Предложения по повышению эффективности очистки воды при подготовке водоочистных станций к выполнению требований СанПиН "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения

Физические и химические показатели качества воды. При выборе источника водоснабжения учитываются такие физические свойства воды как температура, запах, вкус, мутность и цветность. Причем эти показатели определяются по всем характерным периодам года (весна, лето, осень, зима).

Температура природных вод зависит от их происхождения. В подземных водоисточниках вода имеет постоянную температуру независимо от периода года. Наоборот, температура воды поверхностных водоисточников изменяется по периодам года в достаточно широком диапазоне (от 0,1 °С зимой до 24-26°С летом).

Мутность природных вод зависит, прежде всего, от их происхождения, а также от географических и климатических условий, в которых находится водоисточник. Подземные воды имеют незначительную мутность, не превышающую 1,0-1,5 мг/л, зато воды поверхностных водоисточников почти всегда содержат взвешенные вещества в виде мельчайших частей глины, песка, водорослей, микроорганизмов и других веществ минерального и органического происхождения. Однако, как правило, вода поверхностных водоисточников северных регионов европейской части России, Сибири и частично Дальнего Востока относится к категории маломутных. Для водоисточников центральных и южных регионов страны, наоборот, характерна более высокая мутность воды. Независимо от географических, геологических и гидрологических условий расположения водоисточника мутность воды в реках всегда выше, чем в озерах и водохранилищах. Наибольшая мутность воды в водоисточниках наблюдается во время весенних паводков, в периоды затяжных дождей, а наименьшая - в зимнее время, когда водоисточники покрыты льдом. Измеряется мутность воды в мг/дм 3 .

Цветность воды природных водоисточников обусловлена наличием в ней коллоидных и растворенных органических веществ гумусового происхождения, придающих воде желтый или бурый оттенок. Густота оттенка зависит от концентрации этих веществ в воде.

Гумусовые вещества образуются в результате разложения органических веществ (почвенный, растительный гумус) до более простых химических соединений. В природных водах гумусовые вещества представлены, в основном, органическими гуминовыми и фульво-кислотами, а так же их солями.

Цветность характерна для вод поверхностных водоисточников и практически отсутствует в подземных водах. Однако иногда подземные воды, чаще всего в болотисто-низинных местах с надежными водоупорными горизонтами, обогащаются болотистыми цветными водами и приобретают желтоватую окраску.

Цветность природных вод измеряется в градусах. По уровню цветности воды поверхностные водоисточники могут быть малоцветные (до 30-35°), средней цветности (до 80°) и высокоцветные (свыше 80°). В практике водоснабжения иногда используются водоисточники, цветность воды которых составляет 150-200°.

Большинство рек Северо-запада и Севера России относятся к категории высокоцветных маломутных. Средняя часть страны характеризуется водоисточниками средней цветности и мутности. Вода рек южных регионов России, наоборот, имеет повышенную мутность и сравнительно небольшую цветность. Цветность воды в водоисточнике и количественно и качественно изменяется по периодам года. Во время повышенного стока с прилегающих к водоисточнику территорий (таяние снега, дожди), цветность воды, как правило, повышается, изменяется и соотношение компонентов цветности.

Природным водам свойственны такие качественные показатели, как привкус и запах. Чаше всего природные воды могут обладать горьким и соленым вкусом и практически никогда кислым или сладким. Избыток магниевых солей придает воде горьковатый вкус, а натриевых (поваренная соль) - солоноватый. Соли других металлов, например железа и марганца, придают воде железистый привкус.

Запахи воды могут быть естественного и искусственного происхождения. Естественные запахи вызываются живущими и отмершими в воде организмами, растительными остатками. Основными запахами природных вод являются болотный, землянистый, древесный, травянистый, рыбный, сероводородный и др. Наиболее интенсивные запахи присущи воде водохранилищ и озер. Запахи искусственного происхождения возникают вследствие выпускав водоисточники недостаточно очищенных сточных вод.

К запахам искусственного происхождения можно отнести нефтяной, фенольный, хлорфенольный и др. Интенсивность привкусов и запахов оценивается в баллах.

Химический анализ качества природной воды имеет первостепенное значение при выборе метода очистки ее. К химическим показателям воды относятся: активная реакция (водородный показатель), окисляемость, щелочность, жесткость, концентрация хлоридов, сульфатов, фосфатов, нитратов, нитритов, железа, марганца и др. элементов. Активная реакция воды определяется концентрацией водородных ионов. Она выражает степень кислотности или щелочности воды. Обычно активную реакцию воды выражают водородным показателем рН, который представляет собой отрицательный десятичный логарифм концентрации водородных ионов: - рН = - lg . Для дистиллированной воды рН = 7 (нейтральная среда). Для слабокислой среды рН < 7, а для слабощелочной рН > 7. Обычно для природных вод (поверхностных и подземных) значение рН находится в пределах от 6 до 8,5. Наименьшие значения водородного показателя имеют высокоцветные мягкие воды, а наибольшие - подземные, особенно жесткие.

Окисляемость природных вод вызвана присутствием в них органических веществ, на окисление которых расходуется кислород. Поэтому величина окисляемости численно равна количеству кислорода, пошедшего на окисление находящихся в воде загрязняющих веществ, и выражается в мг/л. Наименьшей величиной окисляемости (~1.5-2мг/л, О 2) характеризуются артезианские воды. Вода чистых озер имеет окисляемость 6-10 мг/л, О 2 , в речной воде окисляемость колеблется в широких пределах и может достичь 50 мг/л и даже более. Повышенной окисляемостью характеризуются высокоцветные воды; в болотистых водах окисляемость может достичь 200 мг/л О 2 и более.

Щелочность воды определяется присутствием в ней гидроксидов (ОН") и анионов угольной кислоты (НСО - з, СО 3 2 ,).

Хлориды и сульфаты содержатся практически во всех природных водах. В подземных водах концентрации этих соединений могут быть весьма значительны, до 1000 мг/л и более. В поверхностных водоисточниках содержание хлоридов и сульфатов обычно колеблется в пределах 50-100 мг/л. Сульфаты и хлориды при определенных концентрациях (300 мг/л и более) являются причиной коррозионной активности воды и разрушающе действуют на бетонные конструкции.

Жесткость природных вод обусловлена присутствием в них солей кальция и магния. Хотя указанные соли и не являются особо вредными для человеческого организма, наличие их в значительном количестве нежелательно, т.к. вода становится малопригодной для хозяйственных нужд и для промышленного водоснабжения. Жесткая вода не пригодна для питания паровых котлов, ее нельзя использовать во многих технологических производственных процессах.

Железо в природных водах находится в виде двухвалентных ионов, органоминеральных коллоидных комплексов и тонкодисперсной взвеси гидроксида железа, а также в виде сульфида железа. Марганец, как правило, находится в воде в виде ионов двухвалентного марганца, способного окисляться в присутствии кислорода, хлора или озона, до четырехвалентного, с образованием гидроксида марганца.

Наличие в воде железа и марганца может приводить к развитию в трубопроводах железистых и марганцевых бактерий, продукты жизнедеятельности которых могут накапливаться в больших количествах и существенно уменьшать сечение водопроводных труб.

Из растворенных в воде газов наиболее важными с точки зрения качества воды являются свободная углекислота, кислород и сероводород. Содержание углекислоты в природных водах колеблется от нескольких единиц до нескольких сотен миллиграммов в 1 л. В зависимости от величины рН воды углекислота встречается в ней в виде углекислого газа либо в виде карбонатов и бикарбонатов. Избыточная углекислота весьма агрессивна по отношению к металлу и бетону:

Концентрация растворенного в воде кислорода может колебаться от 0 до 14 мг/л и зависит от ряда причин (температура воды, парциальное давление, степень загрязненности воды органическими веществами). Кислород интенсифицирует процессы коррозии металлов. Это надо особенно учитывать в теплоэнергетических системах.

Сероводород, как правило, попадает в воду в результате контакта ее с гниющими органическими остатками либо с некоторыми минералами (гипсом, серным колчеданом). Присутствие сероводорода в воде крайне нежелательно как для хозяйственно-питьевого, так и для промышленного водоснабжения.

Ядовитые вещества, в частности тяжелые металлы, попадают в водоисточники в основном с промышленными сточными водами. Когда имеется вероятность их попадания в водоисточник, определение концентрации ядовитых веществ в воде обязательно.

Требования к качеству воды различного назначения. Основные требования, предъявляемые к питьевой воде, предполагают безвредность воды для организма человека, приятный вкус и внешний вид, а также пригодность для хозяйственно-бытовых нужд.

Показатели качества, которым должна удовлетворять питьевая вода, нормируются «Санитарными правилами и нормами (СанПиН) 2. 1.4.559-96. Питьевая вода.»

Вода для охлаждения агрегатов многих производственных процессов не должна давать отложений в трубах и камерах, по которым она проходит, так как отложения затрудняют теплопередачу и уменьшают сечение труб, снижая интенсивность охлаждения.

В воде не должно быть крупной взвеси (песка). В воде не должно быть органических веществ, так как она интенсифицирует процесс биообрастания стенок.

Вода для паросилового хозяйства не должна содержать примесей, которые могут вызвать отложения накипи. По причине образования накипи снижается теплопроводность, ухудшается теплопередача, возможен перегрев стенок паровых котлов.

Из солей, образующих накипь, наиболее вредны и опасны CaSO 4 , СаСО 3 , CaSiO 3 , MgSiO 3 . Эти соли отлагаются на стенках паровых котлов, образуя котельный камень.

Для предотвращения коррозии стенок паровых котлов вода должна обладать достаточным щелочным резервом. Ее концентрация в котловой воде должна составлять не менее 30-50 мг/л.

Особенно нежелательно присутствие в питательной воде котлов высокого давления кремниевой кислоты SiO 2 , которая может образовывать плотную накипь с очень низкой теплопроводностью.

Основные технологические схемы и сооружения для улучшения качества воды.

Природные воды отличаются большим разнообразием загрязнений и их сочетанием. Поэтому для решения проблемы эффективной очистки воды требуются различные технологические схемы и процессы, различные наборы сооружений для реализации этих процессов.

Используемые в практике водоочистки технологические схемы обычно классифицируются на реагентные и безреагентные ; предочистки и глубокой очистки ; на одноступенные и многоступенные ; на напорные и безнапорные .

Реагентная схема очистки природных вод более сложна, нежели безреагентная, зато она обеспечивает более глубокую очистку. Безреагентная схема, как правило, применяется для предочистки природных вод. Чаще всего ее используют при очистке воды для технических целей.

Как реагентная, так и безреагентная технологическая схема очистки могут быть одноступенными и многоступенными, с сооружениями безнапорного и напорного типа.

Основные, чаще всего используемые в практике водоочистки технологические схемы и типы сооружений представлены на рисунке 22.

Отстойники используются в основном как сооружения для предварительной очистки воды от взвешенных частиц минерального и органического происхождения. По типу конструкции и характеру движения воды в сооружении отстойники могут быть горизонтальными, вертикальными или радиальными. В последние десятилетия в практике очистки природных вод стали использоваться специальные полочные отстойники с осаждением взвеси в тонком слое.



Рис. 22.

а) двухступенчатая с горизонтальным отстойником и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - камера хлопьеобразования; б - горизонтальный отстойник; 7 - фильтр; 8 - хлораторная; 9 - резервуар чистой воды; 10 - насосы;

б) двухступенчатая с осветлителем и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - осветлитель со взвешенным осадком; б - фильтр; 7 - хлораторная; 8 - резервуар чистой воды; 9 - насосы II подъема;

в) одноступенчатая с контактными осветлителями: 1 - насосная станция I подъема; 2 - барабанные сетки; 3 - реагентное хозяйство; 4 - сужающее устройство (смеситель); 5 - контактный осветлитель КО-1; 6 - хлораторная; 7 - резервуар чистой воды; 8 - насосы II подъема

Фильтры, входящие в состав общей технологической схемы водоочистки, выполняют роль сооружений для глубокой доочистки воды от взвешенных веществ, не осевших в отстойниках части коллоидных и растворенных веществ (за счет сил адсорбции и молекулярного взаимодействия).

По своему составу вода может быть разной. Ведь на пути к нашему дому она встречает множество преград. Есть разные методы улучшения качества воды, общая цель которых – избавиться от опасных бактерий, гуминовых соединений, избыточного количества соли, токсических веществ и т.п.

Вода – главный составляющий компонент человеческого организма. В энергоинформационном обмене она является одним из самых важных звеньев. Учёные доказали, что благодаря особой сетчатой структуре воды, которая создаётся водородными связями, выполняется приём, аккумуляция и передача информации.

Старение организма и объём воды в нём связаны между собой напрямую. Поэтому воду нужно употреблять каждый день, следя за тем, чтобы она была высокого качества.

Вода – мощный природный растворитель, поэтому, встречая на своём пути разные породы, она быстро обогащается ими. Однако не все элементы, оказавшиеся в составе воды, полезны для человека. Одни из них негативно влияют на процессы, происходящие в организме человека, другие могут стать причиной различных заболеваний. С целью защиты потребителей от вредных и опасных примесей проводятся меры по улучшению качества питьевой воды.

Способы улучшения

Существуют основные методы улучшения качества питьевой воды и специальные. Первые заключаются в осветлении, обеззараживании и обесцвечивании, вторые предполагают проведение процедур по обесфториванию, обезжелезиванию и обессоливанию.

При обесцвечивании и осветлении из воды устраняются окрашенные коллоиды и взвешенные частицы. Цель процедуры обеззараживания – устранить бактерии, инфекции и вирусы. Специальные методы – минерализация и фторирование – предполагают введение в состав воды нужных для организма веществ.

Характер загрязнений обуславливают использование следующих методов очистки:

  1. Механический – заключается в удалении примесей при помощи сит, фильтров и решеток грубых примесей.
  2. Физический – предполагает кипячение, УФ и облучение при помощи γ-лучей.
  3. Химический, при котором в сточные воды добавляются реагенты, которые провоцируют образование осадков. Сегодня основным методом обеззараживания питьевой воды является хлорирование. Водопроводная вода, согласно СанПиН, должна содержать концентрацию остаточного хлора в размере 0,3-0,5 мг/л.
  4. Для биологической очистки требуются специальные поля орошения или фильтрации. Формируется сеть каналов, которые наполняются сточными водами. После очистки воздухом, солнечным светом и микроорганизмами они просачиваются в почву, образуя на поверхности перегной.

Для биологической очистки, которая может проводиться и в искусственных условиях, существуют специальные сооружения – биофильтры и аэротенки. Биофильтр – это кирпичное или бетонное сооружение, внутри которого находится пористый материал – гравий, шлак либо щебень. На них наносят микроорганизмы, очищающие воду в результате своей жизнедеятельности.

В аэротенках при помощи поступающего воздуха происходит перемещение активного ила в сточных водах. Для отделения бактериальной плёнки от очищенной воды предназначены вторичные отстойники. Уничтожение в бытовых водах патогенных микроорганизмов осуществляется при помощи обеззараживания хлором.

Чтобы оценить качество воды, нужно определить количество вредных веществ, оказавшихся там после обработки (хлор, алюминий, полиакриламид и т.д), и антропогенных веществ (нитраты, медь, нефтепродукты, марганец, фенолы и т.п). Также следует учитывать органолептические и радиационные показатели.

Как улучшить качество воды в домашних условиях

Чтобы повысить качество водопроводной воды в домашних условиях, требуется дополнительная очистка, для которой используются бытовые фильтры. На сегодняшний день производители предлагают их в огромном количестве.

Одними из самых популярных являются фильтры, работа которых основана на обратном осмосе.

Их активно используют не только дома, но и на предприятиях общественного питания, в больницах, санаториях, на производственных предприятиях.

В системе фильтрации предусмотрена автопромывка, которую нужно включить до начала фильтрации. Посредством полиамидной мембраны, через которую проходит вода, происходит её освобождение от загрязнений – очистка осуществляется на молекулярном уровне. Подобные установки являются эргономичными и компактными, а качество фильтрованной воды очень высокое.

Очистка Воды: Видео

ЛЕКЦИЯ № 3. МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ВОДЫ

Использование природных вод открытых водоемов, а иногда и подземных вод в целях хозяйственно-питьевого водоснабжения практически невозможно без предваритель­ного улучшения свойств воды и ее обеззараживания. Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку, в результате которой вода освобождается от взвешенных частиц, запаха, привкуса, микроорганизмов и различных примесей.

Для улучшения качества воды применяются следующие методы: 1) очистка-удаление взвешенных частиц; 2) обез­зараживание-уничтожение микроорганизмов; 3) специаль­ные методы улучшения органолептических свойств воды, умягчение, удаление некоторых химических веществ, фторирование и др.

Очистка воды. Очистка является важным этапом в общем комплексе методов улучшения качества воды, так как улучшает ее физические и органолептические свойства. При этом в процессе удаления из воды взвешенных частиц удаляется и значительная часть микроорганизмов, в результате чего полная очистка воды позволяет легче и экономичнее осуществлять обеззараживание. Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.

Отстаивание, при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специаль­ных сооружениях - отстойниках. Используются две конструк­ции отстойников: горизонтальные и вертикальные. Принцип их действия состоит в том, то благодаря поступлению через узкое отверстие и замедленному протеканию воды в отстойнике основная масса взвешенных частиц оседает на дно. Процесс отстаивания в отстойниках различной конструкции продолжается в течение 2-8 ч. Однако мель­чайшие частицы, в том числе значительная часть микроорганизмов, не успевает осесть. Поэтому отстаивание нельзя рассматривать как основной метод очистки воды.

Фильтрация - процесс более полного освобождения воды от взвешенных частиц, заключающийся в том, что воду пропускают через фильтрующий мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода оставляет на поверхности и в глубине фильтрующего материала взвешенные частицы. На водопро­водных станциях фильтрация применяется после коагуля­ции.

В настоящее время начали применяться кварцево-антрацитовые фильтры, значительно увеличивающие скорость фильтрации.

Для предварительной фильтрации воды используются микрофильтры для улавливания зоопланктона - мельчайших водных животных и фитопланктона-мельчайших водных растений. Эти фильтры устанавливают перед местом водо­забора или перед очистными сооружениями.

Коагуляция представляет собой химический метод очистки воды. Преимущество этого метода заключается в том, что он позволяет освободить воду от загрязнений, находящихся в виде взвешенных частиц, не поддающихся удалению с помощью отстаивания и фильтрации. Сущность коагуляции заключается в добавлении к воде химического вещества-коагулянта, способного реагировать с находящи­мися в ней бикарбонатами. В результате этой реакции образуются крупные, довольно тяжелые хлопья, несущие положительный заряд. Оседая вследствие собственной тяжес­ти, они увлекают за собой находящиеся в воде во взвешенном состоянии частицы загрязнений, заряженные отрицательно, и тем самым способствуют довольно быстрой очистке воды. За счет этого процесса вода становится прозрачной, улучшает­ся показатель цветности.

В качестве коагулянта в настоящее время наиболее ши­роко применяется сульфат алюминия, образующий с бикар­бонатами воды крупные хлопья гидрата окиси алюминия. Для улучшения процесса коагуляции используются высо­комолекулярные флокулянты: щелочной крахмал, флокулянты ионного типа, активизированная кремневая кислота и другие синтетические препараты, производные акриловой кислоты, в частности полиакриламид (ПАА).

Обеззараживание. Уничтожение микроорганизмов являет­ся последним завершающим этапом обработки воды, обеспе­чивающим ее эпидемиологическую безопасность. Для обеззараживания воды применяются химические (реагентные) и физические (безреагентные) методы. В лабораторных условиях для небольших объемов воды может быть использован механический метод.

Химические (реагентные) методы обеззаражи­вания основаны на добавлении к воде различных химических веществ, вызывающих гибель находящихся в воде микро­организмов. Эти методы достаточно эффективны. В каче­стве реагентов могут быть использованы различные силь­ные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, се­ребро.

В санитарной практике наиболее надежным и испытан­ным способом обеззараживания воды является хлорирование. На водопроводных станциях оно производится при помощи газообразного хлора и растворов хлорной извести. Кроме этого, могут использоваться такие соединения хлора, как гипохлорат натрия, гипохлорит кальция, двуокись хлора.

Механизм действия хлора заключается в том, что при добавлении его к воде он гидролизуется, в результате чего происходит образование хлористоводородной и хлорновати­стой кислот:

С1 2 +Н 2 О=НС1+НОС1.

Хлорноватистая кислота в воде диссоциирует на ионы водорода (Н) и гипохлоритные ионы (ОС1), которые наряду с диссоциированными молекулами хлорноватистой кислоты обладают бактерицидным свойством. Комплекс (НОС1 + ОС1) называется свободным активным хлором.

Бактерицидное действие хлора осуществляется главным образом за счет хлорноватистой кислоты, молекулы которой малы, имеют нейтральный заряд и поэтому легко проходят через оболочку бактериальной клетки. Хлорноватистая кислота воздействует на клеточные ферменты, в частности на SH-группы, нарушает обмен веществ микробных клеток и способность микроорганизмов к размножению. В послед­ние годы установлено, что бактерицидный эффект хлора основан на угнетении ферментов-катализаторов, окислитель­но-восстановительных процессов, обеспечивающих энергети­ческий обмен бактериальной клетки.

Обеззараживающее действие хлора зависит от многих факторов, среди которых доминирующими являются биоло­гические особенности микроорганизмов, активность действу­ющих препаратов хлора, состояние водной среды и усло­вия, в которых производится хлорирование.

Процесс хлорирования зависит от стойкости микроорга­низмов. Наиболее устойчивыми являются спорообразующие. Среди неспоровых отношение к хлору различное, например брюшнотифозная палочка менее устойчива, чем палочка паратифа и т. д. Важным является массивность микробного обсеменения: чем она выше, тем больше хлора нужно для обеззараживания воды. Эффективность обеззараживания зависит от активности используемых хлорсодержащих препаратов. Так, газообразный хлор более эффективен, чем хлорная известь.

Большое влияние на процесс хлорирования оказывает состав воды; процесс замедляется при наличии большого количества органических веществ, так как большее коли­чество хлора уходит на их окисление, и при низкой темпе­ратуре воды. Существенным условием хлорирования являет­ся правильный выбор дозы. Чем выше доза хлора и чем продолжительнее его контакт с водой, тем более высоким будет обеззараживающий эффект.

Хлорирование производится после очистки воды и является заключительным этапом ее обработки на водо­проводной станции. Иногда для усиления обеззараживающе­го эффекта и для улучшения коагуляции часть хлора вводят вместе с коагулянтом, а другую часть, как обычно, после фильтрации. Такой метод называется двойным хлорированием.

Различают обычное хлорирование, т. е. хлорирование нормальными дозами хлора, которые устанавливаются каж­дый раз опытным путем, суперхлорирование, т. е. хлори­рование повышенными дозами.

Хлорирование нормальными дозами применяется в обычных условиях на всех водопроводных станциях. При этом большое значение имеет правильный выбор дозы хлора, что обусловливается степень хлорпоглощаемости воды в каждом конкретном случае.

Для достижения полного бактерицидного эффекта определяется оптимальная доза хлора, которая складывается из количества активного хлора, которое необходимо для: а) уничтожения микроорганизмов; б) окисления органиче­ских веществ, а также количества хлора, которое должно остать­ся в воде после ее хлорирования для того, чтобы служить показателем надежности хлорирования. Это количество называется активным остаточным хлором. Его норма 0,3-0,5 мг/л, при свободном хлоре 0,8-1,2 мг/л. Необходи­мость нормирования этих количеств связана с тем, что при наличии остаточного хлора менее 0,3 мг/л его может быть недостаточно для обеззараживания воды, а при дозах выше 0,5 мг/л вода приобретает неприятный специфический запах хлора.

Главными условиями эффективного хлорирования воды являются перемешивание ее с хлором, контакт между обез­зараживанием водой и хлором в течение 30 мин в теплое время года и 60 мин в холодное время.

На крупных водопроводных станциях для обеззаражи­вания воды применяется газообразный хлор. Для этого жидкий хлор, доставляемый на водопроводную станцию в цистернах или баллонах, перед применением переводится в газообразное состояние в специальных установках-хлораторах, с помощью которых обеспечиваются автоматиче­ская подача и дозирование хлора. Наиболее часто хлориро­вание воды производится 1% раствором хлорной извести. Хлорная известь представляет собой продукт взаимо­действия хлора и гидрата окиси кальция в результате реакции:

2Са(ОН) 2 + 2С1 2 = Са(ОС1) 2 + СаС1 2 + 2НА

Суперхлорирование (гиперхлорирование) воды проводит­ся по эпидемиологическим показаниям или в условиях, когда невозможно обеспечить необходимый контакт воды с хлором (в течение 30 мин). Обычно оно применяется в военно-полевых условиях, экспедициях и других случа­ях и производится дозами, в 5-10 раз превышающими хлорпоглощаемость воды, т. е. 10-20 мг/л активного хлора. Время контакта между водой и хлором при этом сокращается до 15-10 мин. Суперхлорирование имеет ряд преимуществ. Основными из них являются значительное сокращение времени хлорирования, упрощение его техники, так как нет необходимости определять остаточный хлор и дозу, и возможность обеззараживания воды без предва­рительного освобождения ее от мути и осветления. Недостатком гиперхлорирования является сильный запах хло­ра, но его можно устранить добавлением к воде тиосульфа­та натрия, активированного угля, сернистого ангидрида и других веществ (дехлорирование).

На водопроводных станциях иногда проводят хлориро­вание с преаммонизацией. Этот метод применяется в тех случаях, когда обеззараживаемая вода содержит фенол или другие вещества, которые придают ей неприятный запах. Для этого в обеззараживаемую воду вначале вводят аммиак или его соли, а затем через 1-2 мин хлор. При этом образуются хлорамины, обладающие сильным бактерицидным свойством.

К химическим методам обеззараживания воды относится озонирование. Озон является нестойким соединением. В воде он разлагается с образованием молекулярного и атомарного кислорода, с чем связана сильная окислительная способность озона. В процессе его разложения образуются свободные радикалы ОН и НО 2 , обладающие выраженными окислительными свойствами. Озон обладает высоким окислительно-восстановительным потенциалом, поэтому его реакция с органическими веществами, находящимися в воде, происходит более полно, чем у хлора. Механизм обеззараживающего действия озона аналогичен действию хлора: являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. Имеются предположения, что он действует как протоплазматический яд.

Преимущество озонирования перед хлорированием за­ключается в том, что при этом способе обеззараживания улучшаются вкус и цвет воды, поэтому озон может быть использован одновременно для улучшения ее органолептических свойств. Озонирование не оказывает отрицатель­ного влияния на минеральный состав и рН воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма и не влияет на органолептические свойства воды. Контроль за озонированием менее сложен, чем за хлорированием, так как озонирование не зависит от таких факторов, как температура, рН воды и т.д. Для обеззараживания воды необходимая доза озона в среднем равна 0,5-6 мг/л при экспозиции 3-5 мин. Озо­нирование производится при помощи специальных аппара­тов - озонаторов.

При химических способах обеззарараживания воды используют также олигодинамические действия солей тяжелых металлов (серебра, меди, золота). Олигодинамическим действием тяжелых металлов называется их способ­ность оказывать бактерицидный эффект в течение длитель­ного срока при крайне малых концентрациях. Механизм действия заключается в том, что положительно заряженные ионы тяжелых металлов вступают в воде во взаимодей­ствие с микроорганизмами, имеющими отрицательный заряд. Происходит электроадсорбция, в результате которой они проникают в глубь микробной клетки, образуя в ней альбуминаты тяжелых металлов (соединения с нуклеиновы­ми кислотами), в результате чего микробная клетка поги­бает. Данный метод обычно применяется для обеззаражи­вания небольших количеств воды.

Перекись водорода давно известна как окислитель. Ее бактерицидное действие связано с выделением кисло­рода при разложении. Метод применения перекиси водоро­да для обеззараживания воды в настоящее время еще полностью не разработан.

Химические, или реагентные, способы обеззараживания воды, основанные на добавлении к ней того или иного химического вещества в определенной дозе, имеют ряд недостатков, которые заключаются главным образом в том, что большинство этих веществ отрицательно влияет на со­став и органолептичеекие свойства воды. Кроме того, бактерицидное действие этих веществ проявляется после определенного периода контакта и не всегда распростра­няется на все формы микроорганизмов. Все это явилось причиной разработки физических методов обеззараживания воды, имеющих ряд преимуществ по сравнению с химиче­скими. Безреагентные методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредст­венно на структуру микроорганизмов, вследствие чего обла­дают более широким диапазоном бактерицидного действия. Для обеззараживания необходим небольшой период времени.

Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицид­ными (ультрафиолетовыми) лампами. Наибольшим бактери­цидным свойством обладают УФ лучи с длиной волны 200-280 нм; максимум бактерицидного действия приходит­ся на длину волны 254-260 нм. Источником излучения слу­жат аргонно-ртутные лампы низкого давления и ртутно-кварцевые лампы. Обеззараживание воды наступает быстро, в течение 1-2 мин. При обеззараживании воды УФ-лучами погибают не только вегетативные формы микробов, но и споровые, а также вирусы, яйца гельминтов, устойчивые к воздейст­вию хлора. Применение бактерицидных ламп не всегда возможно, так как на эффект обеззараживания воды УФ-лучами влияют мутность, цветность воды, содержание в ней солей железа. Поэтому, прежде чем обеззараживать воду таким способом, ее необходимо тщательно очистить.

Из всех имеющихся физических методов обеззаражива­ния воды наиболее надежным является кипячение. В ре­зультате кипячения в течение 3-5 мин погибают все имеющиеся в ней микроорганизмы, а после 30 мин вода становится полностью стерильной. Несмотря на высокий бактерицидный эффект, этот метод не находит широкого применения для обеззараживания больших объемов воды. Недостатком кипячения является ухудшение вкуса воды, наступающего в результате улетучивания газов, и возможность более быстрого развития микроорганизмов в кипяченой воде.

К физическим методам обеззараживания воды относится использование импульсного электрического разряда, ультра­звука и ионизирующего излучения. В настоящее время эти методы широкого практического применения не находят.

Специальные способы улучшения качества воды. Помимо основных методов очистки и обеззараживания воды, в не­которых случаях возникает необходимость производить спе­циальную ее обработку. В основном эта обработка направле­на на улучшение минерального состава воды и ее органолептических свойств.

Дезодорация - удаление посторонних запахов и привкусов. Необходимость проведения такой обработки обу­словливается наличием в воде запахов, связанных с жизне­деятельностью микроорганизмов, грибов, водорослей, продуктов распада и разложения органических веществ. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка воды перманганатом калия, переки­сью водорода, фторирование через сорбционные фильтры, аэрация.

Дегазация воды - удаление из нее растворенных дурно пахнущих газов. Для этого применяется аэрация, т. е. разбрызгивание воды на мелкие капли в хорошо проветриваемом помещении или на открытом воздухе, в резуль­тате чего происходит выделение газов.

Умягчение воды - полное или частичное удаление из нее катионов кальция и магния. Умягчение проводится специальными реагентами или при помощи ионообменного и термического методов.

Опреснение (обессоливание) воды чаще производит­ся при подготовке ее к промышленному использованию.

Частичное опреснение воды осуществляется для снижения содержания в ней солей до тех величин, при которых воду можно использовать для питья (ниже 1000 мг/л). Опресне­ние достигается дистилляцией воды, которая производится в различных опреснителях (вакуумные, многоступенчатые, гелиотермические), ионитовых установках, а также электро­химическим способом и методом вымораживания.

Обезжелезивание - удаление из воды железа про­изводится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием. В настоящее время разработан метод фильтрования воды через песча­ные фильтры. При этом закисное железо задерживается на поверхности зерен песка.

Обесфторивание - освобождение природных вод от избыточного количества фтора. С этой целью применяют метод осаждения, основанный на сорбции фтора осадком гидроокиси алюминия.

При недостатке в воде фтора ее фторируют. В случае загрязнения воды радиоактивными веществами ее подвергают дезактивации, т. е. удалению радиоактивных веществ.

Вне зависимости от того, какую воду вы решили пить - фильтрованную, бутилированную, кипяченую - существуют способы улучшить ее качество. Они просты и не нуждаются в больших затратах. Единственное, что потребуется от вас - немного времени и желания.

Талая вода

Приготовление в домашних условиях талой воды - пожалуй, самый простой путь улучшить ее свойства. Такая вода очень полезна. Объясняется этот тем, что по своей структуре она схожа с водой, входящей в состав крови и клеток. Поэтому ее применение освобождает организм от дополнительных энергетических затрат на структурирование воды.

Талая вода не только очищает организм от шлаков и токсинов, но и повышает его защитные силы, стимулирует обменные процессы и даже помогает в лечение некоторых болезней (в частности, есть сведения о том, что она эффективна при лечении атеросклероза). От умывания такой водой кожа становится мягче, волосы легче моются и проще расчесываются. Многие люди совершенно серьезно называют такую воду «живой».

Для получения талой воды следует использовать чистую воду. Замораживать воду можно в морозильнике или на балконе. Знатоки советуют использовать для этих целей чистые, плоские емкости - например, эмалированные кастрюли. Заполнять их водой следует не полностью, а примерно на 4/5, после чего накрыть крышкой. Помните о том, что, замерзая, вода увеличивается в объеме и начинает давить изнутри на стенки посуды. Поэтому от стеклянных банок лучше отказаться - они могут расколоться. Допускается использование пластиковых бутылок - при условии, что это бутылки для воды, а не для бытовых жидкостей.

Размораживать лед надо при комнатной температуре, ни в коем случае не ускоряя процесс нагреванием на плите. Лучше всего употреблять полученную талую воду в течение суток.

Как приготовить талую воду?

Существует множество способов приготовления талой воды в домашних условиях. Вот, пожалуй, самые известные.

Способ А. Маловичко

Эмалированную кастрюлю с водой поставьте в морозильную камеру холодильника. Через 4–5 часов достаньте ее. К этому времени в кастрюле уже должен образоваться первый лед, однако большая часть воды еще остается жидкой. Слейте воду в другую емкость - она вам еще потребуется. А вот кусочки льда следует выкинуть. Связано это с тем, что первый лед содержит в себе молекулы тяжелой воды, которая содержит дейтерий замерзает раньше, чем обычная вода (при температуре близкой к 4 °C). А кастрюлю с незамерзшей водой снова поставьте в морозильник. Но на этом приготовление не закончится. Когда вода замерзнет на две трети, незамерзшую воду снова следует слить, поскольку она может содержать вредные примеси. А тот лед, который остался в кастрюле - это и есть та самая вода, которая необходима организму человека.

Она очищена от примесей и тяжелой воды и вместе с тем содержит необходимый кальций. Последний этап приготовления - оттаивание. Лед нужно растопить при комнатной температуре и пить полученную воду. Хранить ее рекомендуют сутки.

Метод Зелипухиных

Этот рецепт подразумевает приготовление талой воды из воды водопроводной, которую следует предварительно нагреть до 94–96 °C (так называемого белого ключа), но не кипятить. После этого посуду с водой рекомендуют снять с плиты и быстро охладить, чтобы она не успела снова насытиться газами. Для этого можно кастрюлю поместить в ванну с ледяной водой.

Затем воду замораживают и размораживают в соответствии с главными принципами получения талой воды, о которых мы писали выше. Авторы методики считают, что талая вода, практически не содержащая газов, особенно полезна для здоровья.

Способ Ю. Андреева

Автор этого метода предложил, по сути, объединить преимущества двух предыдущих методов: приготовить талую воду, довести ее до «белого ключа» (то есть избавить таким образом жидкость от газов), а затем снова заморозить и разморозить.

Талую воду специалисты советуют употреблять ежедневно за 30–50 минут до еды 4–5 раз в день. Обычно улучшение самочувствие начинает наблюдаться спустя месяц после ее регулярного приема. В общей сложности в целях очистки организма рекомендуется выпивать в течение месяца от 500 до 700 мл (в зависимости от массы тела).

Серебряная вода

Еще один известный и простой способ сделать воду полезнее - улучшить ее характеристики с помощью серебра, бактерицидные свойства которого известны с древнейших времен. Многие века назад индийцы обеззараживали воду, опуская в нее серебряные украшения. В жаркой Персии знатные люди хранили воду только в серебряных кувшинах, поскольку это защищало их от инфекций. У некоторых народов существовала традиция бросать в новый колодец серебряную монету, тем самым улучшая ее качество.

Однако долгие годы не существовало никаких подтверждений того, что серебро действительно обладает не «чудесными» свойствами, а объяснимыми с точки
зрения науки. И только около ста лет назад ученым удалось установить первые закономерности.

Французский врач Б. Креде заявил о том, что добился успешного лечения сепсиса серебром. Позднее он выяснил, что этот элемент в течение нескольких дней способен погубить дифтерийную палочку, стафилококков и возбудителя тифа.

Объяснение этому феномену вскоре дал швейцарский ученый К. Негель. Он установил, что причиной гибели клеток микроорганизмов является воздействие на них ионов серебра. Ионы серебра выступают в роли защитников, уничтожая болезнетворные бактерии, вирусы, грибки. Их действие распространяется более чем на 650 видов бактерий (для сравнения - спектр действия любого антибиотика 5–10 видов бактерий). Интересно, что полезные бактерии при этом не погибают, а значит, не развивается дисбактериоз, столь частый спутник лечения антибиотиками.

При этом серебро не просто металл, способный убивать бактерии, но и микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем 80 мкг серебра. При употреблении ионных растворов серебра не только уничтожаются болезнетворные бактерии и вирусы, но и активизируются обменные процессы в организме человека, повышается иммунитет.

Как приготовить серебряную воду?

Серебряную воду можно приготовить различными способами, в зависимости от имеющегося в вашем распоряжении времени и возможностей. Самый простой способ - просто опустить изделие из чистого серебра (ложку, монету или даже украшение) в сосуд с чистой питьевой водой на пару часов. Этого времени достаточно для того, чтобы качество воды заметно улучшилось. Такая вода не просто подверглась дополнительной очистке, но и приобрела целебные
свойства.

Другой популярный способ получения серебряной воды связан с кипячением серебряного изделия. Предварительно вещь из серебра надо тщательно почистить (например, зубным порошком) и прополоскать под проточной водой. После этого положить его в кастрюлю с холодной водой или в чайник и поставить на огонь. Не следует снимать посуду с плиты после того, как появятся первые пузырьки - необходимо дождаться, пока уровень жидкости не
уменьшится примерно на треть. Затем воду следует остудить при комнатной температуре - и пить в течение дня небольшими порциями.

Есть и более сложные способы обогащения воды ионами серебра. Например, существует метод, основанный на том, что действие ионов серебра возрастает при взаимодействии с ионами меди. Так появился специальный прибор: медно-серебряный ионатор, который при желании можно найти в аптеке. Некоторые умельцы конструируют его сами в домашних условиях, используя в качестве рабочей емкости обыкновенный стакан, в который опускают два электрода - медный и серебряный. Прибор, сконструированный в домашних условиях, состоит только лишь из стакана, медного и серебряного электрода.

Медики считают, что медно-серебряная вода полезнее серебряной, но употреблять ее можно с большими ограничениями - не более 150 мл в день. А вот обычную серебряную воду разрешается пить сколько душе угодно. Она абсолютно безопасна и не может привести к передозировке.

Кремниевая вода

Кремниевая вода (настоянная на кремнии) стала популярной в последнее время, несмотря на то что этот минерал известен людям испокон веков. И в определенном смысле именно кремний сыграл особую роль на ключевом этапе развития цивилизации - из него древние люди каменного века изготавливали первые наконечники для копий и топоры, с его помощью научились добывать огонь. Однако о целебных свойствах кремния заговорили менее полувека назад.

Стали замечать, что при взаимодействии с водой кремний изменяет ее свойства. Так, вода из колодцев, стенки которых выложены кремнием, отличалась от воды из других колодцев не только большей прозрачностью, но и приятным вкусом. В прессе стала появляться информация о том, что активированная кремнем вода убивает вредные микроорганизмы и бактерии, подавляет процессы гниения и брожения, а также способствует осаждению соединений тяжелых металлов, нейтрализует хлор, сорбирует радионуклиды. Люди стали активно использовать кремний для того, чтобы улучшить свойства воды - сделать ее
целебной.

Кстати, иногда происходит путаница: люди не видят разницы между минералом кремнием и одноименным химическим элементом. Для изменения свойств воды
используется кремний - минерал, который образован химическим элементом кремнием и входит в состав кремнезема. В природе он встречается в виде кварца, халцедона, опала, сердолика, яшмы, горного хрусталя, агата, опала, аметиста и многих других камней, основа которых - диоксид кремния.

В нашем организме кремний можно обнаружить в щитовидке, надпочечниках, гипофизе, много его в волосах и ногтях. Кремний участвует в обеспечении защитных функций организма, обменных процессов и помогает избавляться от токсинов. А еще кремний входит в состав белка соединительной ткани коллагена, поэтому от него во многом зависит скорость срастания костей после переломов.

Его дефицит может стать причиной сердечно-сосудистых и обменных заболеваний.

Не удивительно, что узнав об удивительных свойствах кремния, люди стали настаивать на нем воду - ведь именно посредством водной среды осуществляются все обменные процессы в организме. Такая вода долгое время не портится и приобретает ряд целебных качеств. Люди, употребляющие ее, замечают, что процессы старения в организме как будто замедляются. Однако механизм взаимодействия кремня с водой остается для ученых загадкой.

Предположительно это может быть связано со способностью кремния образовывать с водой ассоциаты (особые объединения молекул и ионов), поглощающие
грязь и болезнетворную микрофлору.

Как приготовить кремниевую воду

Приготовить кремниевую воду можно в домашних условиях. Причем, сделать это очень просто. В трехлитровую стеклянную банку с чистой питьевой водой
помещают горсть мелких кремниевых камушков. Важно обратить внимание на цвет, поскольку в природе этот минерал может приобретать различные оттенки.
Специалисты рекомендуют использовать для настаивания не черные камни, а ярко-коричневые. Банку можно не закрывать плотно, а лишь прикрыть марлей и поставить на трое суток в темное место. После того как вода настоится, ее следует процедить через марлю, а камни промыть проточной водой. Если вы заметите, что на поверхности камней образовался липкий налет, их следует поместить на два часа в слабый раствор уксусной кислоты или в насыщенный солевой раствор, а затем тщательно промыть под проточной водой.

Если нет противопоказаний, такую воду советуют употреблять в качестве обычной питьевой воды. Пить ее лучше небольшими порциями и маленькими глотками через равные интервалы - так она будет наиболее эффективна.

Одна из самых распространенных ошибок при приготовлении кремниевой воды - кипячение минерала. Специалисты не советуют класть кремний в кастрюли и чайники, в которых вы кипятите воду для приготовления чая и первых блюд, поскольку в этом случае есть риск перенасытить воду биологически активными веществами. Что же касается противопоказаний, их немного. Главным образом от употребления кремниевой воды советуют воздержаться людям со склонностью к онкологическим заболеваниям.

Шунгитовая вода

Шунгитовая вода, возможно, не так популярна, как серебряная или кремниевая, но в последнее время она находит все больше и больше приверженцев. А вместе с ростом ее популярности усиливается и голос медиков, призывающих помнить об осторожности при употреблении этой воды. Так кто же прав?

Для начала напомним, что шунгит - название древнейшей горной породы, каменный уголь, подвергшийся особой метаморфозе. Это - переходная стадия от
антрацита к графиту. Название свое он получил по имени карельского поселка Шуньга.

Повышенное внимание к шунгиту объясняется тем, что была обнаружена его способность удалять из воды механические примеси, соединения тяжелых металлов. Это сразу же послужило поводом говорить о том, что настоянная на шунгите вода обладает целебными свойствами, омолаживает организм, подавляет рост бактерий.

Сегодня шунгитовую воду широко применяют в качестве питьевой воды, а также в косметических и лечебных целях. Шунгит добавляют в ванны, так как считается, что он ускоряет обменные процессы и помогает избавляться от хронических заболеваний. С ним делают компрессы, ингаляции, примочки.

Сторонники лечения шунгитом утверждают, что он помогает избавиться от гастрита, анемии, диспепсии, отита, аллергических реакций, бронхиальной астмы, диабета, холецистита и многих других недугов, - достаточно регулярно употреблять по 3 стакана шунгитовой воды в день.

Как приготовить шунгитовую воду

Шунгитовую воду готовят дома, следуя достаточно простой технологии. В стеклянную или эмалированную емкость наливают 3 литра питьевой воды и опускают в нее 300 г промытых камней шунгита. Емкость надо поставить в защищенное от солнечных лучей место на 2–3 дня. После этого ее аккуратно, не взбалтывая, переливают в другой сосуд, оставляя примерно треть воды (ее пить нельзя, так как в нижней части оседают вредные примеси).

Камни шунгита после приготовления настоя промывают проточной водой - и они готовы к следующему применению. Некоторые источники указывают на то, что спустя несколько месяцев камни теряют свою эффективность и их лучше заменить. Другие эксперты советуют не менять камни, а просто обрабатывать их
периодически наждаком, чтобы активизировать поверхностный слой. При этом свойства воды не теряются даже после ее кипячения.

В последнее время шунгит стал применяться в производстве фильтров для очистки воды. Меньше, чем за два десятилетия в России и странах СНГ было продано более миллиона таких фильтров. Эффективность этой породы для очистки воды сегодня доказана. Почему же медики бьют тревогу?

Оказывается, что при настаивании шунгит способен вызывать химические реакции, в результате которых вода превращается в слабоконцентрированный раствор кислоты. И при длительном употреблении такой напиток может нанести вред желудку и пищеварительной системе в целом.

Кроме того, использование шунгитовой воды не рекомендуется людям, страдающим онкологическими и сердечно-сосудистыми заболеваниями. Ее не советуют пить при обострении хронических воспалительных заболеваний и при склонности к тромбозам.

Методы улучшения качества воды позволяют освободить воду от микроорганизмов, взвешенных частиц, избытка солей, дурно пахнущих газов. Делятся на 2 группы: основные и специальные.

Основные: очистка и обеззараживание.

Гигиенические требования к качеству питьевой воды изложены в Санитарных правилах «Питьевая вода. Гигиенические….» (2001).

- Очистка. Цель – освобождение от взвешенных частиц и окрашенных коллоидов для улучшения физических свойств (прозрачность и цветность). Методы очистки зависят от источника водоснабжения. Меньше требуют очистки подземные межпластовые водоисточники. Вода открытых водоёмов подвержена загрязнению, поэтому они потенциально опасны.

Очистка достигается тремя мероприятиями:

- отстаивание: после прохождения воды из реки через водозаборные решетки, в которых остаются крупные загрязнители, вода поступает в большие емкости – отстойники, при медленном протекании через которые за 4-8 час. на дно выпадают крупные частицы.

- коагуляция: для осаждения мелких взвешенных веществ вода поступает в емкости, где коагулируется – добавляется в нее полиакриламид или сульфат алюминия, который под влиянием воды становится хлопьями, к которым прилипают мелкие частицы и адсорбируются красящие вещества, после чего они оседает на дно резервуара.

- фильтрация : вода медленно пропускается через слой песка и фильтрующую ткань или др. (медленные и скорые фильтры) – тут задерживаются оставшиеся взвешенные вещества, яйца гельминтов и 99% микрофлоры. Фильтры промываются 1-2 раза в сутки обратным током воды.

- Обеззараживание.

Для обеспечения эпидемической безопасности (уничтожение патогенных микробов и вирусов) вода обеззараживается: химическими или физическими методами.

Химические методы : хлорирование и озонирование.

А) Хлорирование в оды газом хлором (на крупных станциях) или хлорной известью (на мелких).

Доступность метода, дешевизна и надежность обеззараживания, а также многовариантность, т. е. возможность обеззараживать воду на водопроводных станциях, передвижных установках, в колодце, на полевом стане...

Эффективность хлорирования воды зависит от: 1) степени очистки воды от взвешенных веществ, 2) введенной дозы, 3) тщательности перемешивания воды, 4) достаточной экспозиции воды с хлором и 5) тщательности проверки качества хлорирования по остаточному хлору.

Бактерицидное действие хлора наибольшее в первые 30 мин и зависит от дозы и температуры воды – при низкой температуре дезинфекция удлиняется до 2 часов.

В соответствии с санитарными требованиями в воде после хлорирования должно оставаться 0,3-0,5 мг/л, остаточного хлора (не влияет на организм человека и органолептические св-ва воды).

В зависимости от примененной дозы различают:

Обычное хлорирование – 0,3-0,5 мг/л

Гиперхлорирование – 1-1,5 мг/л, в период эпидемической опасности. Далее активированный уголь-убрать лишний хлор.

Модификации хлорирования:

- Двойное хлорирование предусматривает подачу хлора на водопроводные станции дважды: перед отстойниками, а второй -после фильтров. Это улучшает коагуляцию и обесцвечивание воды, подавляет рост микрофлоры в очистных сооружениях, увеличивает надежность обеззараживания.

- Хлорирование с аммонизацией предусматривает введение в обеззараживаемую воду раствора аммиака, а через 0,5-2 минуты - хлора. При этом в воде образуются хлорамины, которые также обладают бактерицидным действием.

- Перехлорирование предусматривает добавление к воде больших доз хлора (10-20 мг/л и более). Это позволяет сократить время контакта воды с хлором до 15-20 мин и получить надежное обеззараживание от всех видов микроорганизмов: бактерий, вирусов, риккетсий, цист, дизентерийной амебы, туберкулеза.

До потребителя должна доходить вода с остаточным хлором не менее 0,3 мг\л

Б) Метод озонирования воды . В настоящее время является одним из перспективных(Франции, США, в Москве, Ярославле, Челябинске).

Озон (О3) - обусловливает бактерицидные свойства и происходит обесцвечивание и устранение привкусов и запахов. Косвенным показателем эффективности озонирования является остаточный озон на уровне 0,1-0,3 мг/л.

Преимущества озона перед хлором: озон не образует в воде токсических соединений (хлорорганических соединений), улучшает органолептические показатели воды и обеспечивает бактерицидный эффект при меньшем времени контакта (до 10 мин).

В) Обеззараживание индивидуальных запасов в домашних и полевых условиях применяются методы (химические и физические):

Олигодинамическое действие серебра. С помощью специальных приборов путем электролитической обработки воды. Ионы серебра обладает бактериостатическим действием. Микроорганизмы прекращают размножение, хотя остаются живыми и даже способными вызвать заболевание. Поэтому серебро в основном применяется для консервирования воды при длительном хранении ее в плавании, космонавтике и т. д.

Для обеззараживания индивидуальных запасов воды применяются таблетки, содержащие хлор: Аквасепт, Пантоцид…. .

Кипячение (5-30 мин), при этом многие химические загрязнения сохраняются;

Бытовые приборы- фильтры, обеспечивающие несколько степеней очистки;

Физические методы обеззараживания воды

Преимущество перед химическими: они не изменяют химического состава воды, не ухудшают ее органолептических свойств. Но из-за их высокой стоимости и необходимости тщательной предварительной подготовки воды в водопроводах применяется только ультрафиолетовое облучение,

- Кипячение (было, см)

- Ультрафиолетовое (УФ) облучение. Достоинства: в быстроте действия, эффективности уничтожения вегетативных и споровых форм бактерий, яиц гельминтов и вирусов, не образует запаха и привкуса. Бактерицидным действием обладают лучи с длиной волны 200-275 нм.