Как улучшить качество воды в вашем доме. Методы улучшения качества питьевой воды Системы подачи распределения воды

Физические и химические показатели качества воды. При выборе источника водоснабжения учитываются такие физические свойства воды как температура, запах, вкус, мутность и цветность. Причем эти показатели определяются по всем характерным периодам года (весна, лето, осень, зима).

Температура природных вод зависит от их происхождения. В подземных водоисточниках вода имеет постоянную температуру независимо от периода года. Наоборот, температура воды поверхностных водоисточников изменяется по периодам года в достаточно широком диапазоне (от 0,1 °С зимой до 24-26°С летом).

Мутность природных вод зависит, прежде всего, от их происхождения, а также от географических и климатических условий, в которых находится водоисточник. Подземные воды имеют незначительную мутность, не превышающую 1,0-1,5 мг/л, зато воды поверхностных водоисточников почти всегда содержат взвешенные вещества в виде мельчайших частей глины, песка, водорослей, микроорганизмов и других веществ минерального и органического происхождения. Однако, как правило, вода поверхностных водоисточников северных регионов европейской части России, Сибири и частично Дальнего Востока относится к категории маломутных. Для водоисточников центральных и южных регионов страны, наоборот, характерна более высокая мутность воды. Независимо от географических, геологических и гидрологических условий расположения водоисточника мутность воды в реках всегда выше, чем в озерах и водохранилищах. Наибольшая мутность воды в водоисточниках наблюдается во время весенних паводков, в периоды затяжных дождей, а наименьшая - в зимнее время, когда водоисточники покрыты льдом. Измеряется мутность воды в мг/дм 3 .

Цветность воды природных водоисточников обусловлена наличием в ней коллоидных и растворенных органических веществ гумусового происхождения, придающих воде желтый или бурый оттенок. Густота оттенка зависит от концентрации этих веществ в воде.

Гумусовые вещества образуются в результате разложения органических веществ (почвенный, растительный гумус) до более простых химических соединений. В природных водах гумусовые вещества представлены, в основном, органическими гуминовыми и фульво-кислотами, а так же их солями.

Цветность характерна для вод поверхностных водоисточников и практически отсутствует в подземных водах. Однако иногда подземные воды, чаще всего в болотисто-низинных местах с надежными водоупорными горизонтами, обогащаются болотистыми цветными водами и приобретают желтоватую окраску.

Цветность природных вод измеряется в градусах. По уровню цветности воды поверхностные водоисточники могут быть малоцветные (до 30-35°), средней цветности (до 80°) и высокоцветные (свыше 80°). В практике водоснабжения иногда используются водоисточники, цветность воды которых составляет 150-200°.

Большинство рек Северо-запада и Севера России относятся к категории высокоцветных маломутных. Средняя часть страны характеризуется водоисточниками средней цветности и мутности. Вода рек южных регионов России, наоборот, имеет повышенную мутность и сравнительно небольшую цветность. Цветность воды в водоисточнике и количественно и качественно изменяется по периодам года. Во время повышенного стока с прилегающих к водоисточнику территорий (таяние снега, дожди), цветность воды, как правило, повышается, изменяется и соотношение компонентов цветности.

Природным водам свойственны такие качественные показатели, как привкус и запах. Чаше всего природные воды могут обладать горьким и соленым вкусом и практически никогда кислым или сладким. Избыток магниевых солей придает воде горьковатый вкус, а натриевых (поваренная соль) - солоноватый. Соли других металлов, например железа и марганца, придают воде железистый привкус.

Запахи воды могут быть естественного и искусственного происхождения. Естественные запахи вызываются живущими и отмершими в воде организмами, растительными остатками. Основными запахами природных вод являются болотный, землянистый, древесный, травянистый, рыбный, сероводородный и др. Наиболее интенсивные запахи присущи воде водохранилищ и озер. Запахи искусственного происхождения возникают вследствие выпускав водоисточники недостаточно очищенных сточных вод.

К запахам искусственного происхождения можно отнести нефтяной, фенольный, хлорфенольный и др. Интенсивность привкусов и запахов оценивается в баллах.

Химический анализ качества природной воды имеет первостепенное значение при выборе метода очистки ее. К химическим показателям воды относятся: активная реакция (водородный показатель), окисляемость, щелочность, жесткость, концентрация хлоридов, сульфатов, фосфатов, нитратов, нитритов, железа, марганца и др. элементов. Активная реакция воды определяется концентрацией водородных ионов. Она выражает степень кислотности или щелочности воды. Обычно активную реакцию воды выражают водородным показателем рН, который представляет собой отрицательный десятичный логарифм концентрации водородных ионов: - рН = - lg . Для дистиллированной воды рН = 7 (нейтральная среда). Для слабокислой среды рН < 7, а для слабощелочной рН > 7. Обычно для природных вод (поверхностных и подземных) значение рН находится в пределах от 6 до 8,5. Наименьшие значения водородного показателя имеют высокоцветные мягкие воды, а наибольшие - подземные, особенно жесткие.

Окисляемость природных вод вызвана присутствием в них органических веществ, на окисление которых расходуется кислород. Поэтому величина окисляемости численно равна количеству кислорода, пошедшего на окисление находящихся в воде загрязняющих веществ, и выражается в мг/л. Наименьшей величиной окисляемости (~1.5-2мг/л, О 2) характеризуются артезианские воды. Вода чистых озер имеет окисляемость 6-10 мг/л, О 2 , в речной воде окисляемость колеблется в широких пределах и может достичь 50 мг/л и даже более. Повышенной окисляемостью характеризуются высокоцветные воды; в болотистых водах окисляемость может достичь 200 мг/л О 2 и более.

Щелочность воды определяется присутствием в ней гидроксидов (ОН") и анионов угольной кислоты (НСО - з, СО 3 2 ,).

Хлориды и сульфаты содержатся практически во всех природных водах. В подземных водах концентрации этих соединений могут быть весьма значительны, до 1000 мг/л и более. В поверхностных водоисточниках содержание хлоридов и сульфатов обычно колеблется в пределах 50-100 мг/л. Сульфаты и хлориды при определенных концентрациях (300 мг/л и более) являются причиной коррозионной активности воды и разрушающе действуют на бетонные конструкции.

Жесткость природных вод обусловлена присутствием в них солей кальция и магния. Хотя указанные соли и не являются особо вредными для человеческого организма, наличие их в значительном количестве нежелательно, т.к. вода становится малопригодной для хозяйственных нужд и для промышленного водоснабжения. Жесткая вода не пригодна для питания паровых котлов, ее нельзя использовать во многих технологических производственных процессах.

Железо в природных водах находится в виде двухвалентных ионов, органоминеральных коллоидных комплексов и тонкодисперсной взвеси гидроксида железа, а также в виде сульфида железа. Марганец, как правило, находится в воде в виде ионов двухвалентного марганца, способного окисляться в присутствии кислорода, хлора или озона, до четырехвалентного, с образованием гидроксида марганца.

Наличие в воде железа и марганца может приводить к развитию в трубопроводах железистых и марганцевых бактерий, продукты жизнедеятельности которых могут накапливаться в больших количествах и существенно уменьшать сечение водопроводных труб.

Из растворенных в воде газов наиболее важными с точки зрения качества воды являются свободная углекислота, кислород и сероводород. Содержание углекислоты в природных водах колеблется от нескольких единиц до нескольких сотен миллиграммов в 1 л. В зависимости от величины рН воды углекислота встречается в ней в виде углекислого газа либо в виде карбонатов и бикарбонатов. Избыточная углекислота весьма агрессивна по отношению к металлу и бетону:

Концентрация растворенного в воде кислорода может колебаться от 0 до 14 мг/л и зависит от ряда причин (температура воды, парциальное давление, степень загрязненности воды органическими веществами). Кислород интенсифицирует процессы коррозии металлов. Это надо особенно учитывать в теплоэнергетических системах.

Сероводород, как правило, попадает в воду в результате контакта ее с гниющими органическими остатками либо с некоторыми минералами (гипсом, серным колчеданом). Присутствие сероводорода в воде крайне нежелательно как для хозяйственно-питьевого, так и для промышленного водоснабжения.

Ядовитые вещества, в частности тяжелые металлы, попадают в водоисточники в основном с промышленными сточными водами. Когда имеется вероятность их попадания в водоисточник, определение концентрации ядовитых веществ в воде обязательно.

Требования к качеству воды различного назначения. Основные требования, предъявляемые к питьевой воде, предполагают безвредность воды для организма человека, приятный вкус и внешний вид, а также пригодность для хозяйственно-бытовых нужд.

Показатели качества, которым должна удовлетворять питьевая вода, нормируются «Санитарными правилами и нормами (СанПиН) 2. 1.4.559-96. Питьевая вода.»

Вода для охлаждения агрегатов многих производственных процессов не должна давать отложений в трубах и камерах, по которым она проходит, так как отложения затрудняют теплопередачу и уменьшают сечение труб, снижая интенсивность охлаждения.

В воде не должно быть крупной взвеси (песка). В воде не должно быть органических веществ, так как она интенсифицирует процесс биообрастания стенок.

Вода для паросилового хозяйства не должна содержать примесей, которые могут вызвать отложения накипи. По причине образования накипи снижается теплопроводность, ухудшается теплопередача, возможен перегрев стенок паровых котлов.

Из солей, образующих накипь, наиболее вредны и опасны CaSO 4 , СаСО 3 , CaSiO 3 , MgSiO 3 . Эти соли отлагаются на стенках паровых котлов, образуя котельный камень.

Для предотвращения коррозии стенок паровых котлов вода должна обладать достаточным щелочным резервом. Ее концентрация в котловой воде должна составлять не менее 30-50 мг/л.

Особенно нежелательно присутствие в питательной воде котлов высокого давления кремниевой кислоты SiO 2 , которая может образовывать плотную накипь с очень низкой теплопроводностью.

Основные технологические схемы и сооружения для улучшения качества воды.

Природные воды отличаются большим разнообразием загрязнений и их сочетанием. Поэтому для решения проблемы эффективной очистки воды требуются различные технологические схемы и процессы, различные наборы сооружений для реализации этих процессов.

Используемые в практике водоочистки технологические схемы обычно классифицируются на реагентные и безреагентные ; предочистки и глубокой очистки ; на одноступенные и многоступенные ; на напорные и безнапорные .

Реагентная схема очистки природных вод более сложна, нежели безреагентная, зато она обеспечивает более глубокую очистку. Безреагентная схема, как правило, применяется для предочистки природных вод. Чаще всего ее используют при очистке воды для технических целей.

Как реагентная, так и безреагентная технологическая схема очистки могут быть одноступенными и многоступенными, с сооружениями безнапорного и напорного типа.

Основные, чаще всего используемые в практике водоочистки технологические схемы и типы сооружений представлены на рисунке 22.

Отстойники используются в основном как сооружения для предварительной очистки воды от взвешенных частиц минерального и органического происхождения. По типу конструкции и характеру движения воды в сооружении отстойники могут быть горизонтальными, вертикальными или радиальными. В последние десятилетия в практике очистки природных вод стали использоваться специальные полочные отстойники с осаждением взвеси в тонком слое.



Рис. 22.

а) двухступенчатая с горизонтальным отстойником и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - камера хлопьеобразования; б - горизонтальный отстойник; 7 - фильтр; 8 - хлораторная; 9 - резервуар чистой воды; 10 - насосы;

б) двухступенчатая с осветлителем и фильтром: 1 - насосная станция I подъема; 2 - микросетки; 3 - реагентное хозяйство; 4 - смеситель; 5 - осветлитель со взвешенным осадком; б - фильтр; 7 - хлораторная; 8 - резервуар чистой воды; 9 - насосы II подъема;

в) одноступенчатая с контактными осветлителями: 1 - насосная станция I подъема; 2 - барабанные сетки; 3 - реагентное хозяйство; 4 - сужающее устройство (смеситель); 5 - контактный осветлитель КО-1; 6 - хлораторная; 7 - резервуар чистой воды; 8 - насосы II подъема

Фильтры, входящие в состав общей технологической схемы водоочистки, выполняют роль сооружений для глубокой доочистки воды от взвешенных веществ, не осевших в отстойниках части коллоидных и растворенных веществ (за счет сил адсорбции и молекулярного взаимодействия).

ЛЕКЦИЯ № 3. МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ВОДЫ

Использование природных вод открытых водоемов, а иногда и подземных вод в целях хозяйственно-питьевого водоснабжения практически невозможно без предваритель­ного улучшения свойств воды и ее обеззараживания. Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку, в результате которой вода освобождается от взвешенных частиц, запаха, привкуса, микроорганизмов и различных примесей.

Для улучшения качества воды применяются следующие методы: 1) очистка-удаление взвешенных частиц; 2) обез­зараживание-уничтожение микроорганизмов; 3) специаль­ные методы улучшения органолептических свойств воды, умягчение, удаление некоторых химических веществ, фторирование и др.

Очистка воды. Очистка является важным этапом в общем комплексе методов улучшения качества воды, так как улучшает ее физические и органолептические свойства. При этом в процессе удаления из воды взвешенных частиц удаляется и значительная часть микроорганизмов, в результате чего полная очистка воды позволяет легче и экономичнее осуществлять обеззараживание. Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.

Отстаивание, при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специаль­ных сооружениях - отстойниках. Используются две конструк­ции отстойников: горизонтальные и вертикальные. Принцип их действия состоит в том, то благодаря поступлению через узкое отверстие и замедленному протеканию воды в отстойнике основная масса взвешенных частиц оседает на дно. Процесс отстаивания в отстойниках различной конструкции продолжается в течение 2-8 ч. Однако мель­чайшие частицы, в том числе значительная часть микроорганизмов, не успевает осесть. Поэтому отстаивание нельзя рассматривать как основной метод очистки воды.

Фильтрация - процесс более полного освобождения воды от взвешенных частиц, заключающийся в том, что воду пропускают через фильтрующий мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода оставляет на поверхности и в глубине фильтрующего материала взвешенные частицы. На водопро­водных станциях фильтрация применяется после коагуля­ции.

В настоящее время начали применяться кварцево-антрацитовые фильтры, значительно увеличивающие скорость фильтрации.

Для предварительной фильтрации воды используются микрофильтры для улавливания зоопланктона - мельчайших водных животных и фитопланктона-мельчайших водных растений. Эти фильтры устанавливают перед местом водо­забора или перед очистными сооружениями.

Коагуляция представляет собой химический метод очистки воды. Преимущество этого метода заключается в том, что он позволяет освободить воду от загрязнений, находящихся в виде взвешенных частиц, не поддающихся удалению с помощью отстаивания и фильтрации. Сущность коагуляции заключается в добавлении к воде химического вещества-коагулянта, способного реагировать с находящи­мися в ней бикарбонатами. В результате этой реакции образуются крупные, довольно тяжелые хлопья, несущие положительный заряд. Оседая вследствие собственной тяжес­ти, они увлекают за собой находящиеся в воде во взвешенном состоянии частицы загрязнений, заряженные отрицательно, и тем самым способствуют довольно быстрой очистке воды. За счет этого процесса вода становится прозрачной, улучшает­ся показатель цветности.

В качестве коагулянта в настоящее время наиболее ши­роко применяется сульфат алюминия, образующий с бикар­бонатами воды крупные хлопья гидрата окиси алюминия. Для улучшения процесса коагуляции используются высо­комолекулярные флокулянты: щелочной крахмал, флокулянты ионного типа, активизированная кремневая кислота и другие синтетические препараты, производные акриловой кислоты, в частности полиакриламид (ПАА).

Обеззараживание. Уничтожение микроорганизмов являет­ся последним завершающим этапом обработки воды, обеспе­чивающим ее эпидемиологическую безопасность. Для обеззараживания воды применяются химические (реагентные) и физические (безреагентные) методы. В лабораторных условиях для небольших объемов воды может быть использован механический метод.

Химические (реагентные) методы обеззаражи­вания основаны на добавлении к воде различных химических веществ, вызывающих гибель находящихся в воде микро­организмов. Эти методы достаточно эффективны. В каче­стве реагентов могут быть использованы различные силь­ные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, се­ребро.

В санитарной практике наиболее надежным и испытан­ным способом обеззараживания воды является хлорирование. На водопроводных станциях оно производится при помощи газообразного хлора и растворов хлорной извести. Кроме этого, могут использоваться такие соединения хлора, как гипохлорат натрия, гипохлорит кальция, двуокись хлора.

Механизм действия хлора заключается в том, что при добавлении его к воде он гидролизуется, в результате чего происходит образование хлористоводородной и хлорновати­стой кислот:

С1 2 +Н 2 О=НС1+НОС1.

Хлорноватистая кислота в воде диссоциирует на ионы водорода (Н) и гипохлоритные ионы (ОС1), которые наряду с диссоциированными молекулами хлорноватистой кислоты обладают бактерицидным свойством. Комплекс (НОС1 + ОС1) называется свободным активным хлором.

Бактерицидное действие хлора осуществляется главным образом за счет хлорноватистой кислоты, молекулы которой малы, имеют нейтральный заряд и поэтому легко проходят через оболочку бактериальной клетки. Хлорноватистая кислота воздействует на клеточные ферменты, в частности на SH-группы, нарушает обмен веществ микробных клеток и способность микроорганизмов к размножению. В послед­ние годы установлено, что бактерицидный эффект хлора основан на угнетении ферментов-катализаторов, окислитель­но-восстановительных процессов, обеспечивающих энергети­ческий обмен бактериальной клетки.

Обеззараживающее действие хлора зависит от многих факторов, среди которых доминирующими являются биоло­гические особенности микроорганизмов, активность действу­ющих препаратов хлора, состояние водной среды и усло­вия, в которых производится хлорирование.

Процесс хлорирования зависит от стойкости микроорга­низмов. Наиболее устойчивыми являются спорообразующие. Среди неспоровых отношение к хлору различное, например брюшнотифозная палочка менее устойчива, чем палочка паратифа и т. д. Важным является массивность микробного обсеменения: чем она выше, тем больше хлора нужно для обеззараживания воды. Эффективность обеззараживания зависит от активности используемых хлорсодержащих препаратов. Так, газообразный хлор более эффективен, чем хлорная известь.

Большое влияние на процесс хлорирования оказывает состав воды; процесс замедляется при наличии большого количества органических веществ, так как большее коли­чество хлора уходит на их окисление, и при низкой темпе­ратуре воды. Существенным условием хлорирования являет­ся правильный выбор дозы. Чем выше доза хлора и чем продолжительнее его контакт с водой, тем более высоким будет обеззараживающий эффект.

Хлорирование производится после очистки воды и является заключительным этапом ее обработки на водо­проводной станции. Иногда для усиления обеззараживающе­го эффекта и для улучшения коагуляции часть хлора вводят вместе с коагулянтом, а другую часть, как обычно, после фильтрации. Такой метод называется двойным хлорированием.

Различают обычное хлорирование, т. е. хлорирование нормальными дозами хлора, которые устанавливаются каж­дый раз опытным путем, суперхлорирование, т. е. хлори­рование повышенными дозами.

Хлорирование нормальными дозами применяется в обычных условиях на всех водопроводных станциях. При этом большое значение имеет правильный выбор дозы хлора, что обусловливается степень хлорпоглощаемости воды в каждом конкретном случае.

Для достижения полного бактерицидного эффекта определяется оптимальная доза хлора, которая складывается из количества активного хлора, которое необходимо для: а) уничтожения микроорганизмов; б) окисления органиче­ских веществ, а также количества хлора, которое должно остать­ся в воде после ее хлорирования для того, чтобы служить показателем надежности хлорирования. Это количество называется активным остаточным хлором. Его норма 0,3-0,5 мг/л, при свободном хлоре 0,8-1,2 мг/л. Необходи­мость нормирования этих количеств связана с тем, что при наличии остаточного хлора менее 0,3 мг/л его может быть недостаточно для обеззараживания воды, а при дозах выше 0,5 мг/л вода приобретает неприятный специфический запах хлора.

Главными условиями эффективного хлорирования воды являются перемешивание ее с хлором, контакт между обез­зараживанием водой и хлором в течение 30 мин в теплое время года и 60 мин в холодное время.

На крупных водопроводных станциях для обеззаражи­вания воды применяется газообразный хлор. Для этого жидкий хлор, доставляемый на водопроводную станцию в цистернах или баллонах, перед применением переводится в газообразное состояние в специальных установках-хлораторах, с помощью которых обеспечиваются автоматиче­ская подача и дозирование хлора. Наиболее часто хлориро­вание воды производится 1% раствором хлорной извести. Хлорная известь представляет собой продукт взаимо­действия хлора и гидрата окиси кальция в результате реакции:

2Са(ОН) 2 + 2С1 2 = Са(ОС1) 2 + СаС1 2 + 2НА

Суперхлорирование (гиперхлорирование) воды проводит­ся по эпидемиологическим показаниям или в условиях, когда невозможно обеспечить необходимый контакт воды с хлором (в течение 30 мин). Обычно оно применяется в военно-полевых условиях, экспедициях и других случа­ях и производится дозами, в 5-10 раз превышающими хлорпоглощаемость воды, т. е. 10-20 мг/л активного хлора. Время контакта между водой и хлором при этом сокращается до 15-10 мин. Суперхлорирование имеет ряд преимуществ. Основными из них являются значительное сокращение времени хлорирования, упрощение его техники, так как нет необходимости определять остаточный хлор и дозу, и возможность обеззараживания воды без предва­рительного освобождения ее от мути и осветления. Недостатком гиперхлорирования является сильный запах хло­ра, но его можно устранить добавлением к воде тиосульфа­та натрия, активированного угля, сернистого ангидрида и других веществ (дехлорирование).

На водопроводных станциях иногда проводят хлориро­вание с преаммонизацией. Этот метод применяется в тех случаях, когда обеззараживаемая вода содержит фенол или другие вещества, которые придают ей неприятный запах. Для этого в обеззараживаемую воду вначале вводят аммиак или его соли, а затем через 1-2 мин хлор. При этом образуются хлорамины, обладающие сильным бактерицидным свойством.

К химическим методам обеззараживания воды относится озонирование. Озон является нестойким соединением. В воде он разлагается с образованием молекулярного и атомарного кислорода, с чем связана сильная окислительная способность озона. В процессе его разложения образуются свободные радикалы ОН и НО 2 , обладающие выраженными окислительными свойствами. Озон обладает высоким окислительно-восстановительным потенциалом, поэтому его реакция с органическими веществами, находящимися в воде, происходит более полно, чем у хлора. Механизм обеззараживающего действия озона аналогичен действию хлора: являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. Имеются предположения, что он действует как протоплазматический яд.

Преимущество озонирования перед хлорированием за­ключается в том, что при этом способе обеззараживания улучшаются вкус и цвет воды, поэтому озон может быть использован одновременно для улучшения ее органолептических свойств. Озонирование не оказывает отрицатель­ного влияния на минеральный состав и рН воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма и не влияет на органолептические свойства воды. Контроль за озонированием менее сложен, чем за хлорированием, так как озонирование не зависит от таких факторов, как температура, рН воды и т.д. Для обеззараживания воды необходимая доза озона в среднем равна 0,5-6 мг/л при экспозиции 3-5 мин. Озо­нирование производится при помощи специальных аппара­тов - озонаторов.

При химических способах обеззарараживания воды используют также олигодинамические действия солей тяжелых металлов (серебра, меди, золота). Олигодинамическим действием тяжелых металлов называется их способ­ность оказывать бактерицидный эффект в течение длитель­ного срока при крайне малых концентрациях. Механизм действия заключается в том, что положительно заряженные ионы тяжелых металлов вступают в воде во взаимодей­ствие с микроорганизмами, имеющими отрицательный заряд. Происходит электроадсорбция, в результате которой они проникают в глубь микробной клетки, образуя в ней альбуминаты тяжелых металлов (соединения с нуклеиновы­ми кислотами), в результате чего микробная клетка поги­бает. Данный метод обычно применяется для обеззаражи­вания небольших количеств воды.

Перекись водорода давно известна как окислитель. Ее бактерицидное действие связано с выделением кисло­рода при разложении. Метод применения перекиси водоро­да для обеззараживания воды в настоящее время еще полностью не разработан.

Химические, или реагентные, способы обеззараживания воды, основанные на добавлении к ней того или иного химического вещества в определенной дозе, имеют ряд недостатков, которые заключаются главным образом в том, что большинство этих веществ отрицательно влияет на со­став и органолептичеекие свойства воды. Кроме того, бактерицидное действие этих веществ проявляется после определенного периода контакта и не всегда распростра­няется на все формы микроорганизмов. Все это явилось причиной разработки физических методов обеззараживания воды, имеющих ряд преимуществ по сравнению с химиче­скими. Безреагентные методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредст­венно на структуру микроорганизмов, вследствие чего обла­дают более широким диапазоном бактерицидного действия. Для обеззараживания необходим небольшой период времени.

Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицид­ными (ультрафиолетовыми) лампами. Наибольшим бактери­цидным свойством обладают УФ лучи с длиной волны 200-280 нм; максимум бактерицидного действия приходит­ся на длину волны 254-260 нм. Источником излучения слу­жат аргонно-ртутные лампы низкого давления и ртутно-кварцевые лампы. Обеззараживание воды наступает быстро, в течение 1-2 мин. При обеззараживании воды УФ-лучами погибают не только вегетативные формы микробов, но и споровые, а также вирусы, яйца гельминтов, устойчивые к воздейст­вию хлора. Применение бактерицидных ламп не всегда возможно, так как на эффект обеззараживания воды УФ-лучами влияют мутность, цветность воды, содержание в ней солей железа. Поэтому, прежде чем обеззараживать воду таким способом, ее необходимо тщательно очистить.

Из всех имеющихся физических методов обеззаражива­ния воды наиболее надежным является кипячение. В ре­зультате кипячения в течение 3-5 мин погибают все имеющиеся в ней микроорганизмы, а после 30 мин вода становится полностью стерильной. Несмотря на высокий бактерицидный эффект, этот метод не находит широкого применения для обеззараживания больших объемов воды. Недостатком кипячения является ухудшение вкуса воды, наступающего в результате улетучивания газов, и возможность более быстрого развития микроорганизмов в кипяченой воде.

К физическим методам обеззараживания воды относится использование импульсного электрического разряда, ультра­звука и ионизирующего излучения. В настоящее время эти методы широкого практического применения не находят.

Специальные способы улучшения качества воды. Помимо основных методов очистки и обеззараживания воды, в не­которых случаях возникает необходимость производить спе­циальную ее обработку. В основном эта обработка направле­на на улучшение минерального состава воды и ее органолептических свойств.

Дезодорация - удаление посторонних запахов и привкусов. Необходимость проведения такой обработки обу­словливается наличием в воде запахов, связанных с жизне­деятельностью микроорганизмов, грибов, водорослей, продуктов распада и разложения органических веществ. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка воды перманганатом калия, переки­сью водорода, фторирование через сорбционные фильтры, аэрация.

Дегазация воды - удаление из нее растворенных дурно пахнущих газов. Для этого применяется аэрация, т. е. разбрызгивание воды на мелкие капли в хорошо проветриваемом помещении или на открытом воздухе, в резуль­тате чего происходит выделение газов.

Умягчение воды - полное или частичное удаление из нее катионов кальция и магния. Умягчение проводится специальными реагентами или при помощи ионообменного и термического методов.

Опреснение (обессоливание) воды чаще производит­ся при подготовке ее к промышленному использованию.

Частичное опреснение воды осуществляется для снижения содержания в ней солей до тех величин, при которых воду можно использовать для питья (ниже 1000 мг/л). Опресне­ние достигается дистилляцией воды, которая производится в различных опреснителях (вакуумные, многоступенчатые, гелиотермические), ионитовых установках, а также электро­химическим способом и методом вымораживания.

Обезжелезивание - удаление из воды железа про­изводится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием. В настоящее время разработан метод фильтрования воды через песча­ные фильтры. При этом закисное железо задерживается на поверхности зерен песка.

Обесфторивание - освобождение природных вод от избыточного количества фтора. С этой целью применяют метод осаждения, основанный на сорбции фтора осадком гидроокиси алюминия.

При недостатке в воде фтора ее фторируют. В случае загрязнения воды радиоактивными веществами ее подвергают дезактивации, т. е. удалению радиоактивных веществ.

Методы обработки воды, с помощью которых достигается доведение качества воды источников водоснабжения до требований СанПиН 2.1.4.2496-09 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения», зависят от качества исходной воды водоисточников и подразделяются на основные и специальные. Основными способами являются: осветление, обесцвечивание, обеззараживание.

Под осветлением и обесцвечиванием понимается устранение из воды взвешенных веществ и окрашенных коллоидов (в основном гумусовых веществ). Путем обеззараживания устраняют содержащиеся в воде водоисточника инфекционные агенты - бактерии, вирусы и др.

В тех случаях, когда применение только основных способов недостаточно, используют специальные методы очистки (обезжелезива- ние, обесфторивание, обессоливание и др.), а также введение некоторых необходимых для организма человека веществ - фторирование, минерализация обессоленных и маломинерализованных вод.

Для удаления химических веществ наиболее эффективен метод сорбционной очистки на активных углях, который также значительно улучшает органолептические свойства воды.

Методы обеззараживания воды подразделяются:

  • ? на химические (реагентные), к которым относятся хлорирование, озонирование, использование олигодинамического действия серебра;
  • ? физические (безреагентные): кипячение, ультрафиолетовое облучение, облучение гамма-лучами и др.

Основным методом для обеззараживания воды на водопроводных станциях в силу технико-экономических причин является хлорирование. Однако все большее внедрение получает метод озонирования, его применение, в том числе в комбинации с хлорированием, имеет преимущества для улучшения качества воды.

При введении хлорсодержащего реагента в воду основное его количество - более 95% расходуется на окисление органических и легко- окисляющихся неорганических веществ, содержащихся в воде. На соединение с протоплазмой бактериальных клеток расходуется всего 2-3% общего количества хлора. Количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокис- ляющихся неорганических веществ и обеззараживание бактерий в течение 30 мин, называется хлорпоглощаемостью воды. По окончании процесса связывания хлора содержащимися в воде веществами и бактериями в воде начинает появляться остаточный активный хлор , что является свидетельством завершения процесса хлорирования.

Присутствие в воде, подаваемой в водопроводную сеть, остаточного активного хлора в концентрациях 0,3-0,5 мг/л является гарантией эффективности обеззараживания воды, необходимо для предотвращения вторичного загрязнения в разводящей сети и служит косвенным показателем безопасности воды в эпидемическом отношении.

Общее количество хлора для удовлетворения хлорпоглощаемо- сти воды и обеспечения необходимого количества (0,3-0,5 мг/л свободного активного хлора при нормальном хлорировании и 0,8-1,2 мг/л связанного активного хлора при хлорировании с аммонизацией) остаточного хлора называется хлорпотребностью воды.

В практике водоподготовки используется несколько способов хлорирования воды:

  • ? хлорирование нормальными дозами (по хлорпотребности);
  • ? хлорирование с преаммонизацией и др.;
  • ? гиперхлорирование (доза хлора заведомо превышает хлорпот- ребность).

Процесс обеззараживания обычно является последней ступенью схем обработки воды на водопроводных станциях, однако в ряде случаев при значительном загрязнении исходных вод применяется двойное хлорирование - до и после осветления и обесцвечивания. Для снижения дозы хлора при заключительном хлорировании весьма перспективно комбинирование хлорирования с озонированием.

Хлорирование с преаммонизацией. При этом способе в воду помимо хлора вводится также аммиак, в результате чего происходит образование хлораминов. Этот метод употребляется для улучшения процесса хлорирования:

  • ? при транспортировке воды по трубопроводам на большие расстояния (так как остаточный связанный - хлораминный - хлор обеспечивает более длительный бактерицидный эффект, чем свободный);
  • ? содержании в исходной воде фенолов, которые при взаимодействии с свободным хлором образуют хлорфенольные соединения, придающие воде резкий аптечный запах.

Хлорирование с преаммонизацией приводит к образованию хлораминов, которые из-за более низкого окислительно-восстановительного потенциала в реакцию с фенолами не вступают, поэтому посторонние запахи и не возникают. Однако из-за более слабого действия хлораминного хлора остаточное количество его в воде должно быть выше, чем свободного, и составлять не менее 0,8-1,2 мг/л.

Озонирование является эффективным реагентным способом обеззараживания воды. Являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. При этом способе улучшаются вкус и цветность воды. Озонирование не оказывает отрицательного влияния на минеральный состав и pH воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма человека. Озонирование производится при помощи специальных аппаратов - озонаторов. Контроль за процессом озонирования менее сложен, так как эффект не зависит от температуры и pH воды.

С декабря 2007 г. в Санкт-Петербурге реализована комплексная технология обеззараживания питьевой воды с использованием ультрафиолетового излучения, сочетающая высокий эффект обеззараживания и безопасность для здоровья населения. Подсчитанный Институтом медико-биологических проблем и оценки риска здоровью экономический эффект и предотвращенный ущерб здоровью населения в результате этого составил 742 млн руб.

В связи с тем, что только 1-2% (до 5 л в сутки) человек расходует на питьевые нужды, предполагается разработка и внедрение двух гигиенических нормативов водопроводной и питьевой воды - «Вода безопасная для населения» и «Вода повышенного качества, полезная для взрослого человека, физиологически полноценная».

Первый норматив обеспечит гарантированную безопасность воды в централизованных системах водоснабжения. Второй норматив установит конкретные требования к «абсолютно здоровой воде» во всем ее многообразии полезного воздействия на организм человека. Существует ряд вариантов обеспечения потребителей водой повышенного качества: производство расфасованной воды; устройство локальных автономных систем доочистки и коррекции качества воды.

Вода является неотъемлемой часть нашей жизни. Ежедневно мы выпиваем определенный объем и часто даже не задумываемся о том, что обеззараживание воды и ее качество важная тема. А зря, тяжелые металлы, химические соединения и болезнетворные бактерии способны вызвать необратимые изменения в человеческом организме. На сегодняшний день гигиене воды уделяется серьезное внимание. Современные методы обеззараживания питьевой воды способны очистить ее от бактерий, грибков, вирусов. Они придут на помощь и в том случае, если вода плохо пахнет, имеет посторонние привкусы, цветность.

Предпочтительные методы повышения качества выбирают в зависимости от содержащихся в воде микроорганизмов, уровня загрязненности, источника водоснабжения и других факторов. Обеззараживание направлено на удаление болезнетворных бактерий, которые разрушающе влияют на организм человека.

Очищенная вода прозрачна, не имеет посторонних привкусов и запахов, а также абсолютно безопасна. На практике для борьбы с вредными микроорганизмами применяют способы двух групп, а также их комбинацию:

  • химические;
  • физические;
  • комбинированные.

Для того, чтобы выбрать эффективные методы дезинфекции необходимо провести анализ жидкости. Среди проводимых анализов выделяют:

  • химический;
  • бактериологический;

Применение химического анализа позволяет определить содержание в воде различных химических элементов: нитратов, сульфатов, хлоридов, фторидов и т.д. Все же показатели, анализируемые данным методом, можно подразделить на 4 группы:

  1. Органолептические показатели. Химический анализ воды позволяет определить ее вкус, запах и цвет.
  2. Интегральные показатели – плотность, кислотность и жесткость воды.
  3. Неорганические – различные металлы, содержащиеся в воде.
  4. Органические показатели – содержание в воде веществ, которые могут изменяться под воздействием окислителей.

Бактериологический анализ направлен на выявление различных микроорганизмов: бактерий, вирусов, грибков. Подобный анализ выявляет источник заражения и помогает определить методы обеззараживания.

Химические методы обеззараживания питьевой воды

Химические способы основаны на добавлении в воду различных реагентов-окислителей, которые убивают вредоносные бактерии. Наибольшую популярность среди таких веществ получили хлор, озон, гипохлорит натрия, диоксид хлора.

Для достижения высокого качества важно правильно рассчитать дозу реагента. Малое количество вещества может не возыметь эффекта, а даже наоборот способствовать увеличению числа бактерий. Реагент необходимо вводить с избытком, это позволит уничтожить как имеющиеся микроорганизмы, так и бактерии, попавшие в воду после обеззараживания.

Избыток нужно рассчитывать очень аккуратно, чтобы он не мог нанести вред людям. Наиболее популярные химические методы:

  • хлорирование;
  • озонирование;
  • олигодинамия;
  • полимерные реагенты;
  • иодирование;
  • бромирование.

Хлорирование

Очистка воды хлорированием является традиционным и одним из самых популярных способов очищения воды. Хлорсодержащие вещества активно используют для очистки питьевой воды, воды в бассейнах, дезинфекции помещений.

Свою популярность данный способ приобрел благодаря простоте использования, низкой стоимости, высокой эффективности. Большинство патогенных микроорганизмов, вызывающих различные заболевания, не устойчивы к хлору, который оказывает бактерицидное действие.

Для создания неблагоприятных условий, препятствующих размножению и развитию микроорганизмов, достаточно ввести хлор в небольшом избытке. Избыток хлора способствуют продлению эффекта обеззараживания.

В процессе обработки воды возможны следующие способы хлорирования: предварительное и конечное. Предварительное хлорирование применяют максимально близко к месту забора воды, на данном этапе использование хлора не только обеззараживают воду, но и способствуют удалению ряда химических элементов, в том числе железа и марганца. Конечное хлорирование – последний этап в процессе обработки, во время которого происходит уничтожение вредоносных микроорганизмов посредством хлора.

Также различают нормальное хлорирование и перехлорирование. Нормальное хлорирование применяют для дезинфекции жидкости из источников с хорошим санитарными показателями. Перехлорирование – в случае сильной зараженности воды, а также если она заражена фенолами, которые в случае нормального хлорирования только усугубляют состояние воды. Остатки хлора в таком случаем удаляют дехлорированием.

Хлорирование, как и другие методы, наряду с достоинствами имеет и свои минусы. Попадая в организм человека в избытке, хлор ведет к проблемам с почками, печенью, ЖКТ. Высокая коррозионная активность хлора влечет быстрый износ оборудования. В процессе хлорирования образуются всевозможные побочные продукты. Например, тригалометаны (соединения хлора с веществами органического происхождения), способны вызвать симптомы астмы.

В силу широты применения хлорирования у ряда микроорганизмов сформировалась устойчивость к хлору, поэтому определенный процент заражения воды все же возможен.

Для дезинфекции воды чаще всего используют газообразный хлор, хлорную известь, диоксид хлора и гипохлорит натрия.

Хлор – самый популярный реагент. Используют его в жидком и газообразном виде. Уничтожая болезнетворную микрофлору, устраняет неприятный вкус и запах. Предотвращает рост водорослей и ведет к улучшению качества жидкости.

Для очищения хлором используют хлораторы, в которых газообразный хлор абсорбируют с водой, а далее полученную жидкость доставляют до места применения. Несмотря на популярность данного метода, он является довольно опасным. Транспортировка и хранение высокотоксичного хлора обязывает к соблюдению техники безопасности.

Хлорная известь – вещество, получаемое под воздействием газообразного хлора на сухую гашеную известь. Для обеззараживания жидкости применяют хлорную известь, процент хлора в которой составляет не менее 32-35%. Данный реагент очень опасен для человека, вызывает сложности при производстве. В силу этих и других факторов хлорная известь теряет свою популярность.

Диоксид хлора оказывает бактерицидное воздействие, практически не загрязняет воду. В отличие от хлора не образует тригалометанов. Основная причина, которая тормозит его использование – высокая взрывоопасность, что затрудняет производство, транспортировку и хранение. В настоящее время освоена технология производства на месте применения. Уничтожает все виды микроорганизмов. К недостаткам можно отнести способность образовывать вторичные соединения – хлораты и хлориты.

Гипохлорит натрия применяют в жидком виде. Процент активного хлора в нем в два раза больше, чем в хлорной извести. В отличие от диоксида титана обладает относительной безопасностью при хранении и использовании. Ряд бактерий устойчив к его воздействию. В случае длительного хранения теряет свои свойства. На рынке присутствует в виде жидкого раствора с различным содержанием хлора.

Стоит отметить, что все хлорсодержащие реагенты обладают высокой коррозионной активностью, в связи с чем их не рекомендуется использовать для очищения воды, поступающей в воду через металлические трубопроводы.

Озонирование

Озон, так же как и хлор, является сильным окислителем. Проникая сквозь оболочки микроорганизмов, он разрушает стенки клетки и убивает ее. как с обеззараживанием воды, так и с ее обесцвечиванием и дезодорированные. Способен окислять железо и марганец.

Обладая высоким антисептическим действием, озон разрушает вредные микроорганизмы в сотни раз быстрее, чем другие реагенты. В отличие от хлора, уничтожает практически все известные виды микроорганизмов.

При распаде реагент преобразуется в кислород, который насыщает организм человека на клеточном уровне. Быстрый распад озона в то же время является и недостатком данного метода, поскольку уже через 15-20 мин. после процедуры, вода может подвергнуться повторному заражению. Существует теория, согласно которой при воздействии озона на воду, начинается разложение фенольных групп гуминовых веществ. Они активируют организмы, который до момента обработки находились в спячке.

Насыщаясь озоном вода становится коррозионно-активной. Это ведет к повреждению труб водопровода, сантехники, бытовой техники. В случае ошибочного количества озона возможно образование побочных элементов, которые обладают высокой токсичностью.

Озонирование имеет и другие минусы, к которым стоит отнести высокую стоимость покупки и установки, большие электрозатраты, а также высокий класс опасности озона. При работе с реагентом необходимо соблюдать осторожность и технику безопасности.

Озонирование воды возможно с помощью системы, состоящей из:

  • озоногенератора, в котором происходит процесс выделения озона из кислорода;
  • системы, которая позволяет ввести озон в воду и смешать его с жидкостью;
  • реактора – емкости, в которой происходит взаимодействие озона с водой;
  • деструктора – устройства, которое удаляет остаточный озон, а также приборов, контролирующих озон в воде и воздухе.

Олигодинамия

Олигодинамия – обеззараживание воды посредством воздействия на нее благородных металлов. Наиболее изучено применение золота, серебра и меди.

Самым же популярным металлом в целях уничтожения вредных микроорганизмов является серебро. Его свойства раскрыли еще в древности, в емкость с водой помещали ложку или монетку из серебра и давали такой воде отстояться. Утверждение, что такой метод эффективен довольно спорное.

Теории влияния серебра на микробы не получили окончательного подтверждения. Существует гипотеза, согласно которой клетку разрушают электростатические силы, возникающие между ионами серебра с положительным зарядом и отрицательно заряженными клетками бактерий.

Серебро – тяжелый металл, который в случае накопления в организме может вызывать ряд заболеваний. Достичь антисептического эффекта можно лишь при высоких концентрациях данного металла, которое губительно для организма. Меньшее количество серебра способно только приостановить рост бактерий.

К тому же, практически не чувствительные к серебру спорообразующие бактерии, не доказано его влияние на вирусы. Поэтому применение серебра целесообразно лишь для продления сроков хранения изначально чистой воды.

Другим тяжелым металлом, способным оказывать бактерицидное воздействие, является медь. Еще в древности заметили, что вода, которая стояла в медных сосудах, гораздо дольше сохраняла свои высоковеществ. На практике данный метод используют в основных в бытовых условиях для очищения небольшого объема воды.

Полимерные реагенты

Использование полимерных реагентов – современный метод обеззараживания воды. Он значительно выигрывает у хлорирования и озонирования за счет своей безопасности. Жидкость, очищенная полимерными антисептиками не имеет вкуса и посторонних запахов, не вызывает коррозию металла, не воздействует на организм человека. Данный метод получил распространение в очистке воды в бассейнах. Вода, очищенная полимерным реагентом, не имеет цвета, постороннего вкуса и запаха.

Иодирование и бромирование

Иодирование – метод обеззараживания, использующий иодсодержащие соединения. Дезинфицирующие свойства йода известны медицине с давних времен. Несмотря на то, что данный метод широко известен и неоднократно предпринимались попытки его использования, использование йода в качестве дезинфектора воды популярности не приобрело. Данный метод имеет существенный недостаток, растворяясь в воде, он вызывает специфический запах.

Бром – довольно эффективный реагент, который уничтожает большую часть известных бактерий. Однако, в силу своей высокой стоимости популярностью не пользуется.

Физические методы обеззараживания воды

Физические способы очистки и дезинфекции работают воду без использования реагентов и вмешательства в химический состав. Наиболее популярные физические методы:

  • УФ-облучение;
  • ультразвуковое воздействие;
  • термическая обработка;
  • электроимпульсный способ;

УФ-излучение

Все большую популярность среди методов обеззараживания воды набирает применение УФ-излучения. В основе методики лежит тот факт, что лучи, длина волны у которых 200-295 нм, могут убивать патогенные микроорганизмы. Проникая сквозь клеточную стенку, они воздействуют на нуклеиновые кислоты (РНД и ДНК), а также вызывают нарушения в структуре мембран и клеточных стенок микроорганизмов, что ведет к гибели бактерий.

Для определения дозы излучения необходимо провести бактериологический анализ воды, это позволит выявить виды патогенных микроорганизмов и их восприимчивость к лучам. На эффективность также влияет мощность используемой лампы и уровень поглощения излучения водой.

Доза УФ-излучения равна произведению интенсивности излучения на его продолжительность. Чем выше устойчивость микроорганизмов, тем дольше на них необходимо воздействовать

УФ-излучение не влияет на химический состав воды, не образует побочных соединений, таким образом исключает возможность нанесения вреда человеку.

При использовании данного метода невозможна передозировка, УФ-облучение отличается высокой скоростью реакции, для обеззараживания всего объема жидкости требуется несколько секунд. Не меняя состав воды, излучение способно уничтожить все известные микроорганизмы.

Однако, не лишен данный метод и недостатков. В отличие от хлорирования, обладающего пролонгирующим эффектом, эффективность облучения сохраняется до тех пор, пока лучи воздействуют на воду.

Хороший результат достижим лишь в очищенной воде. На уровень поглощения ультрафиолета влияют содержащиеся в воду примеси. Например, железо способно служить для бактерий своеобразным щитом и «прятать» их от воздействия лучей. Поэтому целесообразно провести предварительную очистку воды.

Система для УФ-излучения состоит из нескольких элементов: выполненной из нержавеющей стали камеры, в которую помещена лампа, защищенная кварцевыми чехлами. Проходя через механизм такой установки, вода постоянно подвергается действию ультрафиолета и полному обеззараживанию.

Ультразвуковое обеззараживание

Ультразвуковое обеззараживание основано на методе кавитации. За счет того, что под воздействием ультразвука происходят резкие перепады давления, микроорганизмы разрушаются. Эффективен ультразвук и для борьбы с водорослями

Данный метод имеет узкий круг использования и находится на стадии освоения. Преимуществом является нечувствительность к высокой мутности и цветности воды, а также возможность воздействовать на большинство форм микроорганизмов.

К сожалению, данный метод применим только для малых объемов воды. Как и УФ-облучение оказывает эффект только в процессе взаимодействия с водой. Не возымело ультразвуковое обеззараживание популярности и в силу необходимости установки сложного и дорого оборудования.

Термическая обработка воды

В домашних условиях термический способ очистки воды – всем известное кипячение. Высокая температура убивает большинство микроорганизмов. В промышленных условиях данный метод неэффективен в силу его громоздкости, больших временных затрат и низкой интенсивности. К тому же, термическая обработка не способна избавить от посторонних привкусов и болезнетворных спор.

Электроимпульсный способ

В основе электроимпульсного способа лежит применение электрических разрядов, которые формируют ударную волну. Под воздействием гидравлического удара микроорганизмы гибнут. Данный метод эффективен как для вегетативных, так и спорообразующих бактерий. Способен достичь результата даже в мутной воде. Кроме того, бактерицидные свойства обработанной воды сохраняются до четырех месяцев.

Минусом является высокая энергоемкость и дороговизна.

Комбинированные методы обеззараживания воды

Для достижения наибольшего эффекта используют комбинированные способы, как правило, реагентные методы сочетают с безреагентными.

Высокую популярность возымело сочетание УФ-облучения с хлорированием. Так, уф-лучи убивают патогенную микрофлору, а хлор препятствует повторному заражению. Данный метод используют как для очистки питьевой воды, так и очистки воды в бассейнах.

Для обеззараживания бассейнов УФ-излучение преимущественно используют с гипохлоритом натрия.

Заменить хлорирование на первом этапе можно озонированием

Другие методы включает в себя окисление в сочетании с тяжелыми металлами. Окислителями могут выступать как хлорсодержащие элементы, так и озон. Суть комбинирования состоит в том, что окислители обивают вредные микробы, а тяжелые металлы позволяют сохранить воду обеззараженной. Существуют и другие способы комплексной дезинфекции воды.

Очистка и обеззараживание воды в бытовых условиях

Часто необходимо очистить воду в небольших количествах прямо здесь и сейчас. Для этих целей используют:

  • растворимые обеззараживающие таблетки;
  • перманганат калия;
  • кремний;
  • подручные цветы, травы.

Обеззараживающие таблетки могут выручить в походных условиях. Как правило, одну таблетку применяют на 1 л. воды. Этот метод можно отнести к химической группе. Чаще всего в основе таких таблеток лежит активный хлор. Время действия таблетки 15-20 минут. В случае сильного загрязнения количество можно удвоить.

Если вдруг таблеток не оказалось, возможно применение обычной марганцовки из расчета 1-2 г. на ведро воды. После того, как вода отстоится, она готова к использованию.

Также бактерицидное действие оказывают природные растения – ромашку, чистотел, зверобой, бруснику.

Еще один реагент – кремний. Поместите его в воду и дайте ей отстояться в течение суток.

Источники водоснабжения их пригодность для обеззараживания

Источники водоснабжения можно разделить на два вида – поверхностные и подземные воды. К первой группе относится вода из рек и озер, морей и водохранилищ.

При анализе пригодности вод для питья, расположенных на поверхности, проводят бактериологический и химический анализ, оценивают состояние дна, температуру, плотность и соленость морской воды, радиоактивность воды и т.д. Немаловажную роль при выбора источника играет нахождение по близости промышленных объектов. Еще один этап оценки источника водозабора – просчет возможных рисков заражения воды.

Состав воды в открытых водоемах зависит от времени года, такая вода содержит различные загрязнения, среди которых и болезнетворные микроорганизмы. Наиболее высок риск заражения водоемов рядом с городами, заводами, фабриками и другими объектами промышленности.

Речная вода очень мутная, отличается цветностью и жесткостью, а также большим количеством микроорганизмов, заражение которыми чаще всего происходит из стоковых вод. В воде из озер и водохранилищ часто встречается цветение из-за развития водорослей. Также такие воды

Особенность поверхностных источников заключается в большой водной поверхности, которая соприкасается с солнечными лучами. С одной стороны, это способствует самоочищению воды, с другой – служит развитию флоры и фауны.

Несмотря на то, что поверхностные воды могу самоочищаться, это не спасает их от механических примесей, также патогенной микрофлоры, поэтому при водозаборе подвергаются тщательному очищению с дальнейшим обеззараживанием.

Другой вид источников водозабора – подземные воды. Содержание микроорганизмов в них минимально. Для обеспечения населения лучше всего подходит родниковая и артезианская вода. Чтобы определить их качество, эксперты анализируют гидрологию слоев горных пород. Особое внимание уделяют санитарному состоянию территории в районе забора воды, так как этого зависит не только качество воды в здесь и сейчас, но и перспектива заражения вредоносными микроорганизмами в дальнейшем.

Артезианская и родниковая вода выигрывает у воды из рек и озер, она защищена от бактерий, содержащихся в стоковых водах, от воздействия солнечных лучей и других факторах, способствующих развитию неблагоприятной микрофлоры.

Нормативные документы водно-санитарного законодательства

Поскольку вода являет собой источник человеческой жизни, ее качеству и санитарному состоянию уделяется серьезное внимание, в том числе на законодательном уровне. Основными документами в данной сфере являются Водный кодекс и Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

Водный кодекс содержит в себе правила по использования и охраны водных объектов. Приводит классификацию подземных и поверхностных вод, определяет меры наказания за нарушение водного законодательства и др.

ФЗ «О санитарно-эпидемиологическом благополучии населения» регламентирует требования к источникам, вода из которых может быть использована для питья и ведения хозяйства.

Также существуют государственные стандарты качества, которые определяют показатели пригодности и выдвигают требования к способам анализа воды:

ГОСТы качества воды

  • ГОСТ Р 51232-98 Вода питьевая. Общие требования к организации и методам контроля качества.
  • ГОСТ 24902-81 Вода хозяйственно-питьевого назначения. Общие требования к полевым методам анализа.
  • ГОСТ 27064-86 Качество вод. Термины и определения.
  • ГОСТ 17.1.1.04-80 Классификация подземных вод по целям водопользования.

СНиПы и требования к воде

Строительные нормы и правила (СНиП) содержат в себе правила по организации внутреннего водопровода и канализации зданий, регламентируют монтаж систем водоснабжения, отопления и т.д.

  • СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
  • СНиП 3.05.01-85 Внутренние санитарно-технические системы.
  • СНиП 3.05.04-85 Наружные сети и сооружения водоснабжения и канализации.

СанПиНы на водоснабжение

В санитарно-эпидемиологических правилах и нормах (СанПиН) можно найти, какие существует требования к качеству воды как из центрального водопровода, так и воды из колодцев, скважин.

  • СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.»
  • СанПиН 4630-88 «ПДК и ОДУ вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»
  • СанПиН 2.1.4.544-96 Требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников.
  • СанПиН 2.2.1/2.1.1.984-00 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов.

Несколько проблем могут способствовать обесцвечиванию или забавному вкусу вашей водопроводной воды. Большинство из этих причин связаны с тем, что происходит в вашей собственности или в вашем городе. К счастью, вы можете принять меры по улучшению качества питьевой воды, где бы вы ни жили.

На городской воде

Городские водопроводные дома могут быть немного более уверены, что проблемы с водой возникают в вашей собственности. Однако существуют некоторые исключения, такие как Флинт, штат Мичиган, где в муниципальной системе было обнаружено загрязнение свинцом.

Начните с оценки ваших труб. В дополнение к заметным изменениям цвета и вкуса, изменения давления воды также могут быть признаком проблем. Коррозия может привести к частичной закупорке труб. Вы также можете проверить внешний вид ваших труб, ища утечки.

Обратите внимание, что ремонт или замену труб часто лучше оставить профессионалу, если вы не опытный DIYer.

На колодезной воде

Первый шаг к улучшению колодезной воды — проверить ее на наличие загрязнений. Если вода чистая, вам следует изучить другие проблемы, такие как утечки. Если вы обнаружите химический дисбаланс, есть водные процедуры, которые могут иметь значение.

Проверьте насос и корпус скважины на наличие трещин или утечек. Это может привести к выходу из строя уплотнений и загрязнению воды грязью и отложениями. Найм профессионала может гарантировать, что вы исправите ошибки.

Системы фильтрации воды

Если вы находитесь в городе или хорошо, система фильтрации воды может удалить загрязнения и улучшить вкус. В зависимости от того, какое решение вы выберете, стоимость может варьироваться от 15 до 20 долларов за очиститель крана или до тысяч за систему для всего дома. Более 2000 опрошенных домовладельцев вложили в свою систему фильтрации в среднем 1700 долларов.