Правило равновесия. Условие равновесия рычага

С самых давних пор человек применяет различные вспомогательные приспособления для облегчения своего труда. Как часто, когда нам надо сдвинуть с места очень тяжелый предмет, мы берем себе в помощники палку или шест. Это пример простого механизма - рычага.

Применение простых механизмов

Видов простых механизмов очень много. Это и рычаг, и блок, и клин, и многие другие. Простыми механизмами в физике называют приспособления, служащие для преобразования силы. Наклонная плоскость, которая помогает вкатывать или втаскивать тяжелые предметы наверх - это тоже простой механизм. Применение простых механизмов очень распространено как в производстве, так и в быту. Чаще всего простые механизмы применяют для того, чтобы получить выигрыш в силе, то есть увеличить в несколько раз силу, действующую на тело.

Рычаг в физике - простой механизм

Один из самых простых и распространенных механизмов, который изучают в физике еще в седьмом классе - рычаг. Рычагом в физике называют твердое тело, способное вращаться вокруг неподвижной опоры.

Различают два вида рычагов. У рычага первого рода точка опоры находится между линиями действия приложенных сил. У рычага второго рода точка опоры расположена по одну сторону от них. То есть, если мы пытаемся при помощи лома сдвинуть с места тяжелый предмет, то рычаг первого рода - это ситуация, когда мы подкладываем брусок под лом, надавливая на свободный конец лома вниз. Неподвижной опорой у нас в данном случае будет являться брусок, а приложенные силы располагаются по обе стороны от него. А рычаг второго рода - это когда мы, подсунув край лома под тяжесть, тянем лом вверх, пытаясь таким образом перевернуть предмет. Здесь точка опоры находится в месте упора лома о землю, а приложенные силы расположены по одну сторону от точки опоры.

Закон равновесия сил на рычаге

Используя рычаг, мы можем получить выигрыш в силе и поднять неподъемный голыми руками груз. Расстояние от точки опоры до точки приложения силы называют плечом силы. Причем, можно рассчитать равновесие сил на рычаге по следующей формуле:

F1 / F2 = l2 / l1 ,

где F1 и F2 - силы, действующие на рычаг,
а l2 и l1 - плечи этих сил.

Это и есть закон равновесия рычага , который гласит: рычаг находится в равновесии тогда, когда действующие на него силы обратно пропорциональны плечам этих сил. Этот закон был установлен Архимедом еще в третьем веке до нашей эры. Из него следует, что меньшей силой можно уравновесить большую. Для этого необходимо, чтобы плечо меньшей силы было больше плеча большей силы. А выигрыш в силе, получаемый с помощью рычага, определяется отношением плеч приложенных сил.

§ 03-и. Правило равновесия рычага

Ещё до Нашей Эры люди начали применять рычаги в строительном деле. Например, на рисунке вы видите использование рычага для подъёма тяжестей при постройке пирамид в Египте.

Рычагом называют твёрдое тело, которое может вращаться вокруг некоторой оси. Рычаг – это не обязательно длинный и тонкий предмет. Например, рычагом является любое колесо, так как оно может вращаться вокруг оси.

Введём два определения. Линией действия силы назовём прямую, проходящую через вектор силы. Плечом силы назовём кратчайшее расстояние от оси рычага до линии действия силы . Из геометрии вы знаете, что кратчайшее расстояние от точки до прямой – это расстояние по перпендикуляру к прямой.

Проиллюстрируем эти определения. На рисунке слева рычагом является педаль . Ось её вращения проходит через точку О . К педали приложены две силы: F 1 – сила, с которой нога давит на педаль, и F 2 – сила упругости натянутого троса, прикреплённого к педали. Проведя через вектор F 1 линию действия силы (изображена пунктиром), и, построив к ней перпендикуляр из т.О , мы получим отрезок ОА – плечо силы F 1

С силой F 2 дело обстоит проще: линию её действия можно не проводить, так как её вектор расположен более удачно. Построив из т. О перпендикуляр на линию действия силы F 2 , получим отрезок ОВ – плечо силы F 2 .

При помощи рычага можно маленькой силой уравновесить большую силу . Рассмотрим, например, подъём ведра из колодца (см. рис. в § 5-б). Рычагом является колодезный ворот – бревно с прикреплённой к нему изогнутой ручкой . Ось вращения ворота проходит сквозь бревно. Меньшей силой служит сила руки человека, а большей силой – сила, с которой цепь тянет вниз.

Справа показана схема ворота. Вы видите, что плечом большей силы является отрезок OB , а плечом меньшей силы – отрезок OA . Видно, что OA > OB . Другими словами, плечо меньшей силы больше плеча большей силы . Такая закономерность справедлива не только для ворота, но и для любого другого рычага.

Опыты свидетельствуют, что при равновесии рычага плечо меньшей силы во столько раз больше плеча большей, во сколько раз большая сила больше меньшей:

Рассмотрим теперь вторую разновидность рычага – блоки . Они бывают подвижными и неподвижными (см. рис.).

Рычаг – это твердое тело, имеющее ось вращения или опору.

Виды рычагов:

§ рычаг первого рода

§ рычаг второго рода.

Точки приложения сил, действующих на рычаг первого рода , лежат по обе стороны от точки опоры.

Схема рычага первого рода .


т. О – точка опоры рычага (ось вращения рычага);

т. 1 и т. 2 – точки приложения сил и соответственно.

Линия действия силы – прямая, совпадающая с вектором силы.

Плечо силы – кратчайшее расстояние от оси вращения рычага до линии действия силы.

Обозначение: d .

f 1 – линия действия силы

f 2 – линия действия силы

d 1 – плечо силы

d 2 – плечо силы

Алгоритм нахождения плеча силы:

а) провести линию действия силы;

б) опустить перпендикуляр из точки опоры или оси вращения рычага на линию действия силы;

в) длина этого перпендикуляра и будет являться плечом данной силы.


Задание:

Изобразить на чертеже плечо каждой силы:

т. О –ось вращения твердого тела.

Правило равновесия рычага (установлено Архимедом):

Если на рычаг действуют две силы, то он находится в равновесии только тогда, когда силы, действующие на него, обратно пропорциональны их плечам.

Замечание : считаем, что сила трения и вес рычага равны нулю.

Момент силы.

Силы, действующие на рычаг, могут сообщить ему вращательное движение либо по часовой стрелке, либо против часовой стрелки.

Момент силы физическая величина, характеризующая вращающее действие силы и равная произведению модуля силы на плечо.

Обозначение: М

Единица измерения момента силы в СИ: 1 ньютон-метр (1 Н·м) .

1Н·м момент силы в 1Н, плечо которой равно 1м.

Правило моментов : Рычаг находится в равновесии под действием приложенных к нему сил, если сумма моментов сил, вращающих его по часовой стрелке, равна сумме моментов сил, вращающих его против часовой стрелки .

Если на рычаг действуют две силы , то правило моментов формулируется следующим образом: Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

Примечание : Из правила моментов для случая двух приложенных к рычагу сил можно получить правило равновесия рычага в форме, которая рассматривалась в п. 38.


, ═> , ═> .

Блоки.

Блок – колесо с желобом, имеющее ось вращения. Желоб предназначен для нити, веревки, троса или цепи.

Различают блоки двух видов: неподвижные и подвижные.

Неподвижным блоком называется такой блок, ось которого не перемещается при работе блока. Такой блок при движении веревки не передвигается, а лишь вращается.

Подвижным блоком называется такой блок, ось которого движется при работе блока.

Поскольку блок – твердое тело, имеющее ось вращения, т. е. разновидность рычага, то к блоку мы можем применить правило равновесия рычага. Применим это правило, считая, что сила трения и вес блока равны нулю.

Рассмотрим неподвижный блок.

Неподвижный блок – рычаг первого рода.

т. О – ось вращения рычага.

АО = d 1 – плечо силы

ОВ = d 2 – плечо силы

Причем, d 1 = d 2 = r, r – радиус колеса.

При равновесии M 1 = M 2

P·d 1 = F·d 2 ═>

Таким образом, неподвижный блок выигрыша в силе не дает, он только позволяет изменять направление действия силы.

Рассмотрим подвижный блок.

Подвижный блок – рычаг второго рода.

Знаете ли вы, что такое блок? Это такая круглая штуковина с крюком, при помощи которой на стройках поднимают грузы на высоту.

Похоже на рычаг? Едва ли. Однако, блок тоже является простым механизмом. Более того, можно говорить о применимости закона равновесия рычага к блоку. Как это возможно? Давайте разберемся.

Приложение закона равновесия

Блок представляет собой устройство, которое состоит из колеса с желобом, по которому пропускают, трос, веревку или цепь, а также прикрепленной к оси колеса обоймы с крюком. Блок может быть неподвижным и подвижным. У неподвижного блока ось закреплена, и она не двигается при подъеме или опускании груза. Неподвижный блок помогает изменить направление действия силы. Перекинув через такой блок, подвешенный вверху, веревку, мы можем, поднимать груз вверх, сами при этом находясь внизу. Однако выигрыша в силе применение неподвижного блока нам не дает. Мы можем представить блок в виде рычага, вращающегося вокруг неподвижной опоры - оси блока. Тогда радиус блока будет равен плечам, приложенных с двух сторон сил, - силы тяги нашей веревки с грузом с одной стороны и силы тяжести груза с другой. Плечи будут равны, соответственно, выигрыша в силе нет.

Иначе обстоит дело с подвижным блоком. Подвижный блок перемещается вместе с грузом, он как бы лежит на веревке. В таком случае точка опоры в каждый момент времени будет находиться в месте соприкосновения блока с веревкой с одной стороны, воздействие груза будет приложено к центру блока, где он и крепится на оси, а сила тяги будет приложена в месте соприкосновения с веревкой с другой стороны блока. То есть плечом веса тела будет радиус блока, а плечом силы нашей тяги - диаметр. Диаметр, как известно, в два раза больше радиуса, соответственно, плечи различаются по длине в два раза, и выигрыш в силе, получаемый с помощью подвижного блока, равен двум. На практике применяют комбинацию неподвижного блока с подвижным. Закрепленный вверху неподвижный блок не дает выигрыша в силе, однако помогает поднимать груз, стоя внизу. А подвижный блок, перемещаясь вместе с грузом, увеличивает прикладываемую силу вдвое, помогая поднимать большие грузы на высоту.

Золотое правило механики

Возникает вопрос: а дают ли применяемые устройства выигрыш в работе? Работа есть произведение пройденного пути на приложенную силу. Рассмотрим рычаг с плечами, различающимися в два раза по длине плеча. Этот рычаг даст нам выигрыш в силе в два раза, однако, в два раза большее плечо при этом пройдет в два раза больший путь. То есть, несмотря на выигрыш в силе, совершенная работа будет одинакова. В этом и заключается равенство работ при использовании простых механизмов: во сколько раз мы имеем выигрыш в силе, во столько раз, мы проигрываем в расстоянии. Это правило называется золотым правилом механики , и оно применимо абсолютно ко всем простым механизмам. Поэтому простые механизмы облегчают труд человека, но не уменьшают совершаемую им работу. Они просто помогают переводить одни виды усилий в другие, более удобные в конкретной ситуации.

Рычагом называют твердое тело, которое может вращаться вокруг неподвижной точки. Неподвижную точку называют точкой опоры . Расстояние от точки опоры до линии действия силы называют плечом этой силы.

Условие равновесия рычага : рычаг находится в равновесии, если приложенные к рычагу силы F 1 и F 2 стремятся вращать его в противоположных направлениях, причем модули сил обратно пропорциональны плечам этих сил: F 1 /F 2 = l 2 /l 1 Это правило было установлено Архимедом. По легенде он воскликнул: Дайте мне точку опоры и я подниму Землю .

Для рычага выполняется «золотое правило» механики (если можно пренебречь трением и массой рычага).

Прикладывая к длинному рычагу некоторую силу, можно другим концом рычага поднимать груз, вес которого намного превышает эту силу. Это означает, что, используя рычаг, можно получить выигрыш в силе. При использовании рычага выигрыш в силе обязательно сопровождается таким же проигрышем в пути.

Все типы рычагов:

Момент силы. Правило моментов

Произведение модуля силы на ее плечо называют моментом силы . M = Fl , где М - момент силы, F - сила, l - плечо силы.

Правило моментов : рычаг находится в равновесии, если сумма моментов сил, стремящихся вращать рычаг в одном направлении, равна сумме моментов сил, стремящихся вращать его в противоположном направлении. Это правило справедливо для любого твердого тела, способного вращаться вокруг закрепленной оси.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от ее плеча. Именно поэтому, например, желая открыть дверь, стараются приложить силу как можно дальше от оси вращения. С помощью небольшой силы при этом создают значительный момент, и дверь открывается. Открыть ее, оказывая давление около петель, значительно труднее. По той же причине гайку легче отворачивать более длинным гаечным ключом, шуруп легче вывернуть с помощью отвертки с более широкой ручкой и т. д.

Единицей момента силы в СИ является ньютон-метр (1 Н*м). Это момент силы 1 Н, имеющей плечо 1 м.