Винт и его применение. Как подобрать гребной винт для лодочного мотора Как определить подходит ли винт

Как работает гребной винт? Гребной винт преобразует вращение вала двигателя в упор - силу, толкающую судно вперед. При вращении винта на поверхностях его лопастей, обращенных вперед - в сторону движения судна (засасывающих), создается разрежение, а на обращенных назад (нагнетающих)- повышенное давление воды. В результате разности давлений на лопастях возникает сила Y (ее называют подъемной) Разложив силу на составляющие - одну, направленную в сторону движения судна, а вторую перпендикулярно к нему, получим силу Р, создающую упор гребного винта, и силу Т, образующую крутящий момент, который преодолевается двигателем.

Упор в большой степени зависит от угла атаки a профиля лопасти. Оптимальное значение для быстроходных катерных винтов 4-8°. Если a больше оптимальной величины, то мощность двигателя непроизводительно затрачивается на преодоление большого крутящего момента, если же угол атаки мал, подъемная сила и, следовательно, упор Р будут невелики, мощность двигателя окажется недоиспользованной.

На схеме, иллюстрирующей характер взаимодействия лопасти и воды, a можно представить как угол между направлением вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован геометрическим сложением векторов скорости поступательного перемещения Va винта вместе с судном и скорости вращения Vr, т. е. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.


Винтовая поверхность лопасти. На рисунке показаны силы и скорости, действующие в каком-то одном определенном поперечном сечении лопасти, расположенном на каком-то определенном радиусе r гребного винта. Окружная скорость вращения V, зависит от радиуса, на котором сечение расположено (Vr = 2× p × r× n, где n - частота вращения винта, об/с), скорость же поступательного движения винта Va остается постоянной для любого сечения лопасти. Таким образом, чем больше r, т. е. чем ближе расположен рассматриваемый участок к концу лопасти, тем больше окружная скорость Vr, а следовательно, и суммарная скорость W.

Так как сторона Va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы a сохранял оптимальную величину, т. е. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один полный оборот винта.

Представить сложную винтовую поверхность лопасти помогает рисунок. Лопасть при работе винта как бы скользит по направляющим угольникам, имеющим на каждом радиусе разную длину основания, но одинаковую высоту - шаг H, и поднимается за один оборот на величину Н. Произведение же шага на частоту вращения (Нn) представляет собой теоретическую скорость перемещения винта вдоль оси.

Скорость судна, скорость винта и скольжение. При движении корпус судна увлекает за собой воду, создавая попутный поток, поэтому действительная скорость встречи винта с водой Va всегда несколько меньше, чем фактическая скорость судна V. У быстроходных глиссирующих мотолодок разница невелика - всего 2 - 5%, так как их корпус скользит по воде и почти не “тянет” ее за собой. У катеров, идущих со средней скоростью хода эта разница составляет 5-8 %, а у тихоходных водоизмещающих глубокосидящих катеров достигает 15-20 %. Сравним теперь теоретическую скорость винта Нn со скоростью его фактического перемещения Va относительно потока воды.

Разность Hn - Va, называемая скольжением, и обуславливает работу по пасти винта под углом атаки a к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах называется относительным скольжением:
s = (Hn-Va)/Hn.

Максимальной величины (100 %) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8-15 %) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных мотолодок и катеров скольжение достигает 15-25%, у тяжелых водоизмещающих катеров 20-40 %, а у парусных яхт, имеющих вспомогательный двигатель, 50 - 70%.

Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода судна.

Каждый двигатель имеет свою так называемую внешнюю характеристику - зависимость снимаемой с вала мощности от частоты вращения коленчатого вала при полностью открытом дросселе карбюратора. Такая характеристика для подвесного мотора “Вихрь”, например, показана на рисунке (кривая 1). Максимум мощности в 21,5 л, с. двигатель развивает при 5000 об/мин.

Мощность, которая поглощается на данной лодке гребным винтом в зависимости от частоты вращения мотора, показана на этом же рисунке не одной, а тремя кривыми - винтовыми характеристиками 2, 3 и 4, каждая из которых соответствует определенному гребному винту, т. е. винту определенного шага и диаметра.

При увеличении и шага, и диаметра винта выше оптимальных значений лопасти захватывают и отбрасывают назад слишком большое количество воды: упор при этом возрастает, но одновременно увеличивается и потребный крутящий момент на гребном валу. Винтовая характеристика 2 такого винта пересекается с внешней характеристикой двигателя 1 в точке А. Это означает, что двигатель уже достиг предельного - максимального значения крутящего момента и не в состоянии проворачивать гребной винт с большой частотой вращения, т. е. не развивает номинальную частоту вращения и соответствующую ей номинальную мощность. В данном случае положение точки А показывает, что двигатель отдает всего 12 л. с. мощности вместо 22 л. с. Такой гребной винт называется гидродинамически тяжелым.

Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому двигатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть, что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт называется гидродинамически легким.

Гребной винт, позволяющий для конкретного сочетания судна и двигателя полностью использовать мощность последнего, называется согласованным . Для рассматриваемого примера такой согласованный винт имеет характеристику 3, которая пересекается с внешней характеристикой двигателя в точке В, соответствующей его максимальной мощности.

Рисунок иллюстрирует важность правильного подбора винта на примере мотолодки "Крым" с подвесным мотором “Вихрь”, При использовании штатного винта мотора с шагом 300 мм мотолодка с 2 чел. на борту развивает скорость 37 км/ч. С полной нагрузкой 4 чел, скорость лодки снижается до 22 км/ч. При замене винта другим с шагом 264 мм скорость с полной нагрузкой повышается до 32 км/ч. Наилучшие же результаты достигаются с гребным винтом, имеющим шаговое отношение H/D = 1,0 (шаг и диаметр равны 240 мм): максимальная скорость повышается до 40-42 км/ч, скорость с полной нагрузкой - до 38 км/ч. Несложно сделать вывод и о существенной экономии горючего, которую можно получить с винтом уменьшенного шага Если со штатным винтом при нагрузке 400 кг расходуется 400 г горючего на каждый пройденный километр пути, то при установке винта с шагом 240 мм расход горючего составит 237 г/км.

Следует заметить, что согласованных винтов для конкретного сочетания судна и мотора существует бесконечное множество. В самом деле, винт с несколько большим диаметром, но несколько меньшим шагом нагрузит двигатель так же, как и винт с меньшим диаметром и большим шагом. Существует правило: при замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение допустимо не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.

Однако из этого множества согласованных винтов только один винт, с конкретными значениями D и H, будет обладать наибольшим КПД. Такой винт называется оптимальным . Целью расчёта гребного винта как раз и является нахождение оптимальных величин диаметра и шага.

Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД, т. е. отношения полезно используемой мощности к затрачиваемой мощности двигателя.

Не вдаваясь в подробности, отметим, что главным образом КПД некавитирующего винта зависит от относительного скольжения винта, которое в свою очередь определяется соотношением мощности, скорости, диаметра и частоты вращения.

Максимальная величина КПД гребного винта может достигать 70 ~ 80 %, однако на практике довольно трудно выбрать оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых судах КПД реальных винтов может оказаться много ниже, составлять всего 45 %.

Максимальной эффективности гребной винт достигает при относительном скольжении 10 - 30 %. При увеличении скольжения КПД быстро падает: при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.

Однако следует еще учесть взаимовлияние корпуса и винта. При работе гребной винт захватывает и отбрасывает в корму значительные массы воды, вслед ствие чего скорость потока, обтекающего кормовую часть корпуса повышается, а давление падает. Этому сопутствует явление засасывания, т. е. появление до полнительной силы сопротивления воды движению судна по сравнению с тем, которое оно испытывает при буксировке. Следовательно, винт должен развивать упор, превышающий сопротивление корпуса на некоторую величину Рe = R/(1-t) кг. Здесь t - коэффициент засасывания, величина которого зависит от скорости движения судна и обводов корпуса в районе расположения винта. На глиссирующих катерах и мотолодках, на которых винт расположен под сравнительно плоским днищем и не имеет перед собой ахтерштевня, при скоростях свыше 30 км/ч t = 0,02-0,03. На тихоходных (10-25 км/ч) лодках и катерах, на которых гребной винт установлен за ахтерштевнем, t = 0,06-0,15.

В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w: Va = V (1-w) м/с. Значения w нетрудно определить по данным, приведенным выше.

Общий пропульсивный КПД комплекса судно-двигатель-гребной винт вычисляется по формуле:
h = h p Ч ((1-t)/(1-w))Ч h m = h p Ч h k Ч h m Здесь h p - КПД винта; h k - коэффициент влияния корпуса; h m - КПД валопровода и реверс - редукторной передачи.

Коэффициент влияния корпуса нередко оказывается больше единицы (1,1 - 1,15), а потери в валопроводе оцениваются величиной 0,9-0,95.

Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать, лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму лопастей. Для предварительного определения диаметра и шага винта существуют упрощенные формулы, приводить которые здесь нет смысла, т.к. предлагается воспользоваться более точными методами расчёта оптимального винта . Эти методы основаны на апроксимации (приближённом представлении) графических диаграмм аналитическими зависимостями, что позволяет выполнять достаточно точные расчёты на ЭВМ и даже на микрокалькуляторах.

Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов, обычно увеличивают примерно на 5 % с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности с двигателем при последующих испытаниях судна. Для "облегчения" винта его постепенно подрезают по диаметру до получения номинальных оборотов двигателя при расчетной скорости.

Однако для винтов маломерных судов этого можно и не делать. Причина проста: загрузка прогулочных судов меняется в широких пределах, и винт, немного "тяжеловатый" или "легковатый" при одном значении водоизмещения судна, станет согласованным при другой загрузке.

Кавитация и особенности геометрии гребных винтов малых судов. Высокие скорости движения мотолодок и катеров и частота вращения винтов становятся причиной кавитации - вскипания воды и образования пузырьков паров в области разрежения на засасывающей стороне лопасти. В начальной стадии кавитации эти пузырьки невелики и на работе винта практически не сказываются. Однако когда эти пузырьки лопаются, создаются огромные местные давления, отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения могут быть настолько значительными, что эффективность винта снизится.

При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость - каверна, захватывает всю лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей.

Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, на корпус передается вибрация, лодка движется скачками.

Момент наступления кавитации зависит не только от частоты вращения но и от ряда других параметров. Так, чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт, тем при меньшей частоте вращения, т. е. раньше наступает кавитация. Появлению кавитации способствует также большой угол наклона гребного вала, дефекты лопастей - изгиб, некачественная поверхность.

Упор, развиваемый гребным винтом, практически не зависит от площади лопастей. Наоборот, с увеличением этой площади возрастает трение о воду и на преодоление этого трения дополнительно расходуется мощность двигателя. С другой стороны, надо учесть, что при том же упоре на широких лопастях разрежение на засасывающей стороне меньше, чем на узких. Следовательно, широколопастной винт нужен там, где возможна кавитация (т. е. на быстроходных катерах и при большой частоте вращения гребного вала).

В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе, проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А, а ее отношение к площади Аd сплошного диска такого же, как винт, диаметра, т. е. A/Ad. На винтах заводского изготовления величина дискового отношения выбита на ступице.

Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0,3 - 0,6. У сильно нагруженных винтов на быстроходных катерах с мощными высокооборотными двигателями A/Ad увеличивается до 0,6 - 1,1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью, например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире, чем увеличить их толщину.

Ось гребного винта на глиссирующем катере расположена сравнительно близко к поверхности воды, поэтому нередки случаи засасывания воздуха к лопастям винта (поверхностная аэрация) или оголения всего винта при ходе на волне. В этих случаях упор винта резко падает, а частота вращения двигателя может превысить максимально допустимую. Для уменьшения влияния аэрации шаг винта делается переменным по радиусу - начиная от сечения лопасти на r = (0,63-0,7) R по направлению к ступице шаг уменьшается на 15~20%.

Гребные винты катеров имеют обычно большую частоту вращения, поэтому вследствие больших центробежных скоростей происходит перетекание воды по лопастям в радиальном направлении, что отрицательно сказывается па КПД винта. Для уменьшения этого эффекта лопастям придают значительный наклон в корму -от 10 до 15° .

В большинстве случаев лопастям винтов придается небольшая саблевидность - линия середин сечений лопасти выполняется криволинейной с выпуклостью, направленной по ходу вращения винта. Такие винты благодаря более плавному входу лопастей в воду отличаются меньшей вибрацией лопастей, в меньшей степени подвержены кавитации и имеют повышенную прочность входящих кромок.

Наибольшее распространение среди винтов малых судов получил сегментный плосковыпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен выпукловогнутый профиль ("луночка"). Стрелка вогнутости профиля принимается равной около 2 % хорды сечения а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта, равном 0,6R) принимается обычно в пределах t/b = 0,04-0,10.

Двухлопастной гребной винт обладает более высоким КПД, чем трехлопастной, однако при большом дисковом отношении весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых судах получили трехлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо нагруженным, и на парусно - моторных яхтах, где двигатель играет вспомогательную роль. В последнем случае имеет значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения его сопротивления при плавании под парусами.

Несмотря на столь незначительный размер и довольно простой на первый взгляд принцип работы, пользу винтовой резьбы для человечества сложно определить. Именно винт стал тем фактором, который дал толчок развитию науки и техники, и многие открытия, сделанные человеком, были бы недоступны без этого такого простого, то в тоже время такого нужного и гениального изобретения.

Немного истории и классификация

Конструкция винта была известна еще в Древней Греции, однако в то время это изобретение использовалось с целью подачи воды, поскольку его лопасти помогали поднимать воду на определенную высоту. Также подобный механизм применялся в качестве прессов для вина и масла. В виде элемента крепежа винтовой механизм появился в 16 столетии, однако распространение он получил только в 19 веке. В это время болт использовался в качестве крепежного элемента в строительстве, а также в разных видах ремесел. Высокую популярность болты получили в эпоху массового изготовления различных механизмов. С момента появления первых автомобилей болты стали неотъемлемым атрибутом строительства, который делал конструкции более прочными и надежными.

Различают несколько видов деталей:

  • Крепежные. Самый распространенный вид, который применяется для соединения деталей с возможностью их разъема. Конструкция состоит из стержня с резьбой на одном конце которого размещена головка. Головка используется для захвата винта при помощи отвертки или другим инструментом и последующего зажатия детали. Форма головки может быть самой разной: круглой, квадратной, многогранной и др. С целью невозможности открутить крепеж создаются головки с уникальной формой, для которой нужен специальный инструмент.
  • Установочные. Такой вариант используется для фиксации компонентов взаимным способом. Для этой цели на концах болта расположены углубления или выступы для более высокого качества фиксации. Концы подобных деталей могут иметь разную форму: плоскую, конусную, ступенчатую, цилиндрическую, шариковую, рельефную и др.

Сфера применения

Винты широко используются в машиностроении, строительстве, сельском хозяйстве, промышленности и в других сферах. Для разных элементов применяются разные варианты, что позволяет добиться конкретных целей:

  • Детали с конической резьбой используются при отверстиях сквозного и глухого типа. Подобные варианты не рекомендовано использовать при высоких показателях динамических нагрузок, поскольку в таком случае возможна деформация внутренней резьбы.
  • Болты с плоским концом также могут быть использованы в сквозных и глухих вариантах креплениях. При этом плоскость вкручивания должна быть перпендикулярной по отношению к оси резьбы.
  • Детали с цилиндрической цапфой. Такой вариант используется только в глухих отверстиях, поскольку это предполагает меньшее действие.

Подбор варианта зависит от нескольких факторов, в частности от температуры осуществления работ, показателя вибрации, нагрузки и др.

Винт и его применение

Винт (от нем. Gewinde - нарезка, резьба) — простейший механизм цилиндрической формы, на которую по спирали наложена резьба (ряд чередующихся канавок и выступов). Винт является крепежной деталью.

Изобретение винта приписывае6тся великому математику и физику древности Архимеду(287-212 гг. до н.э.) из Сиракуз.

А рхимедов винт – механизм для подъема воды снизу вверх. Нижняя часть цилиндра находится в воде. Внутри цилиндра располагается плоская спираль (шнек). При вращении ручки вода из нижней части цилиндра перемещалась наверх. Такое устройство предназначалось для орошения земель, а также для откачки воды из трюмов больших грузовых судов.

Процесс изготовления винта в средние века заключался в следующем: навивали на стержень полоску бумаги, а затем пропиливали ее напильником.

Позже резьбы больших размеров наносились горячей ковкой: по горячей заготовке ударяли формообразующим инструментом. Мелкую резьбу получали на примитивных токарных станках, при чем инструмент держали в руках.

Затем появился винторезный станок, который для получения резьбы, снимал с заготовки стружку.

В
настоящее время резьбу получают методом деформирования поверхности. Заготовка винта зажимается между двумя плашками и прокатывается между ними. Одна плашка является подвижной, а другая – неподвижной.

А также методом холодной штамповки. Проволока подается в станок, который отрезает стержень нужной длины, пропускает его через ряд формообразующих штампов и на полученную заготовку накатывается резьба.

Винты используют для крепления деталей. Их широко применяют в устройствах электротехники, так как при креплении деталей они пропускают через себя электрический ток.

Для электротехнических изделий винты изготавливают из меди, бронзы и латуни. Винты, используемые в машиностроении изготавливают из стали.

Принцип винта используется в таких инструментах, как домкрат, тиски. Винт применяется и по «прямому назначению»: для перемещения мяса в мясорубке, вращения шестерёнки.

Резьба у винта — наклонная плоскость, она всегда дает выигрыш в силе.

П
редставим, что наклонную плоскость с высотой h и длиной l свернули в трубочку (рис. 1).

Поворачивая гайку, надетую на болт, происходит вращательное и поступательное движение, вы поднимаете её по наклонной плоскости (рис. 2).

В
ыигрыш в силе равен отношению расстояния, проходимого точкой приложения усилия за один оборот винта (длины окружности l = πD), к расстоянию, проходимому при этом нагрузкой по оси винта.

За один оборот нагрузка перемещается на расстояние между двумя соседними витками резьбы (a и b или b и c), которое называется шагом резьбы.

Примером преобразования вращательного движения в поступательное, при помощи винта, является юстировка точных оптико-механических приборов. Юстировка – выравнивание прибора вдоль осевого направления.


Нырять было негде. Август в этом году жаркий, воды в прудах поубавилось, на поверхности тина островами плавает. В малых речках мутно ибо коровы стадами в воду заходят, от насекомых спасаются. А понырять очень хотелось. Собравшись вместе, по традиции у моего гаража, долго обсуждали, куда надо ехать, и решили разведать места в широкой пойме Оки. В саму Оку, лезть в это время года, смысла нет – мутна вода окская. В надежде полюбоваться прозрачной озёрной водой, поехали мы по утверждённому маршруту вчетвером, на двух автомобилях.

Штурманом со мной сел Иваныч, Олег и Сергей были в другой машине. Дабы не заблудиться включили навигатор. Поехали! В руках Иваныча навигатор изливался женским голосом:

Маршрут построен! Поверните направо! Держитесь левее!

Поверните обратно!

Не верь ей! Нам тудой! Я точно знаю!

Как скажешь!

Вы отклонились от маршрута! Через сто метров поверните обратно.

Упорная какая! Прямо давай!

Иваныч! А помнишь? Доставали машину из реки, хозяева утверждали, вот так же женский голос сказал: «До реки двести метров!» И сразу упали с обрыва!

Говорю! Не верь!

Не верю, видишь еду.

Через двести метров поверните налево!

Вот! Одумалась, молодец!

Повернули, и поехали, мелко дребезжа и трясясь по убитой в конец сельской дороге. Вторая машина скрылась в клубах пыли. И только женский голос не дребезжал, а твёрдо командовал:

Маршрут перестроен! Прямо пятнадцать километров!

Верить? Нет?

Нет! Ты что! Заведёт в ад! Это восстание машин! Поворачивай!

Не обманула, выскочили к озерцу. Прямо с берега вниз! Но, нет в нём воды – пересохло. Да! Повезло! Мчимся к другому. Такая же картина. Но это на левом берегу, а что на правом? А посмотрим! Где у нас паромная переправа?

Широкая река. Ясная погода. Ветра нет. Здоровенный понтон, катер при понтоне. Поручни, леера, сходни. Суета рабочих. Смрадное дыхание грузовиков. Обычная паромная переправа жарким, летним днём. Первый на сегодня рейс.

И среди всего этого движения, требовательный голос:

Где винт? Где винт? Разорви вас на две части!

Потерялся!

А чем теперь грести собираетесь? Веслом?

Нет у нас весла. Надо винт искать!

Как? Там шесть метров! Захлебнусь!

Я тебе захлебнусь! Ищи!

Мама дорогая! Где же я его найду?

А где потерял, так и ищи! Люди ждут! Ищи!

В бессмысленной сутолоке напряжение накалялось, паром стоял, ждали люди, машины, все ждали. Ждали и мы всей своей подводной командой. Ну, и как тут не помочь людям? При нас всё снаряжение, три аппарата, фонари. Всё равно никуда не едем. Ну, начальство предложение приняло. Стали искать!

Спрашиваем рабочих:

А покажите сами, где винт потеряли. Сразу три руки в разные стороны!

Ориентир есть?

Да! Чайка плавала.

Машина?

Не-е... Птица!

Здесь река серебрится! Где искать?

Там! И опять в разные стороны!

И как тут работать? Ну, раз взялись, то не бросишь! Иду в воду, а Олег направляет меня сигналами. Действительно, шесть метров! На дне камни разной величины торчат острыми гранями из песка. Видимость отвратительная, руку вытянутую не видно. Прохожу по дну в одну сторону, потом в другую. Прошёл, развернулся, Олег отпустил меня примерно на метр, и я пошёл обратно. Куски железа, что-то типа знака дорожного, прямоугольная табличка, сетка Рабица, куски проволоки, трос, кабель. Винта нет.

Под понтоном включил фонарь. Прямой лучик не пробивал мутные воды. Только на ощупь. Глянул на консоль! О! Пора выходить, воздух в баллоне кончается. Винта нет! Широка Ока, а искать негде, место не запомнили!

Отработав по всем площадям у понтона и причала, во всех местах вероятного нахождения винта, облазив всё дно в поисках такой нужной железяки, перетрогав своими пальцами все камни и коряги, не мог поверить, что не смог обнаружить такого, достаточно большого объекта поиска.

Иваныч! Пусто!

Да, однако! Но, всё облазили.

Блин, Иваныч! И где он?

Тут Олег:
- А был ли «мальчик»?

А ну-ка, глянь ему под корму!

Лезу под катер, освещаю фонариком вал, перо руля, днище. Сквозь муть такой шикарный вид! Вал! Гребного винта нет, а гайка, шпонка и шплинт на месте. Парадокс! Ну,бывает же такое! И такие грустные мысли полезли в голову. Не на дне надо искать винт, а в сарае, на складе, ну, или на соседнем катере. Эх, люди!

Фото Ольги Цветковой

Посмотрите на картинку. Что в ней секретного?

Пост с изменениями (изм. 1)
Вроде все понятно. Видео на Ютубе про 971 проект . Кстати, рекомендую посмотреть. Но не забывайте об одном:


Секретное на скриншоте, как и в видео - это винт лодки. Никогда винты лодок не показывают на камеру, даже при постановке в док винт лодки закрывают маскировочными сетями, дабы никто не смог сфотографировать, а тем более исследовать его геометрию. Потому что для подводных лодок форма винта - это фактор бесшумности, скрытности. Я удивился, что такой кадр проскочил в передаче телеканала Россия "Планета". Ведь проект 971 современный, ему лет 10-12 с момента спуска на воду. Это "флотилия зверей" - Пантера, Леопард, Гепард, Волк, Вепрь (названия лодок 971 проекта) - целая стая охотников за подводными лодками, и вот вам винты - пожалуйста!

Давайте посмотрим, что есть бесшумный (противокавитационный) винт и откуда секретность.

Сначала поговорим, что есть кавитация. Это относительно просто, и я, не прибегая к википедии постараюсь на пальцах объяснить это явление.

Кавитация - это явление фактически кипения воды при небольших температурах в следствие понижения давления в ней и выхода растворенных до этого в ней газов. Кавитация возникает, когда местная скорость участка лопасти винта больше скорости звука в среде, т.е. в воде (изм. 1)

Что такое гребной винт? Это две поверхности лопасти - всасывающей и нагнетающей. Всасывающая снижает давление за ней (подобно верхней части крыла самолета, из-за большей кривизны), вторая поднимает давление жидкости, за счет чего и образуется пропульсивный момент. Проблема в том, что при снижении давления больше определенного предела возникает кавитация - выделение из жидкости растворенных в ней газов с образованием пузырьков, которые при схлопывании порождают большой шум (как чайник шумит при закипании) и разрушение лопастей винта. Меньше кавитация - меньше шума (закипевший чайник шумит много меньше чем только закипающий). Но по аналогии, если пузыри газов не схлопываются в воде, то они выходят на поверхность (аналог закипевшего чайника), и демаскируют лодку - за ней идет пузырьковый след. Проблема в том, что шумность должна быть минимальна, а след недопустим. Как этот вопрос решить?

Решить это можно многими способами. Был вариант при использовании интегрированной поглощающей дизельной установки выдувать газы через ступицу винта. Были варианты использования дизелей по замкнутому циклу. Но пришел Атом. И лодки стали ходить под водой со скоростями 30-60 узлов. Кавитация стала проблемой.

Было принято решение исследовать кавитацию как явление. Данные по этой теме секретны, но результаты этих разработок, как мы видим, находятся в открытом доступе. Результатом стали безкавитационные, то есть бесшумные винты. Вот еще пример из открытых источников (я не знаю, что это за лодка):

Почему-то у всех винтов, 7 лопастей. В природе, это я со школы помню, семь - цифра-изгой, нету в природе ничего семи...А тут есть.

В общем, секретность. Обычно это выглядит так:


АПЛ Северодвинск, спуск на воду

Винт секретный и один он укрыт. Ну вот вам и ликбез))

UPD 15-03-2014 (изм. 1)
Так что же такое безкавитационный винт? Это винт, не допускающий или снижающий вероятность появления кавитации. Как это можно сделать? С учетом того, что кавитация - это физический эффект, то и справиться с ним можно только согласно законам физики.

Вариантов два. 1) повысить скорость звука в среде, окружающей винт; 2) снизить окружную скорость вращения винта. первое можно достигнуть, если, например, вбрасывать до каверны жидкость, имеющую меньшую плотность, нежели вода.
Ну, керосин, например. Выход ли это для подводной лодки? Да, выход. На поверхность. Демаскирована и уже безопасна, да и запасы жидкости надо иметь конские, да и в воде она не растворяется, и, вероятно, до мест возникновения кавитационной каверны не дойдет. В общем, не вариант.

Второй вариант интереснее. Снизить частоту вращения винта. Но ведь упадет и пропульсивный момент! А вот тут уже работа для инженеров, вернее поиск компромисса между пропульсивным моментом и частотой вращения, где граничным условием является скорость звука в воде. Ну-ка, уважаемые инженеры, с наскока просчитайте =)

Так и родился безкавитационный винт. Он имеет большой угол откидки (более 25 градусов от касательной к линии наибольших толщин в районе комля лопасти к касательной к этой же линии на краю лопасти), то есть "серповидный". Момент импульса, как следует из конструкции винта, у него большой (вода больше времени воспринимает давление от лопасти в следствие ее большей длины), значит и пропульсивный момент при ламинарном обтекании такой лопасти будет больше. А ламинарность потока, как мы помним, определяется числом Рейнольдса, за критическим значением которого наступает турбулентное течение (и кавитация, как следствие). Вот так мы изменили граничное условие нашего уравнения: теперь граничное условие - число Рейнольдса, а не скорость звука в воде, которая меняется в зависимости от глубин. Стало проще.

Следующая задача - спроектировать такой винт. Но это уже вне моей компетенции, я не могу ничего про это рассказать. Тема секретная, и я ничего об этом не знаю. Давайте подумаем вместе над рядом вопросов:

1) Почему лопастей у БКВ всегда 7? Или не всегда?
2) Как по фото можно восстановить геометрию (почему винты лодок - это самый охраняемый объект)?
3) Как еще (даже гипотетически) можно избежать кавитации или использовать ее в своих целях в области кораблестроения?

С уважением, инженер по качеству ОАО "82 Судоремонтный завод".