Покрытие внутри кинескопа сканворд. Кинескопы черно-белого изображения

Отслужившие свой срок кинескопы — источник большого количества полезных материалов, использование которых сэкономит природные ресурсы и поможет снизить влияние опасных производств на экологию.

В 2008 г. закончился век электронно-лучевых трубок (ЭЛТ). По сведениям аналитиков , объем продаж ЭЛТ-мониторов составил всего лишь 0,1 % (600 тыс. шт.) от общей доли рынка, хотя еще в 2004 г. занимал 68 % (3,18 млн шт.). В 2008 году крупнейшие мировые компании объявили о прекращении производства мониторов и телевизоров с электронно-лучевой трубкой. С 2008 года распродаются остатки со складов. Поэтому тенденцию по развитию рынка ЭЛТ лучше всего рассматривать на примере 2004-2005 гг. Как показывает статистика, большая часть кинескопов выбрасывается на свалку, а не перерабатывается . (кинескоп — электронно-лучевой прибор, преобразующий электрические сигналы в световые. Его основные части: электронная пушка, формирующая пучок электронов, экран, покрытый люминофором, светящимся при попадании пучка, отклоняющая система, управляющая лучом). Экологи предупреждают, что все кинескопы должны быть переработаны в ближайшие десятилетия, иначе это отразится на окружающей среде . Но утилизировать их по правилам довольно сложно, а сфера применения продуктов рециклинга до недавнего времени неуклонно сокращалась, поэтому переработчики предпочитают хранить ЭЛТ.

От общих формулировок к конкретным правилам

На Западе над разработкой правил утилизации кинескопов трудятся не только государственные органы, но и ассоциации переработчиков, которые стараются как можно более четко и подробно описать требования к процессу утилизации. В России же пока деятельность компаний основывается на общих нормативных актах, таких как: Федеральный закон «Об отходах производства и потребления» от 24 июня 1998 г. № 89-ФЗ и Положение о лицензировании деятельности по обезвреживанию и размещению отходов I-IV классов опасности, утвержденное постановлением Правительства РФ от 28 марта 2012 г. № 255.

В США до 2009 г. предприятия, занимающиеся утилизацией телевизоров и мониторов, предпочитали захоронение рециклингу. Некоторые нерадивые компании даже продавали электронный скрап в Африку и Китай. Показательна статистика Альянса отраслей электронной промышленности (Electronic Industries Alliance (EIA)) — организации, разрабатывающей электрические и функциональные стандарты с идентификатором RS (Recommended Standards) : в 2000 г. только в Америке продали 530,9 тыс. т легированного стекла, предназначенного для производства ЭЛТ, а утилизировали из них всего 8,24 %.

29 января 2009 г. Агентство по охране окружающей среды (U.S. Environmental Protection Agency (EPA) упростило правила сбора и рециклинга кинескопов, тем самым увеличив долю их переработки. Неповрежденные ЭЛТ разрешили хранить как обычные отходы, но в соответствующих условиях (например, при температуре, исключающей возможность испарения свинца). Только фирмы-переработчики обязаны были утилизировать принадлежащие им кинескопы после года хранения. Поврежденные ЭЛТ хранились лишь в течение года и только в специальных контейнерах.

Проблемы переработки и реализации

Практически 42% массы любого монитора и телевизора составляет кинескоп , и именно его переработка является основной проблемой фирм, занимающихся утилизацией этих приборов. В среднем 87% массы кинескопа составляет стекло трех сортов. Экран содержит стронций, барий, свинец, защищающие зрителя от рентгеновского излучения, возникающего при работе трубки. Производители используют разные технологии защиты, наиболее распространенная из них — технология добавления в стекло до 12% стронция. Конус ЭЛТ и область электронной пушки защищены добавлением оксида свинца. Нельзя игнорировать потенциальную возможность выщелачивания при захоронении ЭЛТ токсичного свинца, хотя вероятность этого достаточно мала.

Рассмотрим два направления утилизации кинескопов: во-первых, это использование ЭЛТ-стекла как такового и, во-вторых, разделение его на составляющие (очищенное стекло и свинец) и их переработка.

Первый вариант был в свое время самым популярным и массовым. ЭЛТ-стекло использовалось в основном в производстве кинескопов. Также экранные стекла применялись в качестве шихты в производстве металла или керамики.

Но как оказалось, на стекольных заводах предпочитали использовать природные ресурсы. Тому было две причины. Во-первых, каждый изготовитель легированного стекла добавлял в него свои запатентованные примеси, состав которых не всегда афишировался. А любое лишнее вещество могло загрязнить стекловаренную печь так, что производство пришлось бы останавливать на несколько часов, а то и дней. И не было ни одного эффективного способа определения заранее точного состава сырья. Во-вторых, сбыт стекла сильно сократился, когда производство кинескопов сошло на нет в 2008 г. В итоге конкурентоспособность легированного стекла оставляла желать лучшего.

Второй вариант (рециклинг стекла) позволял экономить природные ресурсы, но стекольным заводам опять же было выгоднее покупать первичное сырье. К тому же не все переработчики оперировали технологиями, гарантирующими определенный химический состав продуктов и отсутствие выбросов. На настоящий момент они уже изобретены, поэтому постепенно эта проблема должна уйти в прошлое .

В целом компаниям до сих пор проще захоронить на полигонах отслужившие электронно-лучевые трубки, чем их переработать и утилизировать. По мнению участников совещания, проводимого Агентством по охране окружающей среды в январе 2013 г. , в США незаконно хранится 660 млн фунтов стекла, которые могли бы быть переработаны.

Сейчас на Западе уже пришли к тому, что нужна государственная поддержка и повышение конкурентоспособности ЭЛТ-стекла. Это единственный способ сделать утилизацию кинескопов рентабельной.

Ассоциации переработчиков начали выстраивать диалог с властью. Их представители уверены, что именно государство обязано контролировать качество переработки отслуживших кинескопов. Помимо этого оно должно ввести принцип расширенной ответственности производителя, то есть переложить финансовую ответственность за утилизацию ЭЛТ на плечи производителей . Также желательно, чтобы власть способствовала поиску новых технологий рециклинга, ведь повышение их конкурентоспособности по большей части зависит от уровня их развития. Тут важны и методы сортировки, применяемые в целях исключения смешивания стекла с разным процентным содержанием свинца, и методы определения примесей. Если компании смогут гарантировать состав рециклируемого сырья, это позволит на равных конкурировать с поставщиками природного сырья.

Влияние ЭЛТ-мониторов на здоровье людей и экологию

Следующая проблема, с которой столкнулись экологи и переработчики, это нарастающая паника, что кинескопы являются источниками радиации и токсичного свинца . Действительно, в них содержатся опасные вещества, но без соответствующих исследований сложно говорить, насколько вредно захоронение. Чтобы правильно оценить серьезность проблемы, нужно проследить весь жизненный цикл кинескопов: добыча сырья — производство — использование — утилизация.

По исследованиям Агентства по охране окружающей среды США , производство ЭЛТ влияет на экологию гораздо сильнее, чем их захоронение. Например, в России выбросы свинца в атмосферу стекольными заводами оцениваются в 100-200 т/год .

Больше всего пугают общественность два вещества, использованные при производстве кинескопов. Это стронций и свинец. Первый подозревают в радиоактивном излучении. Этот щелочноземельный металл по своим свойствам очень похож на кальций. Оксид стронция в составе твердого раствора оксидов других щелочноземельных металлов — кальция и бария — используется в качестве активного слоя катодов косвенного накала в электронной пушке.

Но не следует путать природный стронций и его радиоактивные изотопы. Первый нерадиоактивен и малотоксичен, он является составной частью микроорганизмов, растений и животных. Как аналог кальция, стронций лучше всего откладывается в костях, однако влияет на здоровье человека он крайне редко и только при наличии сопутствующих негативных факторов: нехватки кальция, витамина D, селена и т. д. Стронций используется в качестве заменителя кальция на производствах в металлургической и керамической промышленности, в пиротехнике (окрашивает пламя в карминово-красный цвет) и в медицине (для лечения остеопороза).

Второй металл, свинец, относится к классу высокоопасных веществ из-за его отравляющих свойства и способности накапливаться в организме живых существ. Различные соединения свинца обладают разной токсичностью. Следует отметить, что вероятность выщелачивания свинца из ЭЛТ-стекол достаточно мала.

По данным Агентства по охране окружающей среды США , в ЭЛТ-мониторах содержится более чем в 40 тыс. раз больше свинца, чем в ЖК-мониторах (989 г против 0,025), однако его негативное влияние на экологию и здоровье людей гораздо меньше, чем у обычного стекла или меди. Опасен он по большей части только для работников стекольных и перерабатывающих заводов, которые могут отравиться пылью или парами свинца.

Пока не будет проведено серьезных исследований и собрано достаточно статистических данных, трудно говорить о степени угрозы природе. Но перерабатывать кинескопы надо не только из-за возможного загрязнения почвы, воды или воздуха, но и потому, что кинескопы — источник большого количества полезных материалов, использование которых сэкономит природные ресурсы и поможет снизить влияние опасных производств на экологию.

Проблемы, вставшие перед компаниями, решаются по-разному. Это и государственный контроль переработки кинескопов, и постоянный мониторинг сведений фирм об их переработке, и законодательный запрет выброса на свалку ЭЛТ-мониторов. К тому же существует тенденция применения финансовой ответственности производителя за утилизацию отслужившего свой срок оборудования. Увеличить этот срок использования помогут перепродажа или дарение мониторов нуждающимся (в школах, медучреждениях и других организациях).

Переработчики активно ищут новые точки сбыта своей продукции, а также расширяют линейку товаров. На данный момент сектор применения очищенного от свинца стекла огромен: от мельчайших компонентов для электронной промышленности до огромных элементов огнеупорного остекления, от бытовых плит до фармацевтической промышленности и солнечной энергетики . Современные технологии позволяют контролировать с высокой точностью наличие или отсутствие примесей.

.

В 1906 году сотрудники Брауна М. Дикман и Г. Глаге получили патент на использование трубки Брауна для передачи изображений, а в 1909 году М. Дикман предложил в статье фототелеграфное устройство для передачи изображений с помощью трубки Брауна, в устройстве для развёртки применялся диск Нипкова .

С 1902 года с трубкой Брауна работает Борис Львович Розинг . 25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) - с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.

В начале и середине XX века значительную роль в развитии ЭЛТ сыграли Владимир Зворыкин , Аллен Дюмонт и другие.

Классификация

По способу отклонения электронного луча все ЭЛТ делятся на две группы: с электромагнитным отклонением (индикаторные ЭЛТ и кинескопы) и с электростатическим отклонением (осциллографические ЭЛТ и очень небольшая часть индикаторных ЭЛТ).

По способности сохранять записанное изображение ЭЛТ делят на трубки без памяти, и трубки с памятью (индикаторные и осциллографические), в конструкции которых предусмотрены специальные элементы (узлы) памяти, с помощью которых единожды записанное изображение может многократно воспроизводиться.

По цвету свечения экрана ЭЛТ подразделяются на монохромные и многоцветные. Монохромные могут иметь разный цвет свечения: белый, зелёный, синий, красный и другие. Многоцветные подразделяются по принципу действия на двухцветные и трёхцветные. Двухцветные - индикаторные ЭЛТ, цвет свечения экрана которых меняется или за счет переключения высокого напряжения, или за счет изменения плотности тока электронного луча. Трёхцветные (по основным цветам) - цветные кинескопы, многоцветность свечения экрана которых обеспечивается специальными конструкциями электронно-оптической системы, цветоделительной маски и экрана.

Осциллографические ЭЛТ подразделяют на трубки низкочастотного и СВЧ диапазонов. В конструкциях последних применена достаточно сложная система отклонения электронного луча.

Кинескопы подразделяют на телевизионные, мониторные и проекционные (применяются в видеопроекторах). Мониторные кинескопы имеют меньший шаг маски, чем телевизионные, а проекционные кинескопы имеют повышенную яркость свечения экрана. Они являются монохромными и имеют красный, зелёный и синий цвет свечения экрана.

Устройство и принцип работы

Общие принципы

Устройство чёрно-белого кинескопа.

В баллоне 9 создан глубокий вакуум - сначала выкачивается воздух, затем все металлические детали кинескопа нагреваются индуктором для выделения поглощённых газов, для постепенного поглощения остатков воздуха используется геттер .

Для того, чтобы создать электронный луч 2 , применяется устройство, именуемое электронной пушкой . Катод 8 , нагреваемый нитью накала 5 , испускает электроны. Чтобы увеличить испускание электронов, катод покрывают веществом, имеющим малую работу выхода (крупнейшие производители ЭЛТ для этого применяют собственные запатентованные технологии). Изменением напряжения на управляющем электроде (модуляторе ) 12 можно изменять интенсивность электронного луча и, соответственно, яркость изображения (также существуют модели с управлением по катоду). Кроме управляющего электрода, пушка современных ЭЛТ содержит фокусирующий электрод (до 1961 года в отечественных кинескопах применялась электромагнитная фокусировка при помощи фокусирующей катушки 3 с сердечником 11 ), предназначенный для фокусировки пятна на экране кинескопа в точку, ускоряющий электрод для дополнительного разгона электронов в пределах пушки и анод. Покинув пушку, электроны ускоряются анодом 14 , представляющем собой металлизированное покрытие внутренней поверхности конуса кинескопа, соединённое с одноимённым электродом пушки. В цветных кинескопах со внутренним электростатическим экраном его соединяют с анодом. В ряде кинескопов ранних моделей, таких, как 43ЛК3Б, конус был выполнен из металла и представлял анод сам собой. Напряжение на аноде находится в пределах от 7 до 30 киловольт. В ряде малогабаритных осциллографических ЭЛТ анод представляет собой только один из электродов электронной пушки и питается напряжением до нескольких сот вольт.

Далее луч проходит через отклоняющую систему 1 , которая может менять направление луча (на рисунке показана магнитная отклоняющая система). В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие.

Электронный луч попадает в экран 10 , покрытый люминофором 4 . От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

Люминофор от электронов приобретает отрицательный заряд, и начинается вторичная эмиссия - люминофор сам начинает испускать электроны. В результате вся трубка приобретает отрицательный заряд. Для того, чтобы этого не было, по всей поверхности трубки находится соединённый с анодом слой аквадага - проводящей смеси на основе графита (6 ).

Кинескоп подключается через выводы 13 и высоковольтное гнездо 7 .

В чёрно-белых телевизорах состав люминофора подбирают таким, чтобы он светился нейтрально-серым цветом. В видеотерминалах, радарах и т. д. люминофор часто делают жёлтым или зелёным для меньшего утомления глаз.

Угол отклонения луча

Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит отношение диагонали (диаметра) экрана к длине ЭЛТ. У осциллографических ЭЛТ составляет как правило до 40°, что связано с необходимостью повысить чувствительность луча к воздействию отклоняющих пластин и обеспечить линейность характеристики отклонения. У первых советских телевизионных кинескопов с круглым экраном угол отклонения составлял 50°, у чёрно-белых кинескопов более поздних выпусков был равен 70°, начиная с 1960-х годов увеличился до 110° (один из первых подобных кинескопов - 43ЛК9Б). У отечественных цветных кинескопов составляет 90°.

При увеличении угла отклонения луча уменьшаются габариты и масса кинескопа, однако:

  • увеличивается мощность, потребляемая узлами развёртки. Для решения этой проблемы уменьшался диаметр горловины кинескопа, что, однако, потребовало изменения конструкции электронной пушки.
  • возрастают требования к точности изготовления и сборки отклоняющей системы, что было реализовано путём компоновки кинескопа с отклоняющей системой в единый модуль и сборки его в заводских условиях.
  • возрастает число необходимых элементов настройки геометрии растра и сведения .

Всё это привело к тому, что в некоторых областях до сих пор применяются 70-градусные кинескопы. Также угол в 70° продолжает применяться в малогабаритных чёрно-белых кинескопах (например, 16ЛК1Б), где длина не играет такой существенной роли.

Ионная ловушка

Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ионы , которые, имея массу, многократно превышающую массу электронов, практически не отклоняются, постепенно выжигая люминофор в центре экрана и образуя так называемое ионное пятно. Для борьбы с этим до середины 1960-х годов применялся принцип «ионной ловушки»: ось электронной пушки была расположена под некоторым углом к оси кинескопа, а расположенный снаружи регулируемый магнит обеспечивал поле, поворачивающее поток электронов к оси. Массивные же ионы, двигаясь прямолинейно, попадали в собственно ловушку.

Однако данное построение вынуждало увеличивать диаметр горловины кинескопа, что приводило к росту необходимой мощности в катушках отклонящей системы.

В начале 1960-х годов был разработан новый способ защиты люминофора: алюминирование экрана, кроме того, позволившее вдвое повысить максимальную яркость кинескопа, и необходимость в ионной ловушке отпала.

Задержка подачи напряжения на анод либо модулятор

В телевизоре, строчная развёртка которого выполнена на лампах, напряжение на аноде кинескопа появляется только после прогрева выходной лампы строчной развёртки и демпферного диода. Накал кинескопа к этому моменту успевает разогреться.

Внедрение в узлы строчной развёртки полностью полупроводниковой схемотехники породило проблему ускоренного износа катодов кинескопа по причине подачи напряжения на анод кинескопа одновременно с включением. Для борьбы с этим явлением были разработаны любительские узлы, обеспечивавшие задержку подачи напряжения на анод либо модулятор кинескопа. Интересно, что в некоторых из них, несмотря на то, что они были предназначены для установки в полностью полупроводниковые телевизоры, в качестве элемента задержки использовалась радиолампа. Позднее начали выпускаться телевизоры промышленного производства, в которых такая задержка предусмотрена изначально.

Развёртка

Чтобы создать на экране изображение, электронный луч должен постоянно проходить по экрану с высокой частотой - не менее 25 раз в секунду. Этот процесс называется развёрткой . Есть несколько способов развёртки изображения.

Растровая развёртка

Электронный луч проходит весь экран по строкам. Возможны два варианта:

  • 1-2-3-4-5-… (построчная развёртка);
  • 1-3-5-7-…, затем 2-4-6-8-… (чересстрочная развёртка).

Векторная развёртка

Электронный луч проходит вдоль линий изображения. Векторная развёртка применялась в игровой консоли Vectrex .

Развёртка на экране радара

В случае использования экрана кругового обзора, т. н. тайпотрона, электронный луч проходит по радиусам экрана (экран при этом имеет форму круга). Служебная информация (цифры, буквы, топографические знаки) либо отображается векторным методом, либо развёртывается дополнительно сквозь знаковую матрицу (находится в электронно-лучевой пушке).

Цветные кинескопы

Устройство цветного кинескопа. 1 -Электронные пушки. 2 - Электронные лучи. 3 - Фокусирующая катушка. 4 - Отклоняющие катушки. 5 - Анод. 6 - Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 - Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).

Цветной кинескоп отличается от чёрно-белого тем, что в нём три пушки - «красная», «зелёная» и «синяя» (1 ). Соответственно, на экран 7 нанесены в некотором порядке три вида люминофора - красный, зелёный и синий (8 ).

В зависимости от типа применённой маски, пушки в горловине кинескопа расположены дельтообразно (в углах равностороннего треугольника) либо планарно (на одной линии). Некоторые одноимённые электроды разных электронных пушек соединены проводниками внутри кинескопа. Это ускоряющие электроды, фокусирующие электроды, подогреватели (соединены параллельно) и, часто, модуляторы. Такая мера необходима для экономии количества выводов кинескопа, ввиду ограниченных размеров его горловины.

На красный люминофор попадает только луч от красной пушки, на зелёный - только от зелёной, и т. д. Это достигается тем, что между пушками и экраном установлена металлическая решётка, именуемая маской (6 ). В современных кинескопах маска выполнена из инвара - сорта стали с небольшим коэффициентом температурного расширения.

Типы масок

Существует два типа масок:

Среди этих масок нет явного лидера: теневая обеспечивает высокое качество линий, апертурная даёт более насыщенные цвета и высокий КПД. Щелевая сочетает достоинства теневой и апертурной, но склонна к муарам .

Чем меньше элементы люминофора, тем более высокое качество изображения способна дать трубка. Показателем качества изображения является шаг маски .

  • Для теневой решётки шаг маски - расстояние между двумя ближайшими отверстиями маски (соответственно, расстояние между двумя ближайшими элементами люминофора одного цвета).
  • Для апертурной и щелевой решётки шаг маски определяется как расстояние по горизонтали между щелями маски (соответственно, горизонтальное расстояние между вертикальными полосами люминофора одного цвета).

В современных мониторных ЭЛТ шаг маски находится на уровне 0,25 мм. Телевизионные кинескопы, просмотр изображения на которых осуществляется с большего расстояния, используют шаги до 0,6 мм.

Сведение лучей

Так как радиус кривизны экрана много больше расстояния от него до электронно-оптической системы вплоть до бесконечности в плоских кинескопах, а без применения специальных мер точка пересечения лучей цветного кинескопа находится на постоянном расстоянии от электронных пушек, необходимо добиться того, чтобы эта точка находилась точно на поверхности теневой маски, в противном случае образуется рассовмещение трёх цветовых составляющих изображения, увеличивающееся от центра экрана к краям. Чтобы этого не происходило, необходимо должным образом сместить электронные лучи. В кинескопах с дельтообразным расположением пушек это делается специальной электромагнитной системой, управляемой отдельно устройством, которое в старых телевизорах была вынесена в отдельный блок - блок сведения - для периодических регулировок. В кинескопах с планарным расположением пушек регулировка производится при помощи специальных магнитов, расположенных на горловине кинескопа. Со временем, особенно у кинескопов с дельтообразным расположением электронных пушек, сведение нарушается и нуждается в дополнительной регулировке. Большинство компаний по ремонту компьютеров предлагают услугу повторного сведения лучей монитора.

Размагничивание

Свечение выключенного из сети цветного кинескопа - нормальное явление.

Необходимо в цветных кинескопах для снятия влияющей на качество изображения остаточной или случайной намагниченности теневой маски и электростатического экрана.

Размагничивание происходит благодаря возникновению в так называемой петле размагничивания - кольцеобразной гибкой катушке большого диаметра, расположенной на поверхности кинескопа - импульса быстропеременного затухающего магнитного поля. Для того, чтобы этот ток после включения телевизора постепенно уменьшался, используются терморезисторы . Многие мониторы дополнительно к терморезисторам содержат реле , которое по окончании процесса размагничивания кинескопа отключает питание этой цепи, чтобы терморезистор остыл. После этого можно специальной клавишей, либо, чаще, особой командой в меню монитора, вызвать срабатывание этого реле и провести повторное размагничивание в любой момент, не прибегая к отключению и включению питания монитора.

Тринескоп

Тринескопом называется конструкция, состоящая из трёх чёрно-белых кинескопов, светофильтров и полупрозрачных зеркал (либо дихроичных зеркал, объединяющих функции полупрозрачных зеркал и фильтров), используемая для получения цветного изображения .

Применение

Кинескопы используются в системах растрового формирования изображения: различного рода телевизорах , мониторах , видеосистемах .

Осциллографические ЭЛТ наиболее часто используются в системах отображения функциональных зависимостей: осциллографах , вобулоскопах, также в качестве устройства отображения на радиолокационных станциях, в устройствах специального назначения; в советские годы использовались и в качестве наглядных пособий при изучении устройства электронно-лучевых приборов в целом.

Знакопечатающие ЭЛТ используются в различной аппаратуре специального назначения.

Обозначение и маркировка

Обозначение отечественных ЭЛТ состоит из четырёх элементов:

  • Первый элемент: число, указывающее диагональ прямоугольного либо диаметр круглого экрана в сантиметрах;
  • Второй элемент: две буквы, указывающие на принадлежность ЭЛТ к определённому конструктивному виду. ЛК - кинескоп, ЛМ - трубка с электромагнитным отклонением луча, ЛО - трубка с электростатическим отклонением луча, ЛН - трубки с памятью (индикаторные и осциллографические);
  • Третий элемент: число, указывающие номер модели данной трубки с данной диагональю, при этом для осциллографических трубок СВЧ -диапазона нумерация начинается с номера 101;
  • Четвёртый элемент: буква, указывающая цвет свечения экрана. Ц - цветной, Б - белого свечения, И - зелёного свечения, В - жёлто-зелёного свечения, С - оранжевого свечения, П - красного свечения, А - синего свечения. Х - обозначает экземпляр, имеющий худшие светотехнические параметры по сравнению с прототипом.

В особых случаях к обозначению может добавляться пятый элемент, несущий дополнительную информацию.

Пример: 50ЛК2Б - чёрно-белый кинескоп с диагональю экрана 50 см, вторая модель, 3ЛО1И - осциллографическая трубка с диаметром экрана зелёного свечения 3 см, первая модель.

Воздействие на здоровье

Электромагнитное излучение

Это излучение создаётся не самим кинескопом, а отклоняющей системой. Трубки с электростатическим отклонением, в частности, осциллографические, его не излучают.

В мониторных кинескопах для подавления этого излучения отклоняющую систему часто закрывают ферритовыми чашками. Телевизионные кинескопы такой экранировки не требуют, поскольку зритель обычно сидит на значительно большем расстоянии от телевизора, чем от монитора.

Ионизирующее излучение

В кинескопах присутствует ионизирующее излучение двух видов.

Первое из них - это сам электронный луч, представляющий собой, по сути, поток бета-частиц низкой энергии (25 кЭв). Наружу это излучение не выходит, и опасности для пользователя не представляет.

Второе - тормозное рентгеновское излучение, которое возникает при бомбардировке экрана электронами. Для ослабления выхода этого излучения наружу до полностью безопасных величин стекло легируют свинцом (см. ниже). Однако, в случае неисправности телевизора или монитора, приводящей к значительному повышению анодного напряжения, уровень этого излучения может увеличиться до заметных величин. Для предотвращения таких ситуаций блоки строчной развёртки оборудуют узлами защиты.

В отечественных и зарубежных телевизорах цветного изображения, выпущенных до середины 1970-х годов, могут встречаться дополнительные источники рентгеновского излучения - стабилизирующие триоды, подключаемые параллельно кинескопу, и служащие для стабилизации анодного напряжения, а значит, и размеров изображения. В телевизорах «Радуга-5» и «Рубин-401-1» используются триоды 6С20С, в ранних моделях УЛПЦТ - ГП-5 . Поскольку стекло баллона такого триода значительно тоньше, чем у кинескопа, и не легировано свинцом, он является значительно более интенсивным источником рентгеновского излучения, чем сам кинескоп, поэтому его помещают в специальный стальной экран. В более поздних моделях телевизоров УЛПЦТ используются иные методы стабилизации высокого напряжения, и этот источник рентгеновского излучения исключён.

Мерцание

Монитор Mitsubishi Diamond Pro 750SB (1024x768, 100 Гц), снятый с выдержкой 1/1000 с. Яркость искусственно завышена; показана реальная яркость изображения в разных точках экрана.

Луч ЭЛТ-монитора, формируя изображение на экране, заставляет светиться частицы люминофора. До момента формирования следующего кадра эти частицы успевают погаснуть, поэтому можно наблюдать «мерцание экрана». Чем выше частота смены кадров, тем менее заметно мерцание. Низкая частота ведет к усталости глаз и наносит вред здоровью в том числе приступы эпилепсий у людей, страдающих фотосенситивной эпилепсией, а также приступы мигрени у людей, страдающих мигренью.

У большинства телевизоров на базе электронно-лучевой трубки ежесекундно сменяется 25 кадров, что с учётом чересстрочной развёртки составляет 50 полей (полукадров) в секунду (Гц). В современных моделях телевизоров эта частота искусственно завышается до 100 герц. При работе за экраном монитора мерцание чувствуется сильнее, так как при этом расстояние от глаз до кинескопа намного меньше, чем при просмотре телевизора. Минимальной рекомендуемой частотой обновления экрана монитора является частота 85 герц. Ранние модели мониторов не позволяют работать с частотой развёртки более 70-75 Гц. Мерцание ЭЛТ явно можно наблюдать боковым зрением.

Нечёткое изображение

Изображение на электронно-лучевой трубке является размытым по сравнению с другими видами экранов. Считается, что размытое изображение - один из факторов, способствующих усталости глаз у пользователя. С другой стороны, при использовании качественных мониторов, размытие не оказывает сильного влияния на здоровье человека, а сам эффект размытия позволяет не использовать сглаживание экранных шрифтов на мониторе, что отображается на качестве восприятия картинки, отсутствуют искажения шрифтов, присущие ЖК-дисплеям . На качественных мониторах изображение получается довольно чётким.

Высокое напряжение

В работе ЭЛТ применяется высокое напряжение. Остаточное напряжение в сотни вольт, если не принимать никаких мер, может задерживаться на ЭЛТ и схемах «обвязки» неделями. Поэтому в схемы добавляют разряжающие резисторы, которые делают телевизор вполне безопасным уже через несколько минут после выключения.

Вопреки распространённому мнению, напряжение анода ЭЛТ обычно неспособно убить человека из-за небольшой мощности преобразователя напряжения - будет лишь ощутимый удар током. Однако, и он может оказаться смертельным при наличии у человека пороков сердца. Он может также приводить к травмам, включая летальные, косвенным образом, когда, отдёрнув руку, человек касается других цепей телевизора и монитора, содержащих чрезвычайно опасные для жизни напряжения - а такие цепи присутствуют во всех моделях телевизоров и мониторов, использующих ЭЛТ, - а также включая чисто механические травмы, сопряженные со внезапным бесконтрольным падением, вызванным электрической судорогой.

Ядовитые вещества

Любая электроника (в том числе ЭЛТ) содержит вещества, вредные для здоровья и окружающей среды. В числе их: соединения бария в катодах , люминофоры .

Использованные ЭЛТ в большинстве стран считаются опасным мусором и подлежат вторичной переработке или захоронению на отдельных полигонах.

Взрыв ЭЛТ

Поскольку внутри ЭЛТ вакуум, за счёт давления воздуха на один только экран 17-дюймового монитора приходится нагрузка около 800 кг - вес микролитражного легкового автомобиля . При работе с ранними моделями кинескопов правила техники безопасности требовали использования защитных рукавиц, маски и очков. Перед экраном кинескопа в телевизоре устанавливался стеклянный защитный экран, а по краям - металлическая защитная маска.

Начиная со второй половины 1960-х годов опасная часть кинескопа прикрывается специальным металлическим взрывозащитным бандажом , выполненным в виде цельнометаллической штампованной конструкции либо намотанной в несколько слоёв ленты. Такой бандаж исключает возможность самопроизвольного взрыва . В некоторых моделях кинескопов дополнительно использовалась защитная плёнка, покрывавшая экран.

Несмотря на применение защитных систем, не исключается поражение людей осколками при умышленном разбивании кинескопа. В связи с этим при уничтожении последнего для безопасности предварительно разбивают штенгель - технологическую стеклянную трубку в торце горловины под пластмассовым цоколем, через которую при производстве осуществляется откачка воздуха.

Малогабаритные ЭЛТ и кинескопы с диаметром или диагональю экрана до 15 см опасности не представляют и взрывозащитными приспособлениями не оснащаются.

Другие виды электронно-лучевых приборов

Кроме кинескопа, к электронно-лучевым приборам относят:

  • Квантоскоп (лазерный кинескоп) - разновидность кинескопа, экран которого представляет собой матрицу полупроводниковых лазеров , накачиваемых электронным лучом. Квантоскопы применяются в проекторах изображения.
  • Знакопечатающая электронно-лучевая трубка.
  • Индикаторная электронно-лучевая трубка используются в индикаторах радиолокационных станциий.
  • Запоминающая электронно-лучевая трубка .
    • Тайпотрон
    • Графекон
  • Передающая телевизионная трубка преобразует световые изображения в электрические сигналы.
  • Моноскоп - передающая электронно-лучевая трубка, преобразующая единственное изображение, выполненное непосредственно на фотокатоде, в электрический сигнал. Применялся для передачи изображения телевизионной испытательной таблицы (например, ТИТ-0249).
  • Кадроскоп - электронно-лучевая трубка с видимым изображением, предназначенная для настройки блоков разверток и фокусировки луча в аппаратуре, использующей электронно-лучевые трубки без видимого изображения (графеконы, моноскопы, потенциалоскопы). Кадроскоп имеет цоколевку и привязочные размеры, аналогичные электронно-лучевой трубке, используемой в аппаратуре. Более того, основная ЭЛТ и кадроскоп подбираются по параметрам с очень высокой точностью и поставляются только комплектом. При настройке вместо основной трубки подключают кадроскоп.

См. также

Примечания

Литература

  • Д. Бриллиантов, Ф. Игнатов, В. Водычко. Однолучевой цветной кинескоп - хромоскоп 25ЛК1Ц. Радио № 9, 1976. С. 32, 33.
  • Бурак Я. И., Огирко И. В. Об определении термоупругого состояния оболочки экрана кинескопа с учетом температурной зависимости характеристик материала // Качество, прочность, надежность и технологичность электровакуумных приборов. - Киев: Наук. думка, 1976. - С.59-62.

Ссылки

  • С. В. Новаковский. 90 лет электронному телевидению // Электросвязь № 6, 1997
  • П. Соколов. Мониторы // iXBT, 1999
  • Mary Bellis. The History of the Cathode Ray Tube // About:Inventors
  • Евгений Козловский. Старый друг лучше «Компьютерра» № 692, 27 июня 2007
  • Мухин И. А. Как выбрать ЭЛТ-монитор Компьютер-бизнес-маркет № 49(286), ноябрь-декабрь 2004. С. 366-371
Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод ·

Изображение, которое мы видим на экране старого телевизора, воспроизводится на экране электроннолучевой трубки - кинескопа. Кинескоп представляет собой стеклянную колбу, имеющую узкую цилиндрическую часть - горловину, переходящую в коническую часть и заканчивающуюся широким дном.

Устройство кинескопа.

С внутренней стороны дно кинескопа покрыто специальным составом - люминофором, который начинает светиться при бомбардировке его электронами. Дно трубки с нанесенным слоем люминофора и образует экран кинескопа. Воздух из колбы откачивается, так как электроны могут свободно перемещаться только в вакууме (см. Вакуумная техника).

В горловине кинескопа размещается электронная «пушка» - устройство, создающее узкий направленный поток электронов - электронный луч. В электронной «пушке» имеются катод, анод и несколько электродов для фокусировки управления лучом.

Катод разогревается нитью накала и испускает электроны. Он окружен металлическим цилиндром с небольшим отверстием посредине, через которое проходят излучаемые им электроны; это управляющий электрод кинескопа. За ним расположены ускоряющий и фокусирующий электроды и, наконец, анод. Все эти электроды и анод представляют собой полые цилиндры и отличаются друг от друга только длиной и диаметром.

Кинескоп цветного телевизора.

На ускоряющий электрод подается положительное напряжение. Электроны, пролетая сквозь него, получают ускорение и двигаются дальше.

Фокусирующий электрод собирает поток электронов в узкий луч. На анод, который соединен с токопроводящим покрытием, нанесенным на внутреннюю поверхность конуса кинескопа, подается очень высокое положительное напряжение. Электроны под действием этого напряжения приобретают еще большую скорость движения к экрану: они вылетают из электронной «пушки», как снаряды из орудийного ствола.

Чем сильнее поток электронов, тем ярче свечение экрана. «Плотность» электронного луча и, следовательно, яркость изображения изменяются под действием управляющего электрода кинескопа, исполняющего такую же роль, что и сетка триода.

Перемещение луча по экрану кинескопа происходит при помощи магнитного поля, которое создается не громоздкими магнитами, а специальными отклоняющими катушками: катушками, кадров и катушками строк - специальными электромагнитами, размещенными на горловине трубки. Они-то и являются своеобразным прицельным устройством, которое позволяет «обстрелять» любую точку экрана, направив в нее электронный луч. Строчные катушки заставляют луч чертить горизонтальные строки, а кадровые катушки, «подталкивая» луч от строки к строке, перемещают его по вертикали.

Структура люминесцентного матричного экрана: 1 - стеклянная подложка; 2 - прозрачные электроды; 3, 5 - изолирующие оксидные пленки; 4 - люминофор; 6 - контрастный светопоглощающий слой; 7 - металлические электроды.

В кинескопе цветного телевизора размещены сразу три электронные «пушки», стреляющие по экрану тремя лучами. Тысячи точек красного, зеленого и синего люминофоров, покрывающие экран, светятся при попадании на них электронов. Внутри кинескопа перед экраном помещена металлическая маска со множеством отверстий. Эти отверстия расположены так, что электронный луч, формирующий красную часть изображения, может попасть только на люминофор, вызывающий красное свечение; луч, «рисующий» зеленую часть изображения, направляется на точки зеленого люминофора; наконец, третий луч попадает только на зерна синего люминофора.

Поскольку зерна цветных люминофоров очень малы и расположены близко друг от друга, наш глаз воспринимает их как целое цветное изображение.

Конструкция кинескопа претерпела множество совершенствований. Появились приборы, в которых внутренняя поверхность экрана, в отличие от кинескопов с металлической маской, выполнена в виде вертикальных штрихов. Велись разработки телевизоров с прямоугольным экраном в виде плоской панели, выполненным с использованием электролюминофоров. Люминесцентные экраны делают на основе стеклянных матриц особого состава. Структура люминесцентного матричного экрана представлена на рисунке справа.

Современные цветные телевизоры, основанные на новых технологиях, проще в управлении, они позволяют получать изображение с большей яркостью и лучшей контрастностью.

Выбираем кинескопный телевизор

Катодно-лучевой кинескоп (его еще называют электронно-лучевой трубкой, ЭЛТ) - это технология, дошедшая до нас из прошлого века. Серийный выпуск первых телевизоров, работавших по такому принципу, начался в далеком 1939 году. Тем не менее столь почтенный возраст этой технологии является, скорее, ее достоинством, чем недостатком, ведь кинескопные телевизоры используются и сегодня, а значит, они вполне удовлетворяют запросам любителей проводить свободное время у голубых экранов. Так что в данном случае снисходительное словосочетание «прошлый век» означает вовсе не «старье», а проверенные временем традиции.

В наше время наибольшее распространение получили , о принципах работы этих устройств наиболее «продвинутые» потребители уже имеют представление. А вот о том, что находится внутри корпуса кинескопного телевизора, некоторые потенциальные покупатели и не подозревают.

Устройство и принцип работы кинескопного телевизора

Как уже упоминалось выше, основным элементом телевизора старого образца является катодно-лучевой кинескоп (в англоязычном варианте Cathode Ray Tube, CRT). В этом устройстве происходит процесс формирования телевизионной «картинки», которая затем отображается на экране.


На рисунке цифрами обозначены:

1 - электронные пушки (три - у цветных телевизоров, одна - у черно-белых);
2 - электронные лучи;
3 - фокусирующие катушки;
4 - отклоняющие катушки;
5 - анодный вывод;
6 - теневая «маска», отфильтровывающая красные, зеленые и синие части «картинки»;
7 - слой фосфорсодержащего люминофора, покрывающий внутреннюю поверхность экрана, с областями красного, зеленого и синего свечения;
8 - увеличенное изображение люминофорного покрытия внутренней стороны экрана.

По сути, электронно-лучевая трубка представляет собой стеклянную колбу, внутри которой создается вакуум. Под воздействием электричества электронные пушки (1) начинают испускать лучи (2), которые проходят сквозь трубку кинескопа. Эти лучи, являющиеся направленными потоками электронов, улавливаются системой фокусирующих и отклоняющих катушек (3, 4). Электромагнитные катушки перенаправляют лучи на анодный вывод (5), подающий электроны на маску-фильтр (6), разделяющую общий поток на цветовые составляющие. В самых старых моделях черно-белых телевизоров цветной фильтр, естественно, отсутствовал.

Процесс появления изображения на экране можно описать следующим образом. После формирования и фильтрования световых потоков лучи попадают на внутреннюю, невидимую для зрителей поверхность телеэкрана (7). Люминофорное покрытие состоит из красных, зеленых и синих частиц, которые светятся под воздействием луча соответствующего цвета. Покрытая люминофором поверхность освещается не полностью, подсвечиваются лишь отдельные частицы вещества - таким образом посылаемые анодным выводом лучи формируют на экране быстро перемещающееся световое пятно. Это пятно движется по экрану построчно, слева направо и сверху вниз, но перемещение происходит очень быстро, неуловимо для человеческих глаз, поэтому зритель видит целостное изображение. Соответственно, чем больше частота обновления экрана (период «пробегания» светового пятна от первой до последней точки), тем качественнее получается изображение.

Трубка кинескопа располагается перпендикулярно поверхности экрана, а это значит, что она занимает достаточно много места под корпусом телевизора. Именно поэтому корпус такого устройства отличается столь внушительными габаритами и сделать его супертонким, как у современных плазменных или жидкокристаллических телевизоров, невозможно по чисто технологическим причинам. Не удивительно, что кинескопные аппараты получили в народе нежное прозвище - «ящики»!


Основные технические характеристики кинескопных телевизоров

Теперь, когда мы получили общее представление о работе кинескопа, можно приступать к выбору телевизора. В принципе основные параметры, на которые следует ориентироваться при выборе, вполне очевидны. Тем не менее неопытные покупатели могут не обратить внимания на достаточно важные технические подробности, которые испортят все удовольствие от просмотра любимого сериала или важного спортивного матча.

1. Размер и форма экрана

Приобретая «окошко» в огромный мир телевидения, важно не прогадать с размерами, иначе разглядеть удастся не так уж много. Очевидно, что телевизоры с наибольшей диагональю экрана отличаются большими габаритами, поэтому владельцам малометражных гостиных придется умерить свои аппетиты. В кинескопных телевизорах по мере возрастания размера экрана увеличиваются не только высота и ширина, но и глубина корпуса, а значит, делая ставку на крупный экран, незадачливый покупатель может столкнуться с большой проблемой: обновка займет слишком много свободного пространства в комнате.

Самые маленькие ЭЛТ-телевизоры имеют диагональ 10 дюймов - просмотр передач на них нельзя назвать комфортным. Оптимальный минимум - это 14-15 дюймов, телевизоры с такими параметрами выпускают практически все известные фирмы. Еще более популярны экраны с диагональю от 20 до 25 дюймов. Телевизоры с такими габаритами прекрасно вписываются в среднестатистическую квартиру и обладают, как правило, полным набором наиболее востребованных функций. Самыми большими считаются 29-дюймовые кинескопные телевизоры, однако в продаже можно найти модели и с 34-дюймовым экраном. Это настоящие гиганты, они подходят только для очень больших помещений и обычно устанавливаются на специальные тумбы, поставляемые в комплекте или по заказу.

При выборе телевизора важно помнить и о таком параметре, как наиболее комфортное расстояние просмотра.


Ориентируясь на эту таблицу, несложно определить примерное расположение мебели в зоне отдыха гостиной, а именно, расстояние, на которое должны быть разнесены телевизионная подставка и диван или кресла. Приобретая ЭЛТ-телевизор, необходимо заранее планировать место его установки. Если он будет стоять в мебельной нише, то обязательным условием является наличие зазора между стенками ниши и корпусом устройства, при этом нельзя перекрывать доступ воздуха к вентиляционным отверстиям. В противном случае телевизор перегреется и выйдет из строя.

Формат экрана также немаловажен. При классическом соотношении ширины и высоты 4:3 удобнее всего просматривать обычные телевизионные передачи. Широкоформатные экраны с соотношением сторон 16:9 идеальны для просмотра видеофильмов, поэтому, если телевизор будет чаще всего работать в паре с DVD-проигрывателем, широкий формат более предпочтителен. Существует еще несколько менее популярных форматов, позволяющих получить изображение с минимальным искажением. В современных моделях телевизоров есть функция автоматической подстройки формата.

Соотношение форматов экранов

Четкость изображения зависит от геометрии экрана. Выпуклый кинескоп достаточно сильно искажает «картинку». Чтобы получать изображения с максимальной реалистичностью, лучше приобрести телевизор с плоским или суперплоским экраном.

2. Частота развертки - это один из показателей качества изображения. В соответствии с описанным выше принципом работы кинескопа изображение на экране появляется благодаря свечению люминофорных частиц. Именно частотой развертки и определяется скорость перемещения светового пятна по экрану. В старых моделях телевизоров этот показатель равнялся 50 Гц, поэтому зрителю казалось, что «картинка» мерцает. При длительном просмотре телепередач нестабильное изображение становилось причиной сильной усталости глаз. Современные кинескопы обеспечивают частоту развертки 100-120 Гц - этот показатель считается оптимальным для телевизоров с большой диагональю, где нестабильность изображения особенно заметна.

Следует отметить, что при частоте обновления экрана 100 Гц иногда наблюдается эффект шлейфа от быстро перемещающихся в кадре предметов. Для стабилизации «картинки» фирмы-производители используют специальные технологии. Приобретая крупногабаритный телевизор, стоит обратить внимание на технологию стабилизации изображения: для это Digital Plus, для - Digital Scan Natural Motion, для - Super Digital, для - Digital Mastering или Intelligent Mastering, в зависимости от модели.

3. Динамики

Телевизионные программы - это не только визуальный ряд, поэтому мощное и качественное звучание является одной из основных технических характеристик. Небольшие телевизоры часто оснащаются одиночными динамиками, в то время как в крупногабаритных моделях устанавливают только стереоколонки. Вне зависимости от количества динамиков они всегда располагаются на фронтальной поверхности корпуса, обычно снизу или по бокам от экрана.

Стандартное расположение динамиков под экраном (слева) и по бокам экрана (справа)

Дорогие современные ЭЛТ-телевизоры часто имеют встроенные сабвуферы, которые передают звук низкой частоты, и системы объемного звучания, выполненные по технологии Dolby Pro Logic или Dolby Digital.

4. Разъемы для подключения внешних устройств

Как известно, телевизор не может работать сам по себе, для приема сигнала ему нужны внешняя антенна или цифровой кабель. Пожалуй, среди современных телевизоров невозможно найти ни одной модели, которая оснащалась бы только разъемом для антенны. Для полноценного использования необходимы еще, как минимум, аудио- и видеовыходы, к которым подключают видеомагнитофон и DVD-проигрыватель.

Минимальный набор разъемов: гнездо для телеантенны и RCA-разъемы для аудио- и видеосигналов

Кроме того, в наборе разъемов не окажется лишним аналоговый порт VGAи универсальный порт SCART - к нему можно подключать мультимедийную аппаратуру, спутниковый или цифровой ресивер.

5. Способ управления телевизором

Пульт дистанционного управления давно уже стал неизменным атрибутом телевизора. Это простое и удобное в использовании устройство позволяет переключать каналы, регулировать уровень звука и выполнять многие другие процедуры, не вставая с дивана. Тем не менее на лицевой панели телевизора, как правило, можно найти основные кнопки управления, дублирующие соответствующие клавиши пульта, обычно это кнопка включения, регуляторы громкости и кнопки перехода по каналам.

Кнопки управления, расположенные на корпусе телевизора

Выбирая телевизор, не стоит покупать такую модель, на корпусе которой был бы продублирован весь набор кнопок пульта управления - такое устройство будет слишком громоздким. Достаточно только основных клавиш, которые можно использовать, если в пульте сели батарейки.

Достоинства и недостатки ЭЛТ-телевизоров

Поскольку с основными техническими характеристиками ЭЛТ-телевизоров мы уже разобрались, необходимо еще рассмотреть сильные и слабые стороны этих устройств.

Достоинства:

  • низкая цена;
  • большое разнообразие моделей;
  • хорошее качество изображения;
  • реалистичная цветопередача;
  • продолжительный срок службы (около 15 лет).

Недостатки:

  • большие габариты и вес;
  • негативное влияние на зрение при длительном просмотре.

Кинескоп - приемная электронно-лучевая трубка с лю-минофорным экраном, преобразующая мгновенные значения сигнала изображения (видеосигнала) в последовательность световых импульсов, совокупность которых образует телевизионное (ТВ) изображение.

Принцип действия черно-белого кинескопа основан на возбуждении свечения люминофорного экрана сфокусированным электронным лучом, который под действием отклоняющей системы описывает на экране точку за точкой телевизионный растр 1 (см. рис., а).

Электронный луч (2) кинескопа формируется электронно-оптической системой (электронным прожектором) (1) и модулируется по интенсивности телевизионным электрическим сигналом. Яркость свечения люминофорного экрана (5) в каждой точке пропорциональна интенсивности электронного луча. Таким образом, на экране получается черно-белое телевизионное изображение.

Основными частями кинескопа являются стеклянная колба (стеклооболочка) (6), электронно-оптическая система (электронный прожектор) (1), формирующая электронный луч; лю-минофорный экран (5). На горловине кинескопа помещается отклоняющая система (9), с помощью которой формируется магнитное поле, обеспечивающее перемещение электронного луча в процессе развертки изображения. В связи с тем, что внутри кинескопа имеется высокий вакуум для исключения разрушения стеклооболочки под действием атмосферного давления или случайного удара, кинескоп снабжается взрывоза-щитным устройством в виде металлического бандажа (4), охватывающего стекло по периметру экрана и создающего усилие сжатия.

Стеклянная колба кинескопа состоит из горловины, конической части и фронтального стекла. Фронтальное стекло изготавливают из так называемого контрастного стекла, представляющего собой нейтральный светофильтр. На внутреннюю поверхность фронтального стекла экрана нанесен люми-нофорный слой (5), обладающий свойством светиться белым цветом под воздействием потока электронов, причем яркость свечения прямо пропорциональна кинетической энергии элек-

тронного потока. Поверх люминофора нанесена зеркальная алюминиевая пленка толщиной 0,05-0,2 мкм, исключающая возможность проникновения к люминофору разрушающих его массивных отрицательных ионов, излучаемых катодом кинескопа. Электроны же свободно проникают через эту пленку. Пленка также значительно увеличивает яркость и контрастность изображения, так как она отражает в сторону зрителя свет, испускаемый люминофором, и устраняет засветку от внутренних стенок колбы.

Алюминиевый слой на экране переходит в алюминиевое покрытие (3) на стенках конической части колбы, которая заканчивается в зоне перехода от конуса к горловине и соединяется с графитовым покрытием (8) верхней части горловины кинескопа. От алюминиевого покрытия имеется вывод (7) на конической части колбы.

В цилиндрической горловине колбы помещен электронный прожектор (1). Электронным прожектором называется конструктивный узел кинескопа, который предназначен для формирования тонкого пучка быстролетящих электронов электронного луча.

Конструктивно электронный прожектор представляет собой систему цилиндрических электродов (см. рис., б) и состоит из катода подогреваемого типа (2), управляющего электрода-модулятора (3), ускоряющего электрода (4), фокусирующего электрода (5), анода (6). Детали прожектора соединены с выводами в цоколе, которым заканчивается горловина.

Оксидный катод (2) косвенного накала является источником электронов. Вблизи катода размещен модулятор (3) с отрицательным потенциалом относительно катода. На него подается телевизионный (ТВ) сигнал. Затем расположен ускоряющий электрод (4) с положительным потенциалом. Система этих трех электродов образует линзу предварительной фокусировки.

Катод (2) выполнен в виде цилиндра из никеля. На его торец, обращенный внутрь кинескопа, нанесен оксидный слой. Внутри катода расположен подогреватель (1) (нить накала из

вольфрамовой проволоки). Модулятор (3) цилиндр и служит для управления потоком электронов. На него подают небольшой отрицательный потенциал, изменяя который (регулятор яркости в телевизоре), уменшают или увеличивают поток электронов, проходящий через модулятор. Достигая экрана кинескопа, поток электронов вызывает свечение люминофора.

Ускоряющий электрод (4) также выполнен в виде полого цилиндра. Он предназначен для первоначального ускорения электронов, испускаемых катодом. Для этой цели на него подают положительный потенциал.

Фокусирующий электрод (5) предназначен для того, чтобы собрать электроны в очень тонкий луч. Чем меньше диаметр электронного луча, тем выше четкость изображения.

Анод (6) служит для придания электронам наибольшей скорости. Чем с большей скоростью электроны воздействуют на люминофор, тем ярче светится экран. Конструктивно анод состоит из цилиндра, который электрически соединен с проводящим слоем (аквадагом), нанесенным на внутреннюю часть конуса. От аквадага наружу сделан вывод для подсоединения высоковольтного провода. Анод также соединен с алюминиевой пленкой, покрывающей люминофор, определяя тем самым потенциал экрана (он всегда равен потенциалу анода).

На горловину кинескопа надета отклоняющая система (ОС) (9) (рис., а). На пути к экрану на электронный луч действует магнитное отклоняющее поле, создаваемое отклоняющей системой и направленное перпендикулярно направлению луча. С помощью ОС луч приводится в движение; последовательно пробегая по всему экрану, он вызывает свечение люминофора и образует, так же как и в передающей трубке, растр. Экран светится ровным белым цветом. Когда на модулятор (3) (рис., б) поступает видеосигнал, несущий информацию об оптическом изображении, то на экране возникает это изображение. Так происходит потому, что видеосигнал то увеличивает, то уменьшает отрицательный потенциал на модуляторе, тем самым уменьшая или увеличивая поток электронов. Поскольку луч движется по экрану, то в соответствии с изменением тока, поданного на модулятор видеосигнала, происходит чередование менее и более светлых участков изображения. Совокупность этих участков на экране и составляет черно-белое изображение.

Основными параметрами черно-белых кинескопов, характеризующими качество телевизионного изображения, являются: яркость, контрастность, разрешающая способность.

Яркость кинескопа (L) определяется светоотдачей (С) (эффективностью) люминофора, прозрачностью фронтального стекла экрана (т), режимом работы кинескопа и площадью растра (S):

где 1 а - рабочий ток анода;

U а - рабочее напряжение на аноде;

U - напряжение пробивания алюминиевой пленки.

Яркость современных черно-белых кинескопов составляет 150-200 Кд/м 2 . Принятая в телевидении частота полей 50 Гц позволяет получить немигающее изображение. Однако при больших яркостях (более 200 Кд/м 2) мерцания становятся заметными.

Под контрастностью понимают отношение яркости светящихся участков экрана (Lcb), возбуждаемых электронным лучом, к яркости темных участков экрана Lm, не возбуждаемых электронным лучом:

Величина контрастности зависит от размера этих участков, так как темные участки экрана подсвечиваются от светлых за счет внутренних отражений света в стекле, создающих ореол вокруг каждой светящейся точки. Значение контраста современных кинескопов при номинальном размере растра составляет 150-200.

Разрешающая способность характеризуется наименьшим размером детали, которую можно наблюдать на н: юОраж ниц; выражается числом раздельно наблюдаемых черных плюс белых линий, отнесенных к высоте растра. Разрешающая способность черно-белых кинескопов не менее 500-5-550 линий в центре и на углах.