (m+1) - неизвестных величин, т.к. U 0 R m , VR 1:

Продифференцировав m раз, получим систему из (m+1) уравнений.

Для ограниченного круга объектов решение полученной системы уравнений дает точное оптимальное управление. Такая задача носит название задачи АКОР (аналитического конструирования оптимальных регуляторов).

Объекты, для которых рассматривается задача АКОР, должны удовлетворять следующим требованиям:

Критерий оптимальности должен быть квадратичным:

Пример 2.2

Для объекта, описываемого уравнением:

Необходимо обеспечить переход из x(0) в x(T) по критерию оптимальности:

Проанализировав объект на устойчивость, получим:

U 0 = U 2 = -6x.

2.4 Принцип максимума Понтрягина

Введем расширенный вектор состояний, который расширяем за счет нулевой компоненты, в качестве которой выбираем критерий оптимальности. zR n+1

Также введем расширенный вектор правых частей, который расширяем за счет функции, стоящей под интегралом в критерии оптимальности.

Введем Ш - вектор сопряженных координат:

Сформируем Гамильтониан, представляющий собой скалярное произведение Ш и ц(z,u):

H(Ш,z,u) = Ш*ц(z,u),(2.33)

Уравнение (2.34) называется основным уравнением принципа максимума Понтрягина, основанное на уравнении динамического программирования. Оптимальным является управление, которое на заданном интервале времени доставляет максимум Гамильтониана. Если бы ресурс управления не был бы ограничен, то для определения оптимального управления можно было бы воспользоваться необходимыми и достаточными условиями экстремума. В реальной ситуации для отыскания оптимального управления необходимо анализировать величину Гамильтониана при предельном значении уровня. В этом случае U 0 будет функцией расширенного вектора состояний и вектора сопряженных координат u 0 = u 0 .

Для отыскания сопряженных координат необходимо решить систему уравнений:

2.4.1 Процедура расчета системы по принципу максимума Понтрягина.

Уравнения объекта должны быть приведены к виду, стандартному для синтеза оптимальных систем:

Необходимо оговорить также начальные и конечные состояния и записать критерий оптимальности.

Вводятся расширенный вектор состояний

Расширенный вектор правых частей:

И вектор сопряженных координат:

Записываем Гамильтониан как скалярное произведение:

Находим максимум Гамильтониана по u:

По которому определяем оптимальное управление u 0 (Ш,z).

Записываем дифференциальные уравнения для вектора сопряженных координат:

Находим сопряженные координаты как функцию времени:

6. Определяем окончательный оптимальный закон управления:

Как правило, этот способ позволяет получить программный закон управления.

Пример 2.3 - Для объекта, представленного на рис. 2. 9. необходимо обеспечить переход из начальной точки y(t) в конечную y(t) за T= 1c с качеством процесса:

Рис. 2.9 - Модель объекта:

Для определения констант b 1 и b 2 нужно решить краевую задачу.

Запишем уравнение замкнутой системы

Проинтегрируем:

Рассмотрим конечную точку t=T=1с., как x 1 (T)=1 и x 2 (T)=0:

1= 1/6 b 1 + 1/2 b 2

Получили систему уравнений, из которой находим b 2 = 6, b 1 = -12.

Запишем закон управления u 0 = -12t + 6.

2.4.2 Задача оптимального управления

Для объекта общего вида необходимо обеспечить переход из начальной точки в конечную за минимальное время при ограниченном законе управления.

Особенности задачи оптимального быстродействия

Гамильтониан быстродействия:

Релейность управления:

Эта особенность имеет место для релейных объектов.

Теорема о числе переключений управляющего воздействия:

Эта теорема справедлива для линейных моделей с вещественными корнями характеристического уравнения.

Det (pI - A) =0 (2.51)

Л(A) - вектор вещественных собственных чисел.

Формулировка теоремы:

В задаче оптимального быстродействия с вещественными корнями характеристического уравнения число переключений не может быть больше, чем (n-1), где n - порядок объекта, следовательно, число интервалов постоянства управления не будет больше, чем (n-1).

Рис. 2.10 - Вид управляющего воздействия при n=3:

Пример 2.4 - Рассмотрим пример решения задачи оптимального быстродействия:

Ш=[Ш 1 , Ш 2 ]

H б = Ш 1 x 2 + Ш 2 (-2dx 2 -x 1 +u)

При - корни вещественные:

Сумма двух экспонент представляет собой:

Если, то корни комплексно-сопряженные и решение будет представлять собой периодическую функцию. В реальной системе, переключений не более 5 - 6.

2.4.3 Метод поверхности переключений

Данный метод позволяет найти управление функций переменной состояния для случая когда оптимальное управление носит релейный характер. Таким образом этот метод можно применять при решении задач оптимального быстродействия, для объекта с аддитивным управлением

Суть метода заключается в том, чтобы во всём пространстве состояний выделить точки, где происходит смена знака управления и объединить их в общую поверхность переключений.

Поверхность переключений

Закон управления будет иметь следующий вид:

Для формирования поверхности переключений удобнее рассматривать переход из произвольной начальной точки в начало координат

Если конечная точка не совпадает с началом координат, то необходимо выбрать новые переменные, для которых это условие будет справедливо.

Имеем объект вида

Рассматриваем переход, с критерием оптимальности:

Этот критерий позволяет найти закон управления такого вида:

С неизвестным, начальные условия нам также неизвестны.

Рассматриваем переход:

Метод обратного времени (метод попятного движения).

Этот метод позволяет определить поверхности переключений.

Суть метода заключается в том, что начальная и конечная точки меняются местами, при этом вместо двух совокупностей начальных условий остаётся одна для.

Каждая из этих траекторий будет оптимальна. Сначала находим точки, где управление меняет знак и объединяем их в поверхность, а затем направление движения меняем на противоположное.

Пример - Передаточная функция объекта имеет вид:

Критерий оптимальности быстродействия:

Ограничение на управление.

Рассмотрим переход:

Оптимальное управление будет иметь релейный характер:

Перейдём в обратное время (т.е.). В обратном времени задача будет иметь такой вид

Рассмотрим два случая:

Получим уравнения замкнутой системы:

Воспользуемся методом непосредственного интегрирования, получим зависимость от и поскольку -, то имеем

Т.к. начальные и конечные точки поменяли местами, то, получим аналогично:

Построим получившееся и по методу фазовой плоскости определим направление

Применив метод непосредственного интегрирования, получим:

Функция будет иметь вид:

Изменив направление:

Точка смены знака (точка переключения).

Общее аналитическое выражение:

Уравнение поверхности:

Оптимальный закон управления:

Подставив уравнение поверхности, получим:

2.5 Субоптимальные системы

Субоптимальные системы - это системы близкие по свойствам к оптимальным

Характеризуется критерием оптимальности.

Абсолютная погрешность.

Относительная погрешность.

Субоптимальным называют процесс близкий к оптимальному с заданной точностью.

Субоптимальная система - система где есть хоть один субоптимальный процесс.

Субоптимальные системы получаются в следующих случаях:

при аппроксимации поверхности переключений (с помощью кусочно-линейной аппроксимации, аппроксимация с помощью сплайнов)

При в субоптимальной системе будет возникать оптимальный процесс.

ограничение рабочей области пространства состояний;

3. АДАПТИВНЫЕ СИСТЕМЫ

3.1 Основные понятия

Адаптивными системами называют такие системы, в которых параметры регулятора меняются вслед за изменением параметров объекта, таким образом, чтобы поведение системы в целом оставалось неизменным и соответствовало желаемому:

Существует два направления в теории адаптивных систем:

адаптивные системы с эталонной моделью (АСЭМ);

адаптивные системы с идентификатором (АСИ).

3.2 Адаптивные системы с идентификатором

Идентификатор - устройство оценки параметров объекта (оценка параметров должна осуществляться в реальном времени).

АР - адаптивный регулятор

ОУ - объект управления

U - идентификатор

Часть, которая выделена пунктиром, может быть реализована в цифровом виде:

V, U, X - могут быть векторы. Объект может быть многоканальным.

Рассмотрим работу системы.

В случае неизменных параметров объекта, структура и параметры адаптивного регулятора не меняются, действует главная обратная связь, сис-тема представляет собой систему стабилизации.

Если параметры объекта меняются, то они оцениваются идентификато-ром в реальном времени и происходит изменение структуры и параметров адаптивного регулятора так, чтобы поведение системы оставалось неизмен-ным. Основные требования предъявляются к идентификатору (быстродействие и т.д.) и к самому алгоритму идентификации. Такой класс систем используют для управления объектами с медленными нестационарностями. Если мы имеем нестационарный объект общего вида:

;.Простейший адаптивный вид будет следующий:

Требования, которые предъявляются к системе:

Где и - матрицы постоянных коэффициентов.

Реально мы имеем:

Если приравнять, то получим соотношение для определения параметров регулятора

3.3 Адаптивные системы с эталонной моделью

В таких системах существует эталонная модель (ЭМ), которая ставится параллельно объекту. БА - блок адаптации.

Рис 2 - Функциональная схема АСЭМ:

Рассмотрим работу системы:

В том случае, когда параметры объекта не меняются или процессы на выходе соответствуют эталонным, ошибка:

автоподстройка управление программирование

Не работает блок адаптации и не перестраивается адаптивный регулятор, в системе действует плавная обратная связь.

Если поведение отлично от эталонного, это происходит при изменении параметров объекта, в этом случае появляется ошибка.

Включается блок адаптации, перестраивается структура адаптивного регулятора, таким образом чтобы свести к эталонной модели объекта.

Блок адаптации должен сводить ошибку к нулю ().

Алгоритм, закладываемый в блок адаптации, формируется различными способами, например, с использованием второго метода Ляпунова:

Если это будет выполняться, то система будет асимптотически устойчива и.

Размещено на Allbest.ru

...

Подобные документы

    Постановка задачи синтеза системы управления. Применение принципа Максимума Понтрягина. Метод аналитического конструирования оптимальных регуляторов. Метод динамического программирования Беллмана. Генетическое программирование и грамматическая эволюция.

    дипломная работа , добавлен 17.09.2013

    Методы решения задачи синтеза системы управления динамическим объектом. Сравнительная характеристика параметрического и структурно-параметрического синтеза. Схема процесса символьной регрессии. Принцип действия метода аналитического программирования.

    дипломная работа , добавлен 23.09.2013

    Понятие большой системы управления. Модель структурного сопряжения элементов. Организация многоуровневой структуры управления. Общая задача линейного программирования. Элементы динамического программирования. Постановка задачи структурного синтеза.

    учебное пособие , добавлен 24.06.2009

    Постановка задачи динамического программирования. Поведение динамической системы как функция начального состояния. Математическая формулировка задачи оптимального управления. Метод динамического программирования. Дискретная форма вариационной задачи.

    реферат , добавлен 29.09.2008

    Исследование основных динамических характеристик предприятия по заданному каналу управления, результаты которого достаточны для синтеза управляющей системы (СУ). Построение математической модели объекта управления. Анализ частотных характеристик СУ.

    курсовая работа , добавлен 14.07.2012

    Теория автоматического управления. Передаточная функция системы по ее структурной схеме. Структурная схема и передаточная функция непрерывной САР. Устойчивость системы. Исследование переходного процесса. Расчет и построение частотных характеристик.

    курсовая работа , добавлен 14.03.2009

    Общие понятия и классификация локальных систем управления. Математические модели объекта управления ЛСУ. Методы линеаризации нелинейных уравнений объектов управления. Порядок синтеза ЛСУ. Переходные процессы с помощью импульсных переходных функций.

    курс лекций , добавлен 09.03.2012

    Принцип работы и задачи информационных систем управления проектами. Методы критического пути, анализа и оценки планов. Сетевые модель и график, виды путей. Информационный обмен между предприятиями, классификация информационных систем и их рынки сбыта.

    контрольная работа , добавлен 18.11.2009

    Классификация информации по разным признакам. Этапы развития информационных систем. Информационные технологии и системы управления. Уровни процесса управления. Методы структурного проектирования. Методология функционального моделирования IDEF0.

    курсовая работа , добавлен 20.04.2011

    Анализ основных этапов решения задачи синтеза регуляторов в классе линейных стационарных систем. Нахождение оптимальных настроек регулятора и передаточной функции замкнутой системы. Изучение состава и структуры системы автоматизированного управления.

Название: Экстремальное управление проектами.

Экстремальное управление проектами - это гибкая и динамичная модель для проектов любого типа, характеристиками которых являются высокие скорость и неопределенность, и в которых неудача недопустима.
Книга Экстремальное управление проектами дает практические рекомендации для руководителей, работающих с большими рисками и под сильным давлением для достижения ожидаемого конечного результата. Основанная на обширном опыте Дуга ДеКарло в работе с более чем 250 командами проектов, его модель экстремального управления проектами построена на наборе согласованных принципов, ценностей, навыков, инструментов и практик, которые показали высокий результат в условиях постоянных изменений и неопределенности.

В мире, где новые технологии развиваются и внедряются головокружительными темпами, мы все чаще и чаще сталкиваемся с проектами нового типа. Кажется, что мир буквально охвачен ими. Это проекты, где сроки исполнения критичны, цена ошибки крайне высока, хаотично и непредсказуемо меняются требования, а заказчик в последний момент может решить, что вообще-то ему нужен совсем другой результат. Неопределенность во всем, ее подчас слишком много, ей управляют особые люди -менеджеры экстремальных проектов в «проектно-безумных» компаниях.
Для управления неизвестным нельзя использовать традиционное управление проектами, основанное на тщательном планировании и четких процессах, этот подход работает все хуже и хуже, а на некоторых проектах - не работает вообще, считает Дуг ДеКарло. Необходимо принять высокую неопределенность как норму, научиться существовать в этом изменчивом мире и добавить к традиционным «ньютоновским» инструментам управления проектами «квантовое» мышление.

СОДЕРЖАНИЕ
Предисловие к русскому изданию.
Проект - это джаз 11
Предисловие 13
Введение. Увидеть свет 17
Чем отличаются экстремальные проекты 20
Приготовиться, Огонь, Целься! 23
Экстремальное управление проектами 2 5
Изменение парадигмы 27
Часть первая: Новая реальность 31
1 Применение квантового образа мышления для экстремальной реальности 33
Есть ли метод в вашем безумии? 35
Линейное безумие 37
Ньютоновский невроз и управление экстремальными проектами 39
Инструменты самодиагностики 41
Вы отвечаете за свои слова? 43
Это джаз, а не классика 44
Навстречу мирному сосуществованию 45
Заключение 4б
2 Экстремальная модель успеха 49
Ключи к успеху 49
Что такое «проект»? Новое определение 51
Что такое «управление проектами»?
Новое определение 53
Что такое «экстремальный проект»? 56
Что такое «экстремальное управление проектами»? 56
Как измерить успешность экстремального проекта? 59
Кто определяет успешность проекта? 60
Каковы основные элементы экстремальной модели достижения успеха? 62
Инструменты, навыки и условия достижения успеха:
5 Критических факторов успеха 67
Часть вторая: Навыки лидерства в экстремальном мире 71
3 Лидерство начинается с самодисциплины 75
Проектно-безумные организации 76
Формула самоистязания 78
Формула самодисциплины 82
Обращение в высшие инстанции 98
4 Роль лидера для руководителя экстремального проекта 103
Роль руководителя экстремального проекта 104
Участники: Управление проектной средой экстремального проекта 112
Вы в роли лидера процессов 118
Девять причин неудач руководителя экстремального проекта 129
Вы гораздо сильнее, чем можете себе представить 131
Если добиться приверженности невозможно 135
5 Принципы, ценности и навыки межличностного общения для лидера проекта 139
4 Ускорителя: как раскрыть мотивацию и способствовать созданию инноваций 141
10 Общих ценностей: как установить взаимодоверие для достижения успеха 146
4 Вопроса бизнеса: как добиться того, чтобы заказчик получал ценные результаты на каждом этапе 150
Развитие навыков межличностного общения в экстремальном мире 152
Принципы эффективного общения 159
Как вести переговоры 165
Разрешение конфликтов 178
Если ничего не помогает 180
6 Управление экстремальной командой 183
Ценности процесса 184
Описание команды 186
Создание основной команды 188
Создание условий для успешной работы команды 197
Правила проведения эффективных совещаний 210
Навыки фасилитатора 216
Принятие решений и решение проблем 220
Как заслужить право стать лидером процессов 227
7 Управление участниками экстремального проекта 233
Трудности управления участниками 234
Ценности бизнеса 237
Управление отношениями 238
Вселенная участников 238
Управление участниками проекта 244
Роль управляющего комитета 258
Как бороться с иллюзорным циклом утверждений 260
Управление изменениями: вы их создали, но приживутся ли они? 261
Четвертый вопрос бизнеса: Оно того стоит? 269
Часть третья: Гибкая модель проекта 271
8 Видение проекта: понимание видения проекта спонсором 279
Ответ на первый вопрос бизнеса: кому это нужно и зачем? 280
Первая встреча со спонсором 284
Начало работы над Уставом проекта 295
Вторая встреча со спонсором 304
9 Разработка видения проекта: создание коллективного видения 311
Подготовка к третьей встрече со спонсором 312
Получение или неполучение разрешения: третья встреча со спонсором 320
Подготовка к рамочной встрече 327
Проведение рамочной встречи 332
После встречи 346
10 Оценка проекта: совещание по планированию 357
Подготовка к совещанию по планированию 359
Двенадцать этапов совещания по планированию Зб 1
11 Оценка проекта: работы, выполняемые по завершении планирования 397
Оценка инфраструктуры управления проектом 399
Оценка финансовых требований 400
12 Этап Обновления проекта: обучаемся, делая 413
Основные движущие силы 414
Составление временных блоков 418
Применение модели ИПССР 420
Цель этапа обновления проекта 432
13 Переоценка проекта: определение судьбы проекта 443
Чем не является переоценка проекта 44б
Процесс переоценки 447
14 Внедрение проекта: получение экономического эффекта 467
Что случилось с четвертым вопросом бизнеса: оно того стоит? 470
Момент передачи результата 472
Стабилизационный период 473
Совещание по анализу проекта 474
Реализация преимуществ 477
Часть четвертая: Управление проектным окружением 489
15 Общение в реальном времени 491
Каковы основные потребности в общении участников проекта? 495
Каковы основные характеристики жизнеспособной системы общения в реальном времени? 497
Из чего состоит система общения в реальном времени? 499
Где найти приемлемые решения для быстрого начала работ? 502
В чем состоят технические требования, предъявляемые
к планированию и проведению виртуальных встреч? 506
Что надо знать о планировании и проведении web-конференций? 509
Как не попасть в ловушку? 510
16. Гибкая организация: Брифинг для руководства 513
Новая динамика проекта 515
Как руководство организации может подорвать эффективное управление проектами 517
Роль спонсора проекта 520
Гибкая организация: худшие и лучшие подходы 523
Достижение согласия 538
Переходный период 540
Мир становится все более экстремальным 541
Послесловие Роберта К. Высоцки 543
Экстремальные средства и методы 547
Средства и методы самодисциплины 547
Межличностные инструменты и навыки 5бЗ
Техники фасилитатора 572
Инструменты управления проектами 580
Список литературы 583

Необходимость в адаптивных (приспособляемых) системах управления возникает в связи с усложнением задач управления при отсутствии практической возможности подробного изучения и описания процессов, протекающих в объектах управления при наличии изменяющихся внешних возмущений. Эффект адаптации достигается за счет того, что часть функций по получению, обработке и анализу процессов в объекте управления выполняется в процессе эксплуатации системы. Такое разделение функций способствует более полному использованию информации о протекающих процессах при формировании сигналов управления и позволяет существенно снизить влияния неопределенности на качество управления. Тем самым, адаптивное управление необходимо в тех случаях, когда влияние неопределенности или «неполноты» априорной информации о работе системы становится существенным для обеспечения заданного качества процессов управления. В настоящее время существует следующая классификация адаптивных систем: самонастраивающиеся системы, системы с адаптацией в особых фазовых состояниях и обучающиеся системы.

Класс самонастраивающихся (экстремальных) систем автоматического управления имеет широкое распространение в виду достаточно простой технической реализации. Этот класс систем связан с тем, что ряд объектов управления или технологических процессов обладают экстремальными зависимостями (минимум или максимум) рабочего параметра от управляющих воздействий. К ним относятся мощные электродвигатели постоянного тока, технологические процессы в химической промышленности, различные типы топок, реактивные двигатели самолетов и т. д. Рассмотрим процессы, протекающие в топке при сжигании топлива. При недостаточной подаче воздуха топливо в топке сгорает не полностью и количество выделяемого тепла уменьшается. При избыточной подаче воздуха часть тепла уносится вместе с воздухом. И только при определенном соотношении между количества воздуха и тепла достигается максимальная температура в топке. В турбореактивном двигателе самолета изменением расхода топлива можно добиться получения максимального давления воздуха за компрессором, а следовательно, и максимальной тяги двигателя. При малом и большом расходах топлива давление воздуха за компрессором и тяга падает. Кроме того необходимо отметить, то обстоятельство, что экстремальные точки объектов управления являются «плавающими» во времени и в пространстве.

В общем случае мы можем утверждать о том, что существует экстремум, а при каких значениях управляющего воздействия он достигается – априори неизвестно. В этих условиях система автоматического управления в процессе эксплуатации должна формировать управляющее воздействие, приводящее объект в экстремальное положение, и удерживать его в этом состоянии в условиях возмущений и «плавающего» характера экстремальных точек. Управляющее устройство при этом является экстремальным регулятором.

По способу получения информации о ткущем состоянии объекта экстремальные системы являются беспоисковыми и поисковыми. В беспоисковых системах наилучшее управление определяется в результате использования аналитических зависимостей между желаемым значением рабочего параметра и параметрами регулятора. В поисковых системах, которые являются медленнодействующими, нахождение экстремума может быть выполнено различными способами. Наибольшее распространение получил метод синхронного детектирования, который сводится к оценке производной dy/du, где y – регулируемый (рабочий) параметр объекта управления, u – управляющее воздействие. Структурная схема, иллюстрирующая способ синхронного детектирования представлена на рис. 6.1.

Рис. 6.1 Структура синхронного детектирования

На вход объекта управления, который обладает экстремальной зависимостью y(u), совместно с управляющим воздействием U подается незначительное возмущение в виде регулярного периодического сигнала f(t) = gsinwt, где g больше нуля и достаточно мало. На выходе объекта управления получим y = y(u + gsinwt). Полученное значение y умножается на сигнал f(t). В результате сигнал А примет значение

А =yf(t) = y(u+gsinwt)gsinwt.

Предполагая, что зависимость y(u) является достаточно гладкой функцией, ее можно разложить в степенной ряд и с достаточной степенью точности ограничится первыми членами разложения

Y(u+gsinwt)=y(u)+gsinwt(dy/du) + 0.5g 2 sin 2 wt(d 2 y/du 2) + ….. .

Т. к. значение g мало, то можно пренебречь членами высшего порядка и в результате получим

Y(u + gsinwt) » y(u) + gsinwt(dy/du).

Тогда, в результате перемножения сигнал А примет значение

А = y(u)sinwt + g 2 sin 2 wt(dy/du).

На выходе фильтра низких частот Ф получим сигнал В

.

Если постоянная времени фильтра Т достаточно велика, то получим

.

Следовательно, сигнал В на выходе фильтра пропорционален производной dy/du

1. Я (Клиент), настоящим выражаю свое согласие на обработку моих персональных данных, полученных от меня в ходе отправления заявки на получение информационно-консультационных услуг/приема на обучение по образовательным программам.

2. Я подтверждаю, что указанный мною номер мобильного телефона, является моим личным номером телефона, выделенным мне оператором сотовой связи, и готов нести ответственность за негативные последствия, вызванные указанием мной номера мобильного телефона, принадлежащего другому лицу.

В Группу компаний входят:
1. ООО «МБШ», юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
2. АНО ДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

3. В рамках настоящего соглашения под «персональными данными» понимаются:
Персональные данные, которые Клиент предоставляет о себе осознанно и самостоятельно при оформлении Заявки на обучение/получение информационно консультационных услуг на страницах Сайта Группы компаний
(а именно: фамилия, имя, отчество (если есть), год рождения, уровень образования Клиента, выбранная программа обучения, город проживания, номер мобильного телефона, адрес электронной почты).

4. Клиент — физическое лицо (лицо, являющееся законным представителем физического лица, не достигшего 18 лет, в соответствии с законодательством РФ), заполнившее Заявку на обучение/на получение информационно-консультационных услуг на Сайта Группы компаний, выразившее таким образом своё намерение воспользоваться образовательными/информационно-консультационными услугами Группы компаний.

5. Группа компаний в общем случае не проверяет достоверность персональных данных, предоставляемых Клиентом, и не осуществляет контроль за его дееспособностью. Однако Группа компаний исходит из того, что Клиент предоставляет достоверную и достаточную персональную информацию по вопросам, предлагаемым в форме регистрации (форма Заявки), и поддерживает эту информацию в актуальном состоянии.

6. Группа компаний собирает и хранит только те персональные данные, которые необходимы для проведения приема на обучение/получения информационно-консультационных услуг у Группы компаний и организации оказания образовательных/информационно-консультационных услуг (исполнения соглашений и договоров с Клиентом).

7. Собираемая информация позволяет отправлять на адрес электронной почты и номер мобильного телефона, указанные Клиентом, информацию в виде электронных писем и СМС-сообщений по каналам связи (СМС-рассылка) в целях проведения приема для оказания Группой компаний услуг, организации образовательного процесса, отправки важных уведомлений, таких как изменение положений, условий и политики Группы компаний. Так же такая информация необходима для оперативного информирования Клиента обо всех изменениях условий оказания информационно-консультационных услуг и организации образовательного и процесса приема на обучение в Группу компаний, информирования Клиента о предстоящих акциях, ближайших событиях и других мероприятиях Группы компаний, путем направления ему рассылок и информационных сообщений, а также в целях идентификации стороны в рамках соглашений и договоров с Группой компаний, связи с Клиентом, в том числе направления уведомлений, запросов и информации, касающихся оказания услуг, а также обработки запросов и заявок от Клиента.

8. При работе с персональными данными Клиента Группа компаний руководствуется Федеральным законом РФ № 152-ФЗ от 27 июля 2006г. «О персональных данных».

9. Я проинформирован, что в любое время могу отказаться от получения на адрес электронной почты информации путем направления электронного письма на адрес: . Также отказаться от получения информации на адрес электронной почты возможно в любое время, кликнув по ссылке «Отписаться» внизу письма.

10. Я проинформирован, что в любое время могу отказаться от получения на указанный мной номер мобильного телефона СМС-рассылки, путем направления электронного письма на адрес:

11. Группа компаний принимает необходимые и достаточные организационные и технические меры для защиты персональных данных Клиента от неправомерного или случайного доступа, уничтожения, изменения, блокирования, копирования, распространения, а также от иных неправомерных действий с ней третьих лиц.

12. К настоящему соглашению и отношениям между Клиентом и Группой компаний, возникающим в связи с применением соглашения, подлежит применению право Российской Федерации.

13. Настоящим соглашением подтверждаю, что я старше 18 лет и принимаю условия, обозначенные текстом настоящего соглашения, а также даю свое полное добровольное согласие на обработку своих персональных данных.

14. Настоящее соглашение, регулирующее отношения Клиента и Группы компаний действует на протяжении всего периода предоставления Услуг и доступа Клиента к персонализированным сервисам Сайта Группы компаний.

ООО «МБШ» юридический адрес: 119334, г. Москва, Ленинский проспект, д. 38 А.
ООО «МБШ Консалтинг» юридический адрес: 119331, г. Москва, проспект Вернадского, д. 29, офис 520.
ЧУДПО «МОСКОВСКАЯ БИЗНЕС ШКОЛА — СЕМИНАРЫ», юридический адрес: 119334, Москва, Ленинский проспект, д. 38 А.

Задача оптимизации обычно состоит в отыскании и поддержании таких управляющих воздействий, при которых обеспечивается экстремум некоторого критерия качества функционирования объекта управления. Эта задача может решаться автоматически с помощью экстремальных регуляторов, осуществляющих в процессе работы поиск оптимальных управляющих воздействий. Системы, реализующие автоматический поиск и сопровождение экстремума некоторого показателя качества работы объекта, называются экстремальными системами управления или системами автоматической оптимизации. Системы автоматической оптимизации, благодаря реализации в них алгоритмов поиска оптимальных управлений, обладают рядом преимуществ, главным из которых является их свойство нормально функционировать в условиях неполной априорной информации об объекте и о действующих на него возмущениях. Применение экстремальных систем управления целесообразно в тех случаях, когда критерий качества работы объекта имеет ярко выраженный экстремум и имеются возможности реализации поиска и поддержания оптимального (экстремального) его режима функционирования. Развитие теории и техники экстремальных систем управления достигло в настоящее время значительного уровня. Промышленностью выпускаются типовые экстремальные регуляторы (автоматические оптимизаторы) для ряда технологических процессов.

Экстремальные системы управления составляют один из наиболее теоритически и практически развитых классов адаптивных систем. Экстремальными называются такие объекты автоматического управления, в которых статическая характеристика имеет экстремум, положение и величина которого не известны и могут изменяться непрерывным образом.

Обычно экстремальный регулятор осуществляет поиск и поддержание таких значений координат объекта , при которых выход достигает экстремального значения. Такой режим работы объекта и системы в целом является оптимальным в смысле минимума или максимума критерия качества. Примером одномерного экстремального объекта может служить самолет. Зависимость километрового расхода топлива y от скорости полета x характеризуется наличием экстремума, величина и положение которого изменяются при изменении веса самолета за счет расхода топлива.

В зависимости от количества экстремумов объекты разделяются на одноэкстремальные и многоэкстремальные, причем в последнем случае задача управления заключается в отыскании глобального экстремума, т.е. наибольшего максимума или наименьшего минимума. В зависимости от числа управляющих воздействий, формируемых в экстремальном регуляторе, различают одномерные и многомерные системы экстремального управления. По характеру работы во времени экстремальные системы могут быть непрерывными и дискретными. В зависимости от характера поискового сигнала различают экстремальные системы с детерминированными и случайными поисковыми сигналами.