Виды радиоактивного излучения и их характеристика. Виды излучений: какое самое опасное из них для человека

1. Что такое радиоактивность и радиация?

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией

2. Какая бывает радиация?

Различают несколько видов радиации.
Альфа-частицы : относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.
Бета-частицы - это просто электроны.
Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью. 2 Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.
Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи).

Следует различать радиоактивность и радиацию. Источники радиации - радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) – могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.

3. К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением . Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.
Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

4. Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник. 3
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем облучении .
Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего. 5. Передается ли радиация как болезнь? Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

6. В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность . Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки). Это - огромная величина: 1 Ки = 37000000000 Бк.
Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.
4
Как было сказано выше, при этих распадах источник испускает ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза . Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.
Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы . Единица измерения мощности экспозиционной дозы - микроРентген/час.
Мощность дозы, умноженная на время, называется дозой . Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).
Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы . Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза.
Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

7. Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 - стабильные.
Например, у первого элемента таблицы Менделеева - водорода - существуют следующие изотопы:
- водород Н-1 (стабильный),
- дейтерий Н-2 (стабильный),
- тритий Н-3 (радиоактивный, период полураспада 12 лет).

Радиоактивные изотопы обычно называют радионуклидами 5

8. Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада : это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.
Абсолютно ошибочной является следующая трактовка понятия "период полураспада": "если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)".

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида - свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно.
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

9. Что вокруг нас радиоактивно?
6

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

Радиоактивность была открыта в 1896 г. французским ученым Антуаном Анри Беккерелем при изучении люминесценции солей урана. Оказалось, что урановые соли без внешнего воздействия (самопроизвольно) испускали излучение неизвестной природы, которое засвечивало изолированные от света фотопластинки, ионизовало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Таким же свойством обладали и вещества содержащие полоний 21084Ро и радий 226 88Ra.

Еще раньше, в 1985 г. были случайно открыты рентгеновские лучи немецким физиком Вильгельмом Рентгеном. Мария Кюри ввела в употребление слово «радиоактивность».

Радиоактивность – это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.

Различаются естественная и искусственная радиоактивности. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

Существует несколько видов радиоактивного излучения, отличающихся по энергии и проникающей способности, которые оказывают неодинаковое воздействие на ткани живого организма.

Альфа-излучение - это поток положительно заряженных частиц, каждая из которых состоит из двух протонов и двух нейтронов. Проникающая способность этого вида излучения невелика. Оно задерживается несколькими сантиметрами воздуха, несколькими листами бумаги, обычной одеждой. Альфа-излучение может быть опасно для глаз. Оно практически не способно проникнуть через наружный слой кожи и не представляет опасности до тех пор, пока радионуклиды, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом - тогда они могут стать чрезвычайно опасными. В результате облучения относительно тяжелыми положительно заряженными альфа-частицами через определенное время могут возникнуть серьезные повреждения клеток и тканей живых организмов.

Бета-излучение - это поток движущихся с огромной скоростью отрицательно заряженных электронов, размеры и масса которых значительно меньше, чем альфа-частиц. Это излучение обладает большей проникающей способностью по сравнению с альфа-излучением. От него можно защититься тонким листом металла типа алюминия или слоем дерева толщиной 1.25 см. Если на человеке нет плотной одежды, бета-частицы могут проникнуть через кожу на глубину несколько миллиметров. Если тело не прикрыто одеждой, бета-излучение может повредить кожу, оно проходит в ткани организма на глубину 1‑2 сантиметра.

Гамма-излучение, подобно рентгеновским лучам, представляет собой электромагнитное излучение сверхвысоких энергий. Это излучение очень малых длин волн и очень высоких частот. С рентгеновскими лучами знаком каждый, кто проходил медицинское обследование. Гамма-излучение обладает высокой проникающей способностью, защититься от него можно лишь толстым слоем свинца или бетона. Рентгеновские и гамма-лучи не несут электрического заряда. Они могут повредить любые органы.

Все виды радиоактивного излучения нельзя увидеть, почувствовать или услышать. Радиация не имеет ни цвета, ни вкуса, ни запаха. Скорость распада радионуклидов практически нельзя изменить известными химическими, физическими, биологическими и другими способами. Чем больше энергии передаст излучение тканям, тем больше повреждений вызовет оно в организме. Количество переданной организму энергии называется дозой. Дозу облучения организм может получить от любого вида излучения, в том числе и радиоактивного. При этом радионуклиды могут находиться вне организма или внутри его. Количество энергии излучения, которое поглощается единицей массы облучаемого тела, называется поглощенной дозой и измеряется в системе СИ в грэях (Гр).

При одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- и гамма-излучений. Степень воздействия различных видов излучения на человека оценивают с помощью такой характеристики как эквивалентная доза. разному повреждать ткани организма. В системе СИ ее измеряют в единицах, называемых зивертами (Зв).

Радиоактивным распадом называется естественное радиоактивное превращение ядер, происходящее самопроизвольно. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием γ-фотона. Т.о. гамма-излучение - основная форма уменьшения энергии возбужденных продуктов радиоактивных превращений.

Альфа-распад. β-лучи представляют собой поток ядер гелия Не. Альфа-распад сопровождается вылетом из ядра α-частицы (Не), при этом первоначально превращается в ядро атома нового химического элемента, заряд которого меньше на 2, а массовое число – на 4 единицы.

Скорости, с которыми α-частицы (т.е. ядра Не) вылетают из распавшегося ядра, очень велики (~106 м/с).

Пролетая через вещество, α-частица постепенно теряет свою энергию, затрачивая ее на ионизацию молекул вещества, и, в конце концов, останавливается. α-частица образует на своем пути примерно 106 пар ионов на 1 см пути.

Чем больше плотность вещества, тем меньше пробег α-частиц до остановки. В воздухе при нормальном давлении пробег составляет несколько см, в воде, в тканях человека (мышцы, кровь, лимфа) 0,1-0,15 мм. α-частицы полностью задерживаются обычным листком бумаги.

α- частицы не очень опасны в случае внешнего облучения, т.к. могут задерживаться одеждой, резиной. Но α-частицы очень опасны при попадании внутрь человеческого организма, из-за большой плотности производимой имим ионизации. Повреждения, возникающие в тканях не обратимы.

Бета-распад бывает трех разновидностей. Первый – ядро, претерпевшее превращение, испускает электрон, второе – позитрон, третье – называется электронный захват (е-захват), ядро поглощает один из электронов.

Третий вид распада (электронный захват) заключается в том, что ядро поглощает один из электронов своего атома, в результате чего один из протонов превращается в нейтрон, испуская при этом нейтрино:

Скорость движения β-частиц в вакууме равна 0,3 – 0,99 скорости света. Они быстрее чем α-частицы, пролетают через встречные атомы и взаимодействуют с ними. β–частицы обладают меньшим эффектом ионизации (50-100 пар ионов на 1 см пути в воздухе) и при попадании β-частицы внутрь организма они менее опасны чем α-частицы. Однако проникающая способность β-частиц велика (от 10 см до 25 м и до 17,5 мм в биологических тканях).

Гамма-излучение – электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях, которое распространяется в вакууме с постоянной скоростью 300 000 км/с. Это излучение сопровождает, как правило, β-распад и реже – α-распад.

γ-излучение подобно рентгеновскому, но обладает значительно большей энергией (при меньшей длине волны). γ–лучи, являясь электрически нейтральными, не отклоняются в магнитном и электрическом полях. В веществе и вакууме они распространяются прямолинейно и равномерно во все стороны от источника, не вызывая прямой ионизации, при движении в среде они выбивают электроны, передавая им часть или всю свою энергию, которые производят процесс ионизации. На 1см пробега γ-лучи образуют 1-2 пары ионов. В воздухе они проходят путь от нескольких сот метров и даже километров, в бетоне – 25 см, в свинце – до 5 см, в воде – десятки метров, а живые организмы пронизывают насквозь.

γ-лучи представляют значительную опасность для живых организмов как источник внешнего облучения.

Радиоактивное излучение является мощным воздействием на человеческий организм, способным вызвать необратимые процессы, ведущие к трагическим последствиям. В зависимости от мощности различные виды радиоактивных излучений могут вызвать тяжелые заболевания, а могут, наоборот, лечить человека. Некоторые из них используются в диагностических целях. Другими словами, все зависит от контролируемости процесса, т.е. его интенсивности и продолжительности воздействия на биологические ткани.

Сущность явления

В общем случае под понятием радиация подразумевается высвобождение частиц и их распространение в виде волн. Радиоактивность подразумевает самопроизвольный распад ядер атомов некоторых веществ с появлением потока заряженных частиц большой мощности. Вещества, способные на такое явление, получили название радионуклидов.

Так что такое радиоактивное излучение? Обычно под этим термином отмечаются как радиоактивные, так и радиационные излучения. По своей сути, это направленный поток элементарных частиц значительной мощности, вызывающих ионизацию любой среды, попадающей на их пути: воздух, жидкости, металлы, минералы и другие вещества, а также биологические ткани. Ионизация любого материала ведет к изменению его структуры и основных свойств. Биологические ткани, в т.ч. человеческого организма, подвергаются изменениям, которые не совместимы с их жизнедеятельностью.

Различные типы радиоактивного излучения имеют разную проникающую и ионизирующую способность. Поражающие свойства зависят от следующих основных характеристик радионуклеидов: вид радиации, мощность потока, период полураспада. Ионизирующая способность оценивается по удельному показателю: количеству ионов ионизируемого вещества, формируемых на расстоянии в 10 мм по пути проникновения излучения.

Негативное воздействие на человека

Радиационное облучение человека приводит к структурным изменениям в тканях организма. В результате ионизации в них появляются свободные радикалы, которые представляют собой активные в химическом плане молекулы, поражающие и убивающие клетки. Первыми и наиболее сильно страдают желудочно-кишечная, мочеполовая и кроветворная системы. Появляются выраженные симптомы их дисфункции: тошнота и рвота, повышенная температура, нарушение стула.

Достаточно типичной является лучевая катаракта, вызванная воздействием излучения на глазные ткани. Наблюдаются и другие серьезные последствия радиационного облучения: сосудистый склероз, резкое снижение иммунитета, гематогенные проблемы. Особую опасность представляет повреждение генетического механизма. Возникающие активные радикалы способны изменить структуру главного носителя генетической информации — ДНК. Такие нарушения могут приводить к непрогнозируемым мутациям, отражающимся на следующих поколениях.

Степень поражения человеческого организма зависит от того, какие виды радиоактивного излучения имели место, какова интенсивность и индивидуальная восприимчивость организма. Главный показатель — доза облучения, показывающая, какое количество радиации проникло в организм. Установлено, что разовая большая доза значительно опаснее, чем накопление такой дозы при длительном облучении маломощным излучением. Поглощенное организмом количество радиации измеряется в эйвертах (Эв).

Любая жизненная среда имеет определенный уровень радиации. Нормальным считается радиационный фон не выше 0,18-0,2 мЭв/ч или 20 микрорентгенов. Критический уровень, ведущий к летальному исходу, оценивается в 5,5-6,5 Эв.

Разновидности излучения

Как отмечалось, радиоактивное излучение и его виды могут по-разному воздействовать на человеческий организм. Можно выделить следующие основные разновидности радиации.

Излучения корпускулярного типа, представляющие собой потоки частиц:

  1. Альфа-излучение. Это поток, составленный из альфа-частиц, имеющих огромную ионизирующую способность, но глубина проникновения небольшая. Даже листок плотной бумаги способен остановить такие частицы. Одежда человека достаточно эффективно исполняет роль защиты.
  2. Бета-излучение обусловлено потоком бета-частиц, летящих со скоростью, близкой к скорости света. Из-за огромной скорости эти частицы имеют повышенную проникающую способность, но ионизирующие возможности у них ниже, чем в предыдущем варианте. В качестве экрана от данного излучения могут служить оконные окна или металлический лист толщиной 8-10 мм. Для человека оно очень опасно при прямом попадании на кожу.
  3. Нейтронное излучение состоит из нейтронов и обладает наибольшим поражающим воздействием. Достаточная защита от них обеспечивается материалами, в структуре которых есть водород: вода, парафин, полиэтилен и т.п.

Волновое излучение, представляющее собой лучевое распространение энергии:

  1. Гамма-излучение является, по своей сути, электромагнитным полем, создающимся при радиоактивных превращениях в атомах. Волны испускаются в виде квантов, импульсами. Излучение имеет очень высокую проницаемость, но низкую ионизирующую способность. Для защиты от таких лучей нужны экраны из тяжелых металлов.
  2. Рентгеновское излучение, или Х-лучи. Эти квантовые лучи во многом аналогичны гамма-излучению, но проникающие возможности несколько занижены. Такой тип волны вырабатывается в вакуумных рентгеновских установках за счет удара электронами о специальную мишень. Общеизвестно диагностическое назначение данного излучения. Однако следует помнить, что продолжительное действие его способно нанести человеческому организму серьезный вред.

Как может облучиться человек

Человек получает радиоактивное облучение при условии проникновения радиации в его организм. Оно может происходить 2 способами: внешнее и внутреннее воздействие. В первом случае источник радиоактивного излучения находится снаружи, а человек по разным причинам попадает в поле его деятельности без надлежащей защиты. Внутреннее воздействие осуществляется при проникновении радионуклида внутрь организма. Это может произойти при употреблении облученных продуктов или жидкостей, с пылью и газами, при дыхании зараженным воздухом и т.д.

Внешние источники радиации можно подразделить на 3 категории:

  1. Естественные источники: тяжелые химические элементы и радиоактивные изотопы.
  2. Искусственные источники: технические устройства, обеспечивающие излучение при соответствующих ядерных реакциях.
  3. Наведенная радиация: различные среды после воздействия на них интенсивного ионизирующего излучения сами становятся источником радиации.

К наиболее опасным объектам в части возможного радиационного облучения можно отнести следующие источники радиации:

  1. Производства, связанные с добычей, переработкой, обогащением радионуклидов, изготовлением ядерного топлива для реакторов, в частности урановая промышленность.
  2. Ядерные реакторы любого типа, в т.ч. на электростанциях и кораблях.
  3. Радиохимические предприятия, занимающиеся регенерацией ядерного топлива.
  4. Места хранения (захоронения) отходов радиоактивных веществ, а также предприятия по их переработке.
  5. При использовании радиационных излучений в разных отраслях: медицина, геология, сельское хозяйство, промышленность и т.п.
  6. Испытание ядерного оружия, ядерные взрывы в мирных целях.

Проявление поражения организма

Характеристика радиоактивных излучений играет решающую роль в степени поражения человеческого организма. В результате воздействия развивается лучевая болезнь, которая может иметь 2 направления: соматическое и генетическое поражение. По времени проявления выделяется ранний и отдаленный эффект.

Ранний эффект выявляет характерные симптомы в период от 1 часа до 2 месяцев. Типичными считаются такие признаки: кожная краснота и шелушение, мутность глазного хрусталика, нарушение кроветворного процесса. Крайний вариант при большой дозе облучения — летальный исход. Локальное поражение характеризуются такими признаками, как лучевой ожог кожного покрова и слизистой оболочки.

Отдаленные проявления выявляются через 3-5 месяцев, а то и через несколько лет. В этом случае отмечаются устойчивые кожные поражения, злокачественные опухоли различной локализации, резкое ухудшение иммунитета, изменение состава крови (значительное снижение уровня эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов). В результате этого часто развиваются различные инфекционные болезни, существенно снижается продолжительность жизни.

Для предотвращения облучения человека ионизирующим излучением применяются различные виды защиты, которые зависят от типа радиации. Кроме того, регламентируются жесткие нормы по максимальной продолжительности пребывания человека в зоне облучения, минимальному расстоянию до источника радиации, использованию индивидуальных средств защиты и установке защитных экранов.

Радиоактивное излучение способно оказывать сильное разрушительное воздействие на все ткани человеческого организма. В то же время оно используется и при лечении различных болезней. Все зависит от дозы облучения, получаемой человеком в разовом или длительном режиме. Только неукоснительное соблюдение норм радиационной защиты поможет сохранить здоровье, даже если находиться в пределах действия радиационного источника.

Что такое радиация? Насколько опасна радиация?

Радиация – это форма энергии, которая исходит из определенного источника и перемещается в пространстве. Источники могут варьироваться – от солнца, земли, камней и до машин.

Вызываемая ими энергия обычно называется ионизационным излучением. Ионизирующее излучение формируется неустойчивыми атомами, которые имеют как энергию, так и массу, превышающую стабильные атомы, и поэтому могут нанести ущерб.

Излучение может проходить через пространство в виде частиц или волн. Излучение частиц может быть легко заблокировано одеждой, в то время как излучение волны может быть смертельным, и оно также может пройти через бетон.

Излучение измеряется с помощью счетчиков Гейгера и в форме Зивертов (μSv).

Насколько опасно излучение?

Каждый человек получает определенное количество радиации каждый день. Прогуливаясь под солнцем, получая рентгеновский снимок, идя на компьютерную томографию, отправляясь в полет.

Проблема заключается не в радиации. Реальной проблемой является количество излучения или, другими словами, уровни излучения, которые человек получает.

В день человек в среднем получает 10 мкЗв и 3 600 мкЗв в год. Нормальный 5-часовой 30-минутный полет дает дозу в 40 мкЗв, в то время как рентгеновское излучение дает дозу, равную 100 мкЗв.

Все эти указанные дозы приемлемы для человеческого организма, но все, что выше уровня 100 000 мкЗв, может привести к заболеваниям и даже смерти.

Риск рака увеличивается в тот момент, когда человек проходит уровень 100 000 мкЗв, а уровень выше 200 000 мкЗв является фатальным.

Воздействие радиации

Радиация может нанести ущерб тканям человеческого тела, привести к ожогам, раку и даже смерти.

Даже высокий уровень воздействия солнца может вызвать солнечные ожоги, поскольку ультрафиолетовые лучи являются формой излучения.

Более глубокое замечание: радиация ослабляет или разрушает дезоксирибонуклеиновую кислоту (ДНК) человеческого тела, вызывая дисбаланс в клетках.

Затем дисбаланс увеличивает повреждения клеток или убивает их до такой степени, что этот процесс порождает опасные для жизни заболевания, такие как рак.

У детей легко возникает высокий уровень радиации, поскольку их клетки недостаточно сильны, чтобы противостоять угрозе от радиации.

Происшествия в прошлом, когда уровни радиации пересекали страшные 200 000 мкЗв, отмеченные, например, в , и , привели к детской смертности и раку.

Что такое альфа-излучение и какова его опасность?

Альфа-излучение, также известное как альфа-распад, представляет собой своего рода радиоактивную гниль, в которой ядерный сердечник разряжает альфа-молекулу и таким образом изменяется с массовым числом, которое уменьшается на четыре и ядерным числом, которое уменьшается на два.

Альфа-излучение трудно обнаружить и измерить. Даже самые распространенные устройства, такие как CD V-700, не способны обнаруживать альфа-частицы до тех пор, пока бета-излучение не будет получено вместе с ним.

Высокотехнологичные устройства, способные измерять альфа-излучение, требуют профессиональной программы обучения, иначе неспециалист не сумеет разобраться.

Более того, поскольку альфа-излучение не проникает, оно не может быть обнаружено или измерено каким-либо устройством даже через скудный слой воды, крови, пыли, бумаги или другого материала.

Существует два типа излучения: ионизирующее / не ионизирующее и альфа-излучение, которое классифицируются как ионизирующие.

Ионизирующее не так опасно, как не ионизирующее, из-за следующих причин: альфа-излучение не способно проникать в кожу, а материалы с альфа-выбросами могут быть вредны для людей, только если материалы вдыхаются, глотаются или проникают через открытые раны.

В противном случае альфа-излучение не сможет проникнуть через одежду.

Что такое бета-излучение и каковы его эффекты?

Бета-излучение – это излучение, возникающее, когда радиоактивный распад начинает выделять радиоактивные частицы.

Это не ионизирующее излучение и движется в виде волн. Бета-излучение считается опасным, поскольку оно обладает способностью проникать сквозь любые твердые материалы, такие как стены.

Воздействие бета-излучения может иметь отсроченное воздействие на организм, такое как рост клеток или клеточный ущерб.

Поскольку последствия внедрения бета-излучения не являются быстрыми, и нет реального способа выяснить, вызвал ли контакт агрессивное воздействие, проблемы могут появиться спустя несколько лет.

Увидев знак, предупреждающий о повышенной радиоактивности, человек старается поскорее покинуть опасное место. Случившееся в Чернобыле, Хиросиме и Нагасаки, научило людей остерегаться радиации. И не зря. После произошедших трагедий человечество столкнулось с серьезными проблемами в состоянии здоровья, которые до сих пор дают о себе знать. Радиация губительно влияет на организм, иногда приводя к смерти. Поэтому важно знать о ее действии, свойствах и допустимых дозах.

Что такое радиация?

Человек сталкивается с радиацией на протяжении всей жизни. Его организм, в первую очередь, подвержен естественной радиоактивности, которая наблюдается в природных процессах. Радиоактивностью называют такие явления в природе, при которых ядра атомов распадаются произвольно, что становится причиной возникновения излучений. Обладая выраженной энергией, эти излучения характеризуются тем, что способны ионизировать среду, в которой распространяются. Ионизация приводит к изменениям физических и химических свойств вещества. Такая способность несет поражающее влияние на живой организм, так как в биологических тканях нарушается жизнедеятельность.

Если ионизирующая способность в излучении высока, то она проникает в организм меньше. Если же ионизация обладает низким уровнем, она способна проникать более глубоко. Это становится важным, когда речь заходит о радиации, и ее влиянии на человека.

Радиоактивное действие на человека проводится внешним и внутренним способами. Вещества, которые находятся вне границ организма, создают внешнее облучение. Если же организм получает радиоактивные элементы, которые проникли внутрь вместе с воздухом, пищей, водой, так возникает облучение внутреннее. Высокое проникающее свойство излучения влияет более мощно при внешнем воздействии. Внутреннее влияние усугубляется, если излучению характерна высокая ионизация.

Облучение, которое изнутри получает организм, считается более опасным, так как радиация влияет на ткани и органы, которые ничем не защищены. Этот процесс происходит на молекулярном, клеточном уровне. Защитным барьером при внешнем облучении служит кожа, одежда, защитные средства, стены помещений.

Радиоактивные излучения разделяются на несколько видов, которые отличаются свойствами и влиянием на человека.

Дозы и источники радиоактивного излучения

Излучение постоянно исходит от естественных источников. Такими источниками внешнего облучения являются:

  • космические излучения,
  • солнечная радиация,
  • излучения горных пород,
  • излучения воздуха.

Небольшой дозой радиации обладают даже стройматериалы, которые используются в постройке зданий.

Внутреннее влияние радиации несут газы, поступающие из недр земли, радиоактивный калий, торий, уран, радий рубидий, являющиеся составляющими воды, растений и пищи. Любые эти виды радиоактивного воздействия не приносят вреда, когда излучение идет в малых количествах.

Существует допустимая норма радиации для человеческого организма. Безопасной считается доза до 0,3-0,5 мкЗв в час. Предельно допустимым является излучение в 10 мкЗв в час, если оно воздействует на организм не долго. Уже при мощности в 50 мЗв в год облучение приводит к онкологиям. Смертельная доза для человека – 10 Зв в год. Летальный исход случается через несколько недель.

Человеческая деятельность приводит к тому, что радиационное воздействие увеличивается, выражаясь в загрязнениях окружающей среды. В основном это происходит из таких источников:

  • радиоактивные реакторы,
  • урановая индустрия,
  • радиохимическое производство,
  • переработка и захоронение отходов с радиоактивной способностью,
  • радионуклиды в области народного хозяйства.

Радиация и ее влияние на человека может иметь и положительный опыт. Например, радиационное воздействие используется в медицине, к тому же, достаточно широко. Среди такого применения известны следующие способы проведения диагностики:

  • рентгенография,
  • флюорография,
  • компьютерная томография.

Облучение при томографии интенсивнее. Но и результат диагностирования в данном случае выше.

Кроме того, радиация в медицине применяется в таких сферах:

  • Радиотерапия. С ее помощью проводится лечение онкологических заболеваний. Правильное облучение способно убивать опухолевые образования.
  • Радиохирургия. Здесь используется гамма-нож, который не приводит к разрезам на коже. Особенно интенсивно его употребляют в развитых странах.

Грамотный подход к использованию радиоактивности служит на благо человечеству. Тогда, как чрезмерная промышленная деятельность загрязняет природу, что приводит к различным проблемам со здоровьем.

Влияние радиации на человека

Радиация и ее влияние на человека может вызывать серьезные нарушения в здоровье. Поражение касается не только организма того, кто подвергся облучению, но и следующих поколений, так как радиация влияет на генетический аппарат. Поэтому радиоактивное влияние имеет два эффекта:

  • Соматический – возникают такие заболевания, как лейкозы, онкологические образования органов, локальные лучевые поражения и лучевая болезнь.
  • Генетический – приводит к генным мутациям и изменениям структуры хромосом.

Облучение хронического характера несет меньшую нагрузку на организм, чем разовое в той же дозе, ведь успевают происходить восстановительные процессы. Скапливание радионуклидов в организме происходит неравномерно. Более всего страдают дыхательные и пищеварительные органы, через которые в организм проникают радионуклиды, печень и щитовидная железа. Среди онкологий, вызванных радиацией, наиболее распространены рак щитовидки и молочной железы.

Лучевой лейкоз, то есть рак крови, может обнаружиться по прошествии четырех-десяти лет после облучения. Он особо опасен для тех, кто еще не достиг пятнадцатилетнего возраста. То, что радиация может приводить к этой болезни, свидетельствует ее рост у жителей Хиросимы и Нагасаки. Кроме того, было подмечено, что смертность среди рентгенологов увеличена именно по причине лейкоза.

Облучение радиацией также чревато онкологией легких. В частности, диагноз распространен среди шахтеров, работающих на урановых рудниках.

Самым известным последствием радиационного действия является лучевая болезнь. Ее провоцируют как разовые облучения, так и хронические. Большие дозы могут привести к летальному исходу.

Мутации, которые проходят в генетическом аппарате в следствие облучения, на данный момент изучены не достаточно. Это обусловлено тем, что они способны проявляться через многие годы в разных поколениях. Тогда становится трудно доказать, по какой именно причине произошла та или иная мутация.

Иногда они проявляются сразу. Такие мутации называют доминантными. Существуют рецессивные мутации, дающие знать о себе через поколения. Хотя они могут не выявиться в новых поколениях вообще. Мутации выявляются физическими или психическими нарушениями в здоровье потомков. Для этого поврежденному гену нужно соединиться с геном, обладающим одинаковым с ним повреждением.

При внешних облучениях появляются ожоги кожных и слизистых покровов, разные по степеням тяжести.

Свободные радикалы и последствия их действия

Когда ионизирующая способность радиоактивного излучения интенсивна, это приводит к образованию активных молекул в живых клетках. Такие молекулы и есть свободными радикалами. Они повреждают и приводят к гибели живые клетки.

Их агрессивное воздействие направлено на жизненно важные функции организма. В первую очередь страдают клетки желудочно-кишечной и кроветворной систем и половые клетки. В данном случае возникают определенные симптомы: тошнота, рвота, повышенная температура, диарея, уменьшение клеток крови.

Клетки, которые делятся не так быстро, как вышеперечисленные, переживают изменения в сторону дистрофии. Если при облучении пострадали глаза, это может вызвать лучевую катаракту. Склероз сосудов и плохой иммунитет – также последствия работы свободных радикалов.

В борьбе со свободными радикалами организм сам запускает регенерацию поврежденных клеток. Но когда облучение сильное, он становится не способным побороть вредоносное действие. Вид радиации, ее интенсивность и индивидуальная восприимчивость человека играют в этом главную роль.

Заключение

Радиоактивное излучение в природе является нормальным явлением. Естественное облучение проходит в минимальных дозах, и человек переживает его на протяжении всей жизни. Ведь оно исходит от таких природных носителей, как солнце и воздух. Но там, где человек переходит предельную черту, загрязняя окружающую среду разными видами производства, радиация становится очень опасной для здоровья и жизни. Ее влияние при превышении допустимых доз способно наносить вред не только организму того, кто оказался под ее воздействием, но и потомкам такого человека. Влияя на генетику, радиация способна повреждать психические и физические способности новых поколений.

Кроме негативного радиационного воздействия, человек сталкивается с его положительной стороной, когда речь заходит о медицинских обследованиях и процедурах. Обернуть радиацию на благо смогли ученые, употребив ее в медицине.