Люминесцентная лампа где используется. Люминесцентные лампы - это что такое? Принцип работы

Со дня начала массового производства люминесцентных ламп и по сей день они остаются в лидерах по распространенности среди осветительных приборов. Возможно, когда-нибудь по этому параметру их обгонят светодиодные, но пока факт остается фактом. И дело не только в их экономичности по сравнению с галогенными или лампами накаливания. На сегодняшний день это самый доступный вариант освещения для школ, детских садов, офисов, производственных и складских помещений.

Люминесцентные, газоразрядные, лампы дневного света – как только не называют подобные осветительные приборы, порой даже не задумываясь, откуда взялось название. Все просто. Светильники с ЛДС работают с помощью дросселя и стартера. Стартер, создавая кратковременное короткое замыкание, способствует появлению искры, а дроссель посредством выработки высоковольтного разряда пробивает содержащиеся в колбе пары ртути, в результате чего возникает ультрафиолетовое свечение.

Классификация люминесцентных ламп

Для классификации и выделения технических характеристик ЛЛ необходимо определить их работоспособность, а так же понять, какова их конструкция. Для этого целесообразно:

  • Определить свет, который излучается лампой. Он может быть обычным белым или дневным. Усовершенствованные модели возможны в универсальном исполнении.
  • Узнать поперечную ширину трубки. Чем больше этот показатель, тем мощнее будет ЛДС, а также будут выше данные по температуре цвета, спектру и сроку службы. Наиболее распространены и эффективны колбы на 18, 26 и 38 мм. Данные диаметра и длины трубки обычно маркируют рядом, к примеру, 26/406.
  • Посмотреть на такие показатели, как мощность ламп. На основе этих показателей возможно определение площади, освещаемой прибором. Также от этого параметра зависит и КПД.
  • Узнать, сколько контактов имеет ЛЛ. Их может быть четыре, может два при скрученной в кольцо лампе.
  • Определить, требуется ли для розжига люминесцентной лампы стартер и дроссель, или ЛЛ является бесстартерной. Некоторые думают, что если стартер не требуется, прибор будет более экономичным. Но это заблуждение, никакой связи между наличием либо отсутствием прерывателя и энергосберегаемостью нет.
  • Учесть номинал необходимого питания. Есть лампы, работающие не от 220 В, а от 127 В.
  • Посмотреть на форму лампы. Она может быть в форме кольца, U-образной, прямой, спиралевидной, шарообразной или дуговой.
  • Обратить внимание на долговечность работы. Она зависит от того, где должна быть применена данная лампа. Наиболее долговечны ЛЛ, предназначенные для дома.
  • Визуально понять цвет лампы. Является она ЛДЦ или ЛБ.

Маркировка

Лампы дневного света можно разделить на две группы – имеющие общее и специальное назначение. Общее назначение – приборы 15–80 ватт. Они могут быть как белыми, так и цветными (красный, желтый, зеленый, голубой и синий).

По параметру мощности бывают маломощными (менее 15 ватт) и мощными (более 80 ватт).

Имеет значение и тип разряда, они тоже бывают разными – дуговой, тлеющий и тлеющего сечения.

Излучение – естественный свет, цветная лампа, со специализированным спектром и ультрафиолетовая.

Форма трубки – трубчатая или фигурная. Светораспределение – направленное излучение (рефлекторная, щелевая, панельная и пр.) и ненаправленное.

Указание особенностей обязательно в названии, поэтому, посмотрев на обозначение люминесцентных ламп, можно определить все показатели этих осветительных приборов. У ЛЛ, имеющих улучшенное качество по цветопередаче, в маркировке за литерой цвета будет проставлена буква Ц, а при условии особого качества – ЦЦ.

К примеру, маркировка лампы выглядит следующим образом – ЛКЦУ-80. Значит, это люминесцентная красная U-образная лампа мощностью 80 ватт. Маркировка люминесцентных ламп OSRAM немного отличается, но все же основные данные в ней те же.


Преимущества и недостатки

При уменьшении размеров (длины) лампы увеличивается световая отдача. Получается, что уменьшаются потери, что способствует улучшению качества светового потока. Тогда напрашивается логичный вывод – лучшее освещение даст одна лампа мощностью 30 ватт, чем две по 15 ватт.

Какие же преимущества у подобных световых приборов? Конечно, первое, что следует назвать – это приличный уровень КПД, он составляет приблизительно 25%. Что касается светоотдачи, то она почти в десять раз выше, чем у обычной лампы с нитью накаливания.

Следующий плюс — это большая долговечность. Она составляет 20 000 ч. К тому же такие лампы обладают огромным цветовым спектром. Конечно, с многоцветной светодиодной лентой его не сравнить, но все же возможно подобрать осветительный прибор со световым потоком такого цвета, который нужен.

Распределение свечения по всей люминесцентной лампе. Хотя, конечно, это преимущество сомнительно, скорее его можно отнести к недостаткам. А их и без того хватает.


К примеру, такие лампы дневного света требуют установки пускорегулирующего аппарата, т. к. необходима стабилизация и поддержка нормального функционирования прибора освещения. Также эти лампы находятся в зависимости от погодных условий (при установке на улице).

Оптимальный температурный режим подобных люминесцентных трубок – это 20 градусов по Цельсию.

Еще одна очень важная проблема – возможность отравиться при дефекте колбы и выделении паров ртути. По той же причине (испарения тяжелых металлов) возникают и проблемы с утилизацией. Производят ее только специализированные центры, и стоит это немалых средств.

Также при нестабильном напряжении возможно возникновение ощутимого мерцания, что, естественно, не добавит здоровья зрению и может вызвать головные боли и раздражительность. О последнем недостатке уже упоминалось – диммировать устройство очень сложно и трудоемко.

Как выбрать люминесцентную лампу?

При выборе нужно следовать некоторым правилам, которые могут повлиять в будущем на качество люминесцентной лампы, а также на продолжительность ее срока службы. Обращать внимание следует на следующие показатели технических характеристик:

  1. погодные условия (если светильник на улице) и внутренняя среда в помещении, где предполагается использование;
  2. температурный режим, при котором будет происходить функционирование осветительного прибора;
  3. напряжение в сети, что важно для предотвращения мерцания;
  4. размеры прибора. Необходимо предусмотреть, вместится ли люминесцентная лампа в светильник;
  5. приемлемая и необходимая мощность прибора, его цвет и сила светопотока.

Выбрав люминесцентную лампу с подходящими характеристиками, возможно надолго получить качественное изделие. Его не придется менять каждый месяц.


Определить качество подобных приборов, опираясь на марку фирмы-изготовителя, не получится, т. к. определенная часть люминесцентных ламп у любого поставщика будет браком. И размер такого неликвида не зависит от цены изделия или раскрученности бренда.

При приобретении цветной люминесцентной лампы (ЛДЦ) или же специализированной придется переплатить около 10–15% от стоимости обычной ЛЛ. Это может быть бактерицидная лампа, какие устанавливаются в больницах для кварцевания, т. е. обеззараживания, либо лампы для растениеводства.

Некоторые данные для облегчения выбора

Естественно, что от мощности лампы зависит ее долговечность, а также сила светового потока, в том числе и через некоторое время работы. Зная подобные параметры люминесцентных ламп, можно подобрать оптимальный световой прибор, который не испортит настроения при установке.

К примеру, при потребляемой мощности подобного светового прибора в 30 ватт средний срок службы составит 15 000 часов. Средняя сила светового потока после 100 часов горения у белой (ЛБ) будет равна 140 лм, теплой и холодной белой – 100 лм. У дневной – 180 лм, а у дневной цветной этот показатель будет равен 80 лм. А вот у ЛДЦ параметры уже будут другими.


Не стоит забывать о том, что бесстартерные лампы хотя и расходуют не меньше электроэнергии, чем светильники со стартером, но все же долговечность их работы немного больше. А потому наилучшим вариантом будет приобретение именно таких люминесцентных ламп с последующим исключением из схемы их включения стартеров. Сделать это нетрудно, и времени много такая работа не займет.

Экзотика

Вообще нестандартная форма люминесцентных ламп берет свое начало со времен неоновых реклам. Сейчас, когда у производителя появилась масса возможностей изготовить трубку любой конфигурации, фигурные лампы в основном стали использоваться для смелых дизайнерских решений. Такие изделия не маркируются привычными символами. Для того чтобы узнать их технические характеристики, необходимо посмотреть в паспорт изделия.

Такие люминесцентные лампы очень неплохо вписываются в футуристические интерьеры. Интересно, что подобного вида светильника и распространяемого им света невозможно добиться при помощи любого другого вида источника освещения.

Люминесцентные лампы (ЛЛ) находят свое применение в самых разных областях деятельности человека. Изобретение этого источника света и организация массового производства позволили значительно улучшить качественные характеристики искусственного освещения и повысить энергетическую эффективность (коэффициент полезного действия) светильников, укомплектованных ЛЛ.

Последовательная замена неэффективных ламп накаливания на люминесцентные ускорилась с началом производства компактных ЛЛ. Самые современные на сегодня светодиодные источники света, несмотря на постоянное улучшение своих характеристик, пока не достигли некоторых параметров ЛЛ, например, по такому важному показателю, как цена. Исследования физических процессов, возникающих в газах при пропускании через них электрического тока, позволили физикам и инженерам разработать источник света, в корне отличающийся от ламп накаливания, доминировавших долгое время.

Историческая справка

История создания люминесцентной лампы интересна и поучительна сама по себе. В процессе ее разработки появились дополнительно полезные и для других областей технологии: вакуумная откачка, получение разных по составу люминофоров и другие.

Сначала была изобретена вакуумная стеклянная трубка. В 1856 году немецкий изобретатель Генрих Гайслер изобрел вакуумный насос, позволивший удалять (откачивать) воздушную среду из стеклянной колбы. Впоследствии колба в виде прямолинейной трубки стала именоваться трубкой Гайслера.

На концы трубки припаивались металлические электроды для проведения экспериментов по пропусканию электрического тока либо через вакуум (остаточный газ в трубке), либо через различные газы, которые напускались после откачки воздуха. При достижении напряжения пробоя от одного электрода к другому начинал течь ток и возникало свечение слабой интенсивности, цвет которого менялся в зависимости от того, какой именно газ напускался взамен удаленного воздуха: двуокись углерода (для белого свечения) или азот (для розового).

Далее французский физик Александр Беккерель в 1859 году предложил наносить на внутреннюю поверхность стеклянной трубки тонкий слой люминесцирующего слоя (люминофора), который начинал светиться в видимой области спектра при возбуждении атомов ультрафиолетовым (УФ) излучением.

В 1901 году американец Питер-Купер Хьюитт предложил добавлять ртуть, что существенно повысило яркость нового светового источника. ЛЛ была экономичней лампочек накаливания в 8 раз, но ее излучение имело сине-зеленый оттенок, придававший человеческим лицам жутковатый трупный цвет.

На основании этих результатов знаменитый американский изобретатель Томас Эдисон в 1907 году впервые запатентовал люминесцентную лампу с люминофором из вольфрамата кальция.

За год до Эдисона аналогичную лампу смог воспроизвести Даниэль Фарлан Мур, экспериментировавший с двуокисью углерода (СО 2) и азотом (N 2).

Ближе всего к современному варианту ЛЛ подошли в 1927 году немецкие изобретатели Эдмунд Джермер, Фридрих Мейер и Ганс Шпаннер. Первоначальной целью их исследований было получение источника УФ-излучения. После нанесения люминофора определенного состава лампа стала давать равномерный белый свет, что привело Э. Джермера к мысли о создании нового источника дневного света, комфортного для глаз человека.

Кроме этого инженеры значительно улучшили параметры ЛЛ, увеличив давление паров ртути. Получение соответствующего патента закрепило за Э. Джермером авторские права на базовые принципы устройства ЛЛ.

Люминесцентные лампы начали массово производиться и продаваться только в 1938 году, когда лампы четырех типоразмеров были обнародованы американской фирмой «General Electric», которая выкупила патенты и надолго получила почти монопольные права на освоение этого перспективного рынка.

Как устроена современная ЛЛ

Основной принцип действия современной люминесцентной лампы заключается в получении УФ-излучения с помощью пробоя газового промежутка между электродами и последующего преобразования этого излучения в видимый свет с помощью эффекта люминесценции в специальных фосфорсодержащих покрытиях, так называемых люминофорах. Варьируя состав люминофора, получают разные цвета видимого участка спектра, от синего до красного. На рисунке ниже схематично представлен разрез типичной ЛЛ.

Кроме указанных компонентов каждая лампа наполняется инертным газом (обычно это Ar) для увеличения ресурса вольфрамовых электродов. Наличие ртути (Hg) в небольшом количестве резко увеличивает светоотдачу из-за роста плотности тока, вызванного повышением концентрации электронов, появляющихся в результате ионизации атомом этого металла. Существуют версии ламп, в которых ртуть отсутствует, а УФ-излучение появляется только от ионизации атомов инертного газа. Световой поток таких светильников существенно меньше, но зато они безопасны при эксплуатации.


Специфика подключения ЛЛ

Для получения тока через лампу требуется произвести пробой промежутка газа, для чего подается напряжение порядка 1 000 вольт. Ток растет лавинообразно, сопротивление резко падает (отрицательное дифференциальное сопротивление), что может привести к разрушению (перегоранию) лампы. Чтобы предотвратить этот процесс, применяется устройство, называемое балластом (или балластником), с помощью которого ограничивают рост тока при достижении определенного уровня. Применяются два вида балластников:

  • электромагнитное пускорегулирующее устройство (ЭмПРА) – состоит из дросселя (активной нагрузки), последовательно подключенного в цепь лампы, и стартера, подключенного между нитями накала. Стартер представляет собой небольшую неоновую лампочку;
  • электронное пускорегулирующее устройство (ЭПРА) – это по сути плата с электронными деталями (диодами, транзисторами, динисторами, микросхемами).

В электронном варианте балластника отдельный стартер не нужен – его функции реализованы на общей плате. ЭПРА работает на высокой частоте (десятки кГц), что полностью устраняет эффект мерцания, присущий ЭмПРА.


ЭПРА имеют ряд неоспоримых преимуществ:

  • небольшие геометрические размеры и вес;
  • отсутствие мерцания и шума от вибраций, поскольку устройства работают на высоких частотах;
  • быстрое включение ламп;
  • снижение тепловых потерь по сравнению с ЭмПРА;
  • значения коэффициента мощности – до 0,95 ;
  • наличие в устройствах нескольких вариантов защиты от короткого замыкания, что продлевает ресурс изделий и повышает безопасность.

Электронное пускорегулирующее устройство

Типы ЛЛ

  • Высокого давления – для использования в осветительных установках большой мощности и для применения вне помещений, для повышения устойчивости к низким внешним температурам, правда, колба лампы может нагреваться до 300 °С.

Для уличного освещения эти лампы имеют общее название ДРЛ (дуговая ртутная лампа). Они имеют большую мощность, но плохую цветопередачу. Поэтому сфера их применения ограничена. Основное отличие ДРЛ от трубчатой ЛЛ состоит в способе получения дугового разряда, требующего больших затрат электроэнергии.

ДРИ – это тоже дуговые ртутные лампы с добавками солей металлов (металлогалогеновые), имеют более высокую светоотдачу и могут давать цветовые оттенки. Этот тип светильников используется в архитектурной и рекламной подсветках.


  • Низкого давления – для применения в быту и для освещения крупных общественных и производственных помещений. Значения давления инертного газа в диапазоне 300–400 Па. В маркировке этих люминесцентных ламп первые буквы означают следующее:
    • ЛБ – белый свет;
    • ЛД – дневной свет;
    • ЛХБ – холодный белый свет;
    • ЛТБ – теплый белый свет;
    • ЛДЦ – дневной свет с улучшенной цветопередачей.

Преимущества и недостатки

Преимущества:

  • небольшая цена;
  • возможность получения различных оттенков белого цвета;
  • экономичное, по сравнению с лампами накаливания, энергопотребление;
  • незначительный нагрев поверхности лампы – не более 50 °С;
  • срок службы – до 8 000 часов. Лампы накаливания работают не более 2 000 часов;
  • световой поток – до 3 000 лм;
  • рассеянное, равномерное излучение по всей поверхности источника;
  • высокая световая отдача – до 85 лм/Вт;
  • большой выбор цветовых оттенков, не требующий применения дополнительных светофильтров.

Недостатки:

  • большие габариты (особенно для линейных ЛЛ);
  • наличие ртути (до 5 мг на одну лампу), что требует обеспечения дополнительных мер безопасности при эксплуатации;
  • проведение дополнительных работ по утилизации по окончании срока службы;
  • неравномерный спектр у дешевых ламп;
  • медленное включение, вызванное требованием постепенного разогрева электродов;
  • повышенная чувствительность к влажности;
  • мерцание с удвоенной частотой питающего напряжения при использовании электромагнитных балластников;
  • медленный запуск (или его отсутствие) при пониженных температурах внешней среды. При повышенных температурах (более 50 °С) также высока вероятность отказов.

Люминесцентные лампы, называемые еще, лампами дневного света, представляют собой запаянную с обоих концов стеклянную трубку, изнутри покрытую тонким слоем люминофора . Сама лампа заполнена инертным газом - аргоном при очень низком давлении. Внутри лампы содержится небольшое количество ртути, которая, нагреваясь, превращается в ртутные пары.

Люминесцентные лампы - это те же лампы накаливания , но с небольшими усовершенствованиями. Принцип свечения в них базируется на разогреве, вольфрамового элемента, электрический разряд в смеси инертных газов и паров ртути, который содержится в стеклянной колбе, вызывает излучение в ультрафиолетовом спектре, (т.е. невидимом для человека). Это излучение поглощается специальным составом, которым колба покрыта изнутри, что и вызывает свечение, которое человеческий глаз может воспринимать. Состав, который вызывает свечение, называется люминофором , представляет собой смесь разных веществ на основе фосфора. Он имеет различные цвета, не только белый.

Для расчёта освещенности помещения вы можете воспользоваться калькулятором расчета освещенности помещения .

Именно люминофор обеспечивает мощность свечения лампы дневного света в несколько раз выше, чем у обычных ламп накаливания (имея такой же уровень потребления электроэнергии - примерно в 5 раз), поэтому их и называют энергосберегающими . Вольфрамовая нить после розжига продолжает гореть, но лишь в качестве поддержки тлеющего разряда.

Люминесцентные лампы состоят из следующих основных деталей:

1 - ртуть;

2 - штампованная стеклянная ножка с электровводами;

3 - трубка для откачки (при изготовлении);

4 - выводные штырьки;

5 - концевая панелька;

6 - катод с эмиттерным покрытием.

В зависимости от назначения целевого использования, люминесцентные лампы условно разделены на категории по диапазонам температур свечения:

  • до 2700 градусов - лампы люминесцентные т.н. мягкого света;
  • от 2700 до 4200 градусов - дневного света;
  • от 4200 до 6400 градусов - холодного света.

В зависимости от условий предполагаемой эксплуатации, в лампах может быть встроен механизм запуска - со стартером, электронным либо электромагнитным балластом.

Также лампы могут существенно отличаться размерами и формой самих стеклянных колб, а так же могут иметь различные патроны. Зачастую встречаются прямые и спиралевидные лампы

Маркировка люминесцентных ламп обычно состоит из 2-3 букв. Первая буква Л означает люминесцентная. Следующие буквы означают цвет излучения:

  • Д - дневной;
  • ХБ - холодно-белый;
  • Б - белый;
  • ТБ - теплобелый;
  • Е - естественно-белый;
  • К, Ж, 3, Г, С - соответственно красный, желтый, зеленый, голубой, синий; УФ - ультрафиолетовый .

У ламп с улучшенным качеством цветопередачи после букв, обозначающих цвет, ставится буква Ц, а для цветопередачи особо высокого качества используют буквы ЦЦ. В конце находятся буквы, которые характеризуют конструктивные особенности: Р - рефлекторная, У - U-образная, К - кольцевая, А - амальгамная, Б - быстрого пуска. Цифры обозначают мощность лампы Вт. Маркировка ламп тлеющего разряда начинается с букв ТЛ.

Маркировка зарубежных производителей люминесцентных ламп ?: OSRAM, PHILIPS, GENERAL ELECTRIC.

Люминесцентные лампаы имеют различные характеристики , так как применяются не только для освещения помещений общего пользования, но и активно используются в медицине, торговле, шоу-бизнесе и т.д.

Размер люминесцентных ламп. (диаметр трубки - 26 мм) .


Преимущества и недостатки ЛЛ:

  • хорошая светоотдача и более высокий КПД (в сравнении с лампами накаливания);
  • разнообразие оттенков света;
  • рассеянный свет;
  • длительный срок службы (2?000 -20?000 часов в отличие от 1?000 у ламп накаливания), при соблюдении определенных условий.

Недостатки:

  • химическая опасность (ЛЛ содержат ртуть в количестве от 10 мг до 1 г);
  • неравномерный, неприятный для глаз, иногда вызывающий искажения цвета, освещённых предметов (существуют лампы с люминофором спектра, близкого к сплошному, но имеющие меньшую светоотдачу);
  • Со временем люминофор срабатывается, что приводит к изменению спектра, уменьшению светоотдачи и как следствие понижению КПД ЛЛ;
  • мерцание лампы с удвоенной частотой питающей сети;
  • наличие дополнительного приспособления для пуска лампы — пускорегулирующего аппарата (громоздкий дроссель с ненадёжным стартером);
  • очень низкий коэффициент мощности ламп — такие лампы являются неудачной для электросети нагрузкой (проблема решается с применением вспомогательных устройств).

Схемы подключения люминесцентных ламп с использованием стартеров.

Стартеры для люминесцентных ламп.

Одиночное включение.


  • LL - люминесцентная лампа;
  • V - ПРА;
  • D - дроссель;
  • Un - сетевое напряжение;
  • St - стартер.

Схема последовательного включение для двух ламп.

  • LL - люминесцентная лампа;
  • V - ПРА;
  • D - дроссель;
  • Un - сетевое напряжение;
  • K - конденсатор компенсации (если требуется);
  • St - стартер.

Схема парного включения.

  • LL - люминесцентная лампа;
  • V - ПРА;
  • D - дроссель;
  • Un - сетевое напряжение;
  • K - конденсатор компенсации (если требуется);
  • St - стартер.

Утилизация люминесцентных ламп.

Ртуть, которая с одержится в люминесцентных лампах, при их бое является потенциальным источником загрязнений. Одна люминесцентная лампа, которая по неосторожности была разбита, способна выбрасывать в воздух около 50 куб. м. ядовитых паров ртути. При этом, в воздухе эти пары не растворяются, а «зависают» надолго.

Опасность хронического отравления ртутью возможна во всех помещениях, в которых металлическая ртуть находится в соприкосновении с воздухом, даже если концентрация ее паров очень мала (предельно допустимой в рабочем помещении считается концентрация паров 0,01 мг/м3, а в атмосферном воздухе - в 30 раз меньше). Необходимость в специализированных условиях утилизации ртутных ламп объясняется, прежде всего, их высокой токсичностью и жесткими требованиями со стороны проверяющих органов.

Ртутные лампы относятся к отходам первого класса опасности и подлежат утилизации.

Накопление и хранение люминесцентных ламп на территории предприятий допускается временно до отправки на утилизацию в установленном порядке.

Люминесцентные лампы - это газоразрядные источники света. Их световой поток формируется за счет свечения люминофоров, на которые воздействует ультрафиолетовое излучение разряда. Его видимое свечение обычно не превышает 1-2%. Люминесцентные лампы (ЛЛ) получили широкое применение в освещении помещений разного типа. Их световая отдача в разы больше, чем у привычных ламп накаливания. При обеспечении ряда условий (качественное электропитание, использование балласта, соблюдение ограничений по числу коммутаций), такие лампы могут в десятки раз дольше служить, нежели лампы накаливания. Сегодня мы с вами познакомимся с историей люминесцентной лампы и принципом ее работы.

Область использования

Линейные люминесцентные лампы давно зарекомендовали себя как наиболее удобный и экономичный способ освещения общественных помещений: офисов, учебных заведений, магазинов, больниц, предприятий и так далее. С появлением современных технологий, позволяющих создать компактную ЛЛ под обычные патроны марки Е14 или Е27, они быстро завоевали популярность в быту и стали вытеснять лампы накаливания. Чаще всего в обиходе используют экономные люминесцентные лампы на 18 или больше ватт.

Благодаря использованию электронных балластов вместо привычных электромагнитных удается значительно улучшить эксплуатационные характеристики ламп - избавиться от гула и мерцания, повысить экономичность и компактность.

Главными преимуществами люминесцентных ламп по сравнению с привычными всем лампами накаливания являются высокая светоотдача (превышает в несколько раз), и более длительный срок работы (превышает в несколько десятков раз). Их применение особенно актуально в случаях, когда освещение не выключается на протяжении длительного времени, так как именно включение является самым сложным режимом и от количества включений зависит срок работы. Таким образом, несмотря на более высокую стоимость, люминесцентные лампы позволяют значительно сэкономить.

История

Первое подобие светильника с люминесцентной лампой было разработано в далеком 1856 году Генрихом Гайсслером, который добился свечения от стеклянной трубки, заполненной газом и возбужденной с помощью соленоида. В 1893 году на выставке в Чикаго Томас Эдисон впервые продемонстрировал публике люминесцентное свечение. Через год, М.Ф. Моором была создана лампа, наполненная азотом и углекислым газом и испускающая розово-белый свет. Успех этого изобретения был весьма ограниченным. В 1901-м Питер Хьюитт создал ртутную лампу, испускающую сине-зеленый свет. Именно из-за цвета она была непригодна для практического применения. Тем не менее, изобретение Хьитта было близко к современным лампам и имело намного больший потенциал, чем лампы предшественников. В 1926-м Эдмунд Джермер вместе со своими сотрудниками предложил увеличить давление внутри колбы и покрыть ее флуоресцентным порошком, преобразующим ультрафиолетовое цветное излучение в однородное белое. Вскоре компания General Electric купила у изобретателя патент, и под его руководством, к 1938 году вывела ЛЛ на широкий рынок. Таким образом, именно с Джермером часто ассоциируют начало истории люминесцентных ламп.

Принцип работы

Когда люминесцентная лампа подключается к электросети, между двумя электродами, расположенными в ее противоположных концах, возникает электрический разряд. Благодаря прохождению тока через пары ртути, которыми заполнена внутренняя полость лампы, возникает УФ-излучение, которое незаметно для человеческого глаза. С помощью люминофора, нанесенного на стенки, это излучение превращается в видимый свет. Таким образом, люминофор призван поглощать УФ излучение и излучать видимый свет. Меняя его состав можно варьировать оттенок свечения лампы.

Преимущества и недостатки люминесцентных ламп

ЛЛ имеют такие достоинства:

  1. Высокие показатели светоотдачи и КПД.
  2. Разнообразие оттенков свечения.
  3. Рассеянный свет.
  4. Длительный срок службы.

Недостатки люминесцентных ламп:

  1. Химическая опасность. Причина в токсичных парах ртути.
  2. Неравномерный, неприятный для некоторых свет, вызывающих искажение цвета освещенных поверхностей. Лампы, которые лишены этой проблемы, имеют меньшую светоотдачу.
  3. Люминофор со временем "срабатывается", в результате меняется спектр, уменьшается светоотдача и падает КПД.
  4. В случае удвоенной частоты питающей сети, может возникнуть мерцание некоторых ламп.
  5. Наличие пускорегулирующих аппаратов.
  6. Низкий коэффициент мощности.

Подключение

С электротехнической точки зрения, люминесцентная лампа - это устройство с отрицательным сопротивлением. Это значит, что чем более сильный ток через нее проходит, тем больше падает сопротивление. В этой связи при непосредственном подключении лампы к электросети она быстро выходит из строя из-за чересчур сильного тока. Эта проблема решается путем подключения лампы через так называемый балласт.

В простейшем варианте в качестве балласта выступает простой резистор. Его недостаток состоит в потере значительного количества энергии. Избежать потерь можно путем использования в качестве балласта конденсатора или катушки индуктивности, создающих реактивное сопротивление. Наибольшей популярностью в настоящее время пользуются электромагнитные и электронные балласты.

Электромагнитный балласт

Балласты люминесцентных ламп - это пускорегулирующие устройства. Устройства данного типа представляют собой дроссель (индуктивное сопротивление) подключаемый последовательно с лампой. Чтобы запустить лампу с таким балластом, потребуется также стартер. Преимуществом такого подключения является его простота и дешевизна. Главный недостаток - мерцание ламп при удвоенной частоте сетевого напряжения. Из-за этого у людей, находящихся в помещении, повышается утомляемость глаз, что может негативно сказаться на их здоровье. Кроме того, лампы с электромагнитным балластом относительно долго запускаются (от одной до нескольких секунд, в зависимости от их срока службы), издают гул, и потребляют больше энергии, чем аналоги с электронным балластом.

Кроме вышеперечисленных недостатков, стоит также отметить эффект стробирования, возникающий из-за мерцания ламп. Его суть состоит в том, что при наблюдении за вращающимся или колеблющимся предметом, частота движения которого равна частоте мерцания люминесцентной лампы, этот предмет может казаться неподвижным. Подобный эффект может возникнуть, к примеру, при наблюдении за шпинделем токарного или сверлильного станка, мешалкой кухонного миксера, циркуляционной пилой и прочими движущимися приборами. Поэтому, во избежание травмирования, на производстве использование люминесцентных ламп для подсвечивания движущихся механизмов разрешается лишь при условии дополнительной установки ламп накаливания.

Электронный балласт

Этот тип балласта представлен электронной схемой, преобразующей сетевое напряжение в высокочастотный переменный ток, питающий лампу. Достоинством этого балласта является отсутствие мерцания и гула. Кроме того, по сравнению с электромагнитным аналогом, он имеет меньшую массу и размеры.

При использовании такого типа подключения можно добиться так называемого холодного старта - мгновенного запуск лампы. Однако из-за того, что этот режим неблагоприятно сказывается на сроке службы ламп, применяется горячий старт, предполагающий предварительный подогрев электродов. Стоит признать, что на подогрев уходит не более одной секунды, поэтому эта особенность подключения не несет каких-либо неудобств.

Запуск электромагнитного балласта

В классической схеме пуска лампы с электромагнитным балластом используется стартер (пускатель), который представляет собой миниатюрную газоразрядную неоновую лампочку с парой металлических электродов. Один из электродов жесткий и неподвижный, а другой - биметаллический, изгибающийся. Следовательно, в исходном состоянии электроды разомкнуты.

Стартер активируется параллельно с лампой. В момент включения, к электродам стартера и лампы поступает полное напряжение. Это связано с тем, что ток через лампу не идет, а падение напряжения на пускателе равно нулю.

Так как электроды лампы холодные, напряжения сети не хватает для ее зажигания. Благодаря возникновению разряда в пускателе через него и лампу проходит ток, которого достаточно для электродов пускателя, но недостаточно для разогрева лампы. В результате ток в общей цепи растет и разогревает электроды лампы. Когда это происходит, электроды пускателя охлаждаются и размыкаются. Благодаря мгновенному разрыву цепи возникает пик напряжения на дросселе, который и стимулирует зажигание лампы. Электроды тем временем уже достаточно разогреты.

Во время горения напряжение в лампе составляет примерно половину от сетевого, так же, как и в пускателе. Причина в том, что проходя через дроссель, оно падает, что позволяет устранить повторное срабатывание пускателя.

При зажигании, пускатель может срабатывать несколько раз. Это связано с отклонениями его характеристик от характеристик лампы. В некоторых случаях стартер начинает работать циклически. Если это происходит, то лампа постоянно гаснет и снова вспыхивает. При погасании можно созерцать свечение накаленных током катодов.

Запуск электронного балласта

При использовании электронного балласта, как правило, нет необходимости в отдельном специальном стартере, так как этот балласт способен самостоятельно сформировать нужные последовательности напряжений.

Запуск люминесцентной лампы электронным балластом может производиться по разным технологиям. В наиболее типичной из них пускорегулирующее устройство подогревает катоды лампы и подает на них напряжение, которого достаточно для зажигания. Как правило, это переменное и высокочастотное напряжение. Такое подключение позволяет устранить мерцание ламп, которое является весомым недостатком электромагнитных балластов.

В зависимости от конструктивных особенностей и временных параметров последовательности пуска лампы, такие пускорегулирующие устройства могут обеспечивать как мгновенное включение света, так и плавное, с постепенным нарастанием яркости.

Часто используются комбинированные методы пуска, когда лампа активируется не только за счет подогрева катодов, но и благодаря тому, что цепь, подпитывающая ее, выступает в качестве колебательного контура. Характеристики колебательного контура подбираются таким образом, чтобы в случае отсутствия разряда в лампе, в нем возникало явление электрического резонанса, которое ведет к значительному повышению напряжениям между катодами лампы. Обычно это приводит также к возрастанию тока подогрева катодов. Причина заключается в том, что при использовании такой схемы пуска спирали накала катодов часто соединяются последовательным образом через конденсатор, и выступают частью колебательного контура. В результате из-за подогрева катодов и высокого напряжения между ними лампа быстро и легко зажигается.

После зажигания параметры колебательного контура меняются, резонанс прекращается, а напряжение в контуре значительно снижается, сокращая тем самым ток накала катодов.

Существуют разные вариации данной технологии. К примеру, в предельных случаях, балласт может не подогревать катоды вовсе, а лишь приложить к ним напряжение, достаточно высокое для зажигания за счет пробоя газа расположенного между катодами. Аналогичная технология используется для пуска ламп с холодным катодом. Она пользуется популярностью среди радиолюбителей, благодаря возможности осуществить запуск даже с перегоревшими нитями накала катодов. Обычными методами их запустить нельзя, так как катоды в таком случае не нагреваются. В частности, радиолюбители используют этот способ для восстановления компактных энергосберегающих ламп, представляющих собой обычные люминесцентные лампы с электронным балластом, встроенным в небольшой корпус. После переделки балласта, такая лампа долго работает, несмотря на перегорание спиралей подогрева. Срок ее службы ограничивается разве что временем полного распыления электродов.

Причина поломок

Электроды люминесцентных ламп - это вольфрамовые нити, покрытые активной массой (пастой) из щелочноземельных металлов. Именно эта паста обеспечивает тлеющий разряд. Без нее вольфрамовые нити перегорали бы гораздо быстрее. В процессе работы лампы паста постепенно осыпается, выгорает и испаряется. Процесс ускоряется в случае частых пусков, когда разряд на протяжении короткого промежутка времени проходит не по всей площади электрода, а на малом участке его поверхности. Это приводит к перегреву электрода и возникновению потемнений на концах лампы, которые обычно свидетельствуют о ее скором выходе из строя.

Когда паста полностью выгорает, ток лампы падает, а напряжение - возрастает. В результате стартер начинает срабатывать постоянно, вызывая мигания, которые также свидетельствуют о том, что дни работы лампы сочтены. Электроды находятся в постоянном разогреве и, в конце концов, один из них перегорает. Происходит это через несколько дней после появления мерцания.

В последние минуты работы лампа горит без мерцаний. В этот момент разряд проходит через остатки электрода, на котором уже не осталось активной массы. Когда остатки вольфрама осыпаются или испаряются, разряд поступает на траверсы (крепления вольфрамовых нитей, выполненные из проволоки). После перегорания траверсов лампа вновь начинает мерцать. Если выключить ее и заново включить, она уже не будет светить.

Описанный выше механизм перегорания лампы справедлив для тех моделей, в которых используются электромагнитные балласты. В случае применения электронных балластов, все происходит несколько иначе. Так же, как и в предыдущем случае, все начинается с выгорания активной массы электродов, после которой следует их перегрев и перегорание одной из нитей. Отличие состоит в том, что сразу после перегорания, лампа гаснет без каких-либо мерцаний и миганий. Этим она обязана конструкции электронного балласта, которая предусматривает автоматическое отключение лампы в случае ее неисправности.

Люминофоры и спектр излучения

Многие пользователи считают, что свет люминесцентных ламп грубый и неприятный. Кроме того, цвет предметов, которые освещаются такими лампами, может искажаться. Виной тому синие и зеленые линии в спектре излучения разряда и тип применяемого люминофора.

В дешевых светильниках с люминесцентными лампами используют галофосфатный люминофор, излучающий главным образом желтый и синий свет, и в меньшей мере зеленый и красный свет. Глазу такая смесь цветов кажется белым светом, однако если свет отражается от предметов, его спектр меняется и возникает эффект искажения. Достоинством таких ламп является высокая световая отдача.

В более дорогих моделях применяет трех- или пятиполосный люминофор. Благодаря этому удается получить более равномерное распределение излучения по видимому спектру. Так свет воспроизводится более натурально. Недостатком этих ламп является не такая высокая светоотдача, как в предыдущем случае.

Существуют также специальные люминесцентные лампы, используемые в освещении помещений, в которых живут птицы. Их спектр содержит ближний ультрафиолет, позволяющий питомцам практически не чувствовать разницу между естественным и искусственным освещением. Необходимость применения таких технологий обусловлена тем, что в отличие от людей, птицы имеют четырехкомпонентное зрение.

Варианты исполнения

По стандарту, люминесцентные лампы подразделяют на колбные и компактные. Оба типа используются довольно широко.

Колбные лампы имеют в качестве оболочки стеклянную трубку. Они могут отличаться по типу и диметру цоколя. Такие лампы часто используются в крупных помещениях: магазины, офисы, цеха, склады и так далее.

Компактные люминесцентные лампы имеют оболочку в виде более тонкой (по сравнению с колбными) изогнутой трубки. Их различают по типу цоколя и размерам. Эти лампы производятся под стандартный патрон Е27 и Е14, поэтому их можно использовать вместо ламп накаливания в обычных светильниках. Их мощность, как правило, колеблется в пределах 16-36 Вт. Люминесцентная лампа такого типа имеет небольшие габариты и устойчивость к механическим воздействиям (умеренным, разумеется).

Кроме типа цоколя, на коробке из-под лампы указываются такие данные:

  1. Цвет излучения: Д - дневной, Б - белый, ХБ - холодно-белый и т. д.
  2. Мощность в ватах: 16W, 18W и т. д.
  3. Длина корпуса (если это колбный вариант люминесцентной лампы): 765, 450 и т. д. Подразумевается длина в миллиметрах.

Возвращаясь к типу цоколей, стоит отметить, что они бывают резьбовыми (например, Е27) и штырьковыми (например, G13). Люминесцентная лампа может иметь и другие типы цоколей, но они слабо распространены.

Все лампы такого типа содержат ртуть, которая, как известно, является ядовитым веществом. В разных моделях ламп ее доза может колебаться от 40 до 70 мг. Но даже небольшого количества ртути, находящегося в люминесцентной лампе на 18 Вт, достаточно, чтобы причинить вред здоровью. Ртуть представлена в виде пара, поэтому, если лампа разбилась, нужно сразу же проветрить помещение.

Когда срок службы ламп истекает, их обычно выбрасывают вместе с простым мусором, что совсем неправильно. Существуют фирмы, утилизирующие такие лампы, но к ним обращаются лишь крупные предприятия. Справедливости ради стоит отметить, что количество попадающей в воздух ртути из залежей на свалках не так велико, как количество этого вещества, выбрасываемое при выработке электроэнергии. А так как ЛЛ являются экономными, их использование даже положительно сказывается на экологическом состоянии планеты. Тем не менее утилизация люминесцентных ламп является открытой проблемой.

Практически каждый из нас в выборе освещения для каких-либо целей сталкивался с трудностью выбора того или иного осветительного прибора.

Сейчас на рынке этой сферы представлено великое множество вариантов, каждый из которых отличается своими положительными качествами и, конечно, некоторыми недостатками.

Тем не менее, есть и те продукты производства, которые уже долгое время сохраняют признание потребительского сегмента.

К числу таких изделий можно отнести люминисцентные лампы, которые нашли широкое применение практически повсеместно. Их эксплуатационные характеристики отмечены на самом высоком уровне, а недостатки можно счесть не слишком значительными.

Словом, для монтажа системы освещения это довольно оптимальный вариант, который к тому же отличается своей экономичностью.

Люминесцентная лампа – это довольно распространенное явление в нашей жизни.

Наверняка каждый из нас посещал какие-либо общественные учреждения и замечал специфику освещения в этих зданиях. Однако о том, что именно представляет собой это изделие, знает мало кто.

Люмиисцентные лампы относятся к газозарядным устройствам , основывающим свою работу на воздействии с физической стороны электрического разряда в газах.

В таком устройстве содержится ртуть, обеспечивающая ультрафиолетовое излучение, которое в самой лампе превращается в свет.

Происходит этот процесс с помощью очень важного элемента – люминофора.

Люминофор может быть смесью каких либо химических элементов, например, галофосфата кальция с чем-либо. Подбирая люминофор какого-либо типа, можно добиться самых интересных эффектов, например, изменения цветового решения света лампы.

При выборе изделия стоит обратить внимание на один из самых важных показателей – общий индекс цветопередачи. Обозначается он сочетанием букв Ra, и чем большее значение указано в сопроводительной документации к лампе, тем лучше она будет производить свою работу.

Благодаря такой системе освещения люминисцентная лампа стала явным лидером перед теми же лампами накаливания.

А если учесть, что эксплуатационные характеристики ее обеспечивают куда более длительный срок пользования, то о правильности выбора, обращенного в пользу люминисцентной лампы, задумываться не стоит.

Преимущества и недостатки люминесцентных ламп

Как и все вокруг нас, люминесцентные лампы обладают своими положительными и отрицательными сторонами. К счастью, вторых гораздо меньше.

Как было сказано ранее, люминесцентные лампы – явный лидер среди средств освещения. Превосходство перед лампами накаливания не трудно заметить даже самому не опытному в электрике человеку.

Достоинства

К числу достоинств этого элемента относятся следующие:

  • светоотдачу она совершает в куда большей степени, да и качество света несколько выше, чем у других осветительных элементов;
  • длительный срок эксплуатации, обеспечивающий отсутствие перебоев в работе с лампами;
  • КПД такого изделия значительно выше;
  • Рассеянный свет, оказывающий меньший вред на состоянии сетчатки глаза, а значит, при эксплуатации этой лампы вы сможете значительно уменьшить риск проблем со зрением;
  • широкий диапазон в плане цветовых решений света.

Недостатки

Конечно, негативные качества у люминесцентных ламп тоже имеют место быть. В этот перечень входят следующие пункты:

  • Содержание ртути в таких изделиях представляют некоторую химическую опасность и требуют специальной утилизации;
  • Ленточный спектр распределяется не равномерно, а это может вызвать некоторое неудобство в плане восприятия реального цвета предметов, которые освещаются люминесцентной лампой; однако, здесь следует допустить некоторую оговорку: существуют экземпляры, которые представляют практически полноценный сплошной спектр, но степень светоотдачи в этом случае падает;
  • Люминофор, содержащийся в этих лампах, со временем производит свою работу с меньшей эффективностью, это уменьшает коэффициент полезного действия лампы и снижает степень светоотдачи;
  • В установке люминесцентной лампы обязательно нужно купить дополнительный , который либо обойдется потребителю в довольно крупную сумму, но будет отличаться оптимальными эксплуатационными качествами, либо по цене он будет несколько дешевле, зато обеспечит высокий уровень шума и ненадежность работы;
  • Низкий показатель мощности, следовательно, этот вариант не слишком подходит для электросети.Имеют место быть и менее значительные недостатки, однако, их влияние играет не слишком значимую роль в применении люминесцентных ламп.

Естественно, что прогресс в производстве таких изделий, как люминесцентные лампы, не стоит на месте, и если ранее применялись в основном аналогичные экземпляры со схожими техническими характеристиками, то сегодня потребитель может подобрать себе тот вариант, который будет для него наиболее оптимальным и эффективным.

Существует множество признаков, по которым можно классифицировать эти лампы, но тем не менее, самым основным из, все же, будет признак показателей давления.

На данный момент на рынке представлены газозарядные ртутные экземпляры высокого и низкого давления.

Лампы высокого давления нашли свое применение в основном в освещении вне помещений. Поскольку такие изделия обладают высокой мощностью, то внутри здания их свет будет довольно неприятен для восприятия его глазом.

Также лампы высокого давления отлично подходят для сборки каких-либо осветительных установок.

Лампы низкого давления обладают сравнительно меньшей мощностью, а значит, подходят для применения внутри зданий.

Назначение помещения может быть абсолютно любым: люминесцентные лампы такого показателя подойдут и для цеховых и производственных зданий, и для жилых помещений.

Помимо разделения ламп по принципу давления существует еще и классификация по диаметру трубки или колбы лампы , а также по схеме зажигания.

Для примера можно взять продукты самых известных производителей, например, Osram и Philips. Если внимательно присмотреться к данным на упаковке, то можно увидеть букву и цифру рядом. Это и есть маркировки типа изделия.

Итак, люминесцентные лампы подразделяются на :

  • Т5 – лампы с таким показателем являются довольно редким явлением, не нашедшим признания у покупательского сегмента. Стоимость их довольно высока, однако степень светоотдачи показывает прекрасные результаты – до 110 лм/ватт. Стоит отметить, что сейчас производители значительно увеличили объемы производства люминесцентных ламп с таким показателем.
  • Т8 – новый продукт, имеющий довольно высокую цену и рассчитанный на нагрузку не более 0,260 А.
  • Т10 – аналог лампам маркировки Т12, отличающийся довольно низким качеством и уровнем эффективности.
  • Т12 – лидер рынка люминесцентных ламп . Включает в себя широкое разнообразие подтипов, что говорить, практически все стандартные модели относятся к этой группе. В их число входят представители практически всех производителей люминесцентных ламп.

Упомянутый выше принцип классификации по схеме зажигания имеет под собой два типа: требующие стартера и не требующие его.

Мощность тоже является довольно значимой характеристикой люминесцентных ламп, соответственно, это тоже стало фактором для выделения отдельной классификации.

По показателям мощности лампы подразделяются на:

  • Стандартные – с маркировкой Т12;
  • HO – лампы высокой мощности, однако, отличаются сравнительно меньшей светоотдачей;
  • VHO – лампы, способные выдержать нагрузку до 1,5 А;
  • «Эконом» — варианты люминесцентных ламп.

К числу критериев , по которым можно распределить лампы по группам, относят и длину.

Вариантов эта дифференциация представляет великое множество. Как правило, производители в обязательном порядке указывают эти данные в инструкции или на упаковке.

Классификация по использованию стартера

Стоит отметить и тот факт, что люминесцентные лампы можно разделить на виды и по типу подключения их.

Однако в этом случае выделить какие-либо точные категории довольно сложно, поскольку каждый тип, выделенный, например, по мощности или необходимости присутствия стартера, требует соблюдения своих нюансов.

Где применяются люминесцентные лампы

Как было сказано ранее, люминесцентные лампы находят довольно широкое применение практически повсеместно.

Несмотря на некоторые отрицательные стороны применения этого изделия, достоинства его, все же переоценить довольно трудно.

Каждый из нас учился в школе, посещал учреждения здравоохранения, административные здания и т.д.

Так вот система освещения в этих помещения как раз основывается на применении люминесцентных ламп.

Как правило, это довольно масштабные по своим размерам трубки, обеспечивающие качественное освещение в зданиях с некоторыми архитектурными особенностями.

Но если общественные здания отличаются своими габаритами, например, высокими потолками, большими по площади залами и комнатами, где освещение требуется довольно мощное и постоянное, то в домашних условиях люминесцентные лампы, которые оптимально будут эксплуатироваться там, не подойдут.

К счастью, уровень производственных навыков значительно вырос, а значит, появились адаптированные к домашним условиям люминесцентные лампы.

Они отличаются куда меньшими размерами , имеют в своем составе электронные балласты, которые возможно подключать в патроны, применяемые в домашней электронике.

И несмотря на свежесть этого новшества, адаптированные лампы уже прочно завоевывают этот сегмент рынка.

Кстати, существует довольно интересный факт. Уже привычные нам плазменные телевизоры имеют в своем механизме как раз люминесцентные лампы!

Конечно, это тоже адаптированный в соответствии со спецификой применения вариант, но, тем не менее, принцип его работы заключается в том же самом явлении. Жидкокристаллические экраны, кстати, ранее изготовлялись только с применением люминесцентных ламп, однако позже они были заменены на светодиоды.

Хотя на данный момент конкуренцию в области световой рекламы люминесцентным лампам составляют и экраны.

Также люминесцентные лампы получили широкое применение в области растениеводства для выращивания .

Если говорить в общем, выделяя основную мысль применения люминесцентной лампы, то можно сделать вывод: их имеет смысл применять в тех случаях, когда требуется снабдить светом помещение больших размерных показателей.

Совместная работа с системами цифрового интерфейса освещения с возможностью адресации позволяет обеспечить и высокую светоотдачу, и, в то же время, не потратить крупных сумм на оплату электроэнергии, ведь по сравнению с лампами накаливания люминесцентные лампы позволяют сократить потребление энергии более чем в половину ! Тем самым, являясь энергосберегающими.

Помимо этого, лампы сокращают расходы и длительностью своего применения.

Вывод

Итак, в данной статье мы рассмотрели самую основную информацию о таком благе современных технологий как люминесцентные лампы.

Для проведения работ по подключению этого устройства требуется обладать не только четкими представлениями об основах электроники и электротехники, но и быть предельно внимательным при выборе того или иного типа изделия.

Соблюдение этих минимальных, но очень важных требований обеспечит вам совершенно беспроблемную эксплуатацию ламп и максимальную полезность от их применения.

Расскажите друзьям!