Какая водоросль вступает в симбиоз с грибами. Взаимоотношения гриба и водоросли в теле лишайника

Считается, что мутуализм (взаимовыгодный симбиоз) двух видов живых существ должен формироваться постепенно, в результате долгой коэволюции. Однако эксперименты американских биологов показали, что многие виды грибов и одноклеточных водорослей могут образовывать мутуалистические системы практически мгновенно, без предшествующего периода взаимной адаптации и без каких-либо генетических модификаций. Для этого гриб и водоросль должны оказаться в среде, где они будут друг для друга единственными источниками необходимых веществ, таких как углекислый газ и аммоний. Исследование подтвердило гипотезу «экологического соответствия», согласно которой не все существующие в природе мутуалистические системы следует трактовать как результат длительной предшествующей коэволюции.

Облигатным (обязательным) мутуализмом называют взаимовыгодные отношения между двумя видами, не способными существовать друг без друга. Принято считать, что такие отношения формируются постепенно, в ходе длительной коэволюции и взаимной адаптации, «притирки» организмов друг к другу. Несомненно, во многих случаях так оно и было (см. Н. Проворов, Е. Долгих, 2006. Метаболическая интеграция организмов в системах симбиоза).

Разумеется, не всякий вид способен встроиться в новое окружение. При интродукции происходит своеобразная сортировка, в ходе которой одни пришельцы приживаются на новом месте, а другие погибают. Так или иначе, приходится признать, что целостное и взаимосвязанное сообщество может сформироваться не только за счет идущей миллионы лет коэволюционной «притирки» видов друг к другу, но и за счет подбора из числа случайных мигрантов таких видов, которые удачно дополняют друг друга и хорошо уживаются вместе. Эту идею, известную под названием ecological fitting (что можно приблизительно перевести как «экологическое соответствие» или «экологический подбор»), начиная с 1980-х годов развивает известный американский эколог Дэниел Джензен (Daniel Janzen).

Могут ли облигатно-мутуалистические системы, обычно считающиеся чем-то вроде апофеоза коэволюции, формироваться по такой же схеме, то есть без всякой коэволюции - просто за счет случайного соответствия двух случайно встретившихся видов, которые при определенных условиях оказываются неспособными жить друг без друга? Эксперименты, проведенные биологами из Гарвардского университета (США), позволяют ответить на этот вопрос утвердительно.

Авторы работали с обычными пекарскими почкующимися дрожжами Saccharomyces cerevisiae и не менее обычными одноклеточными водорослями хламидомонадами (Chlamydomonas reinhardtii). В природе эти виды в мутуалистических отношениях замечены не были. В лаборатории, однако, они вступили в неразрывную связь легко и быстро, без всякой эволюции или генетических модификаций. Для этого оказалось достаточно выращивать дрожжи и хламидомонады без доступа воздуха в среде, где глюкоза является единственным источником углерода, а нитрит калия - единственным источником азота.

Схема мутуалистических взаимоотношений дрожжей и хламидомонад довольно проста (рис. 1). Дрожжи питаются глюкозой и производят углекислый газ, необходимый хламидомонадам для фотосинтеза (использовать содержащуюся в среде глюкозу хламидомонады не умеют). Водоросли, со своей стороны, восстанавливают нитрит, переводя азот в доступную для дрожжей форму (аммоний). Таким образом, дрожжи обеспечивают хламидомонады углеродом, а хламидомонады снабжают дрожжи азотом. В таких условиях ни один из видов не может расти без другого. Это и есть облигатный мутуализм.

Авторы убедились, что мутуалистическая система благополучно растет в широком диапазоне концентраций глюкозы и нитрита, хотя в одиночку ни один из двух видов в этих условиях не выживает. Только при очень сильном снижении концентрации глюкозы или нитрита рост смешанной культуры прекращается.

Если раскупорить систему, то есть предоставить ей доступ к атмосферному CO2, получается сообщество, в котором только один из участников (дрожжи) не может жить без другого, тогда как второй участник (хламидомонады) уже не нуждается в первом для выживания. Впрочем, даже в этом случае хламидомонады лучше растут в присутствии дрожжей, чем без них (очевидно, дополнительный CO2, выделяемый дрожжами, идет им на пользу). Таким образом, система остается мутуалистической, хотя со стороны водорослей мутуализм уже не облигатный. Ни один из видов не вытесняет другой.

Если добавить в среду аммоний, получается обратная ситуация: теперь дрожжи могут жить без водорослей (и вообще не нуждаются в них), тогда как водоросли по-прежнему не могут жить без дрожжей. Это уже не мутуализм, а комменсализм (нахлебничество со стороны водорослей). В этом случае дрожжи, которые размножаются быстрее водорослей, заполняют всё жизненное пространство, доводя хламидомонады до вымирания. Авторы предполагают, что устойчивость таких асимметричных систем (в которых только один из участников сильно зависит от другого) определяется соотношением скоростей размножения. Если зависимый вид размножается быстрее, чем независимый, то сожительство двух видов может быть устойчивым; в противном случае независимый вид может полностью вытеснить своего напарника.

Авторы провели аналогичные эксперименты с другими видами хламидомонад и грибов-аскомицетов. Оказалось, что почти все виды дрожжей в данных условиях образуют облигатно-мутуалистические взаимоотношения с хламидомонадами. Правда, продуктивность (скорость роста) симбиотических комплексов оказывается разной. От чего она зависит, определить не удалось: авторы не нашли связи ни со склонностью дрожжей к кислородному дыханию или бескислородному метаболизму (брожению), ни с природными местообитаниями дрожжей, ни со скоростью размножения, ни со степенью влияния концентрации нитритов на рост дрожжей. Очевидно, дело в каких-то других особенностях изученных видов.

Одноклеточная водоросль хлорелла отказалась вступать в мутуалистические отношения с дрожжами, потому что она сама умеет питаться глюкозой и в смешанной культуре вытесняет дрожжи. Не стали образовывать облигатно-мутуалистические комплексы с водорослями дрожжи Hansenula polymorpha, потому что они сами умеют использовать нитрит в качестве источника азота. Но все же исследование показало, что самые разные виды аскомицетов и хламидомонад готовы вступить в симбиотические отношения друг с другом, попав в подходящие условия.

Из многоклеточных (точнее, образующих нитчатые гифы) аскомицетов были протестированы два классических лабораторных объекта - Neurospora crassa и Aspergillus nidulans. Оба вида умеют восстанавливать нитрит и потому не образуют облигатно-мутуалистических систем с хламидомонадами. Однако генетически модифицированные штаммы этих грибов, лишенные способности утилизировать нитрит, вступили в симбиоз с водорослями точно так же, как и дрожжи. Как выяснилось, при этом клетки хламидомонад вступают в непосредственный физический контакт с гифами грибов: под микроскопом видны гифы, обвешанные хламидомонадами, как новогодняя елка (рис. 2).

Мутуалистические взаимоотношения хламидомонад с дрожжами, по-видимому, тоже требуют установления физических контактов между клетками. Об этом свидетельствует тот факт, что систематическое встряхивание смешанной культуры дрожжей и водорослей резко замедляет рост симбиотической системы.

При помощи электронного микроскопа авторы обнаружили плотные контакты, образующиеся между клеточными стенками Aspergillus nidulans и Chlamydomonas reinhardtii, причем клеточная стенка водоросли в местах контакта становится тоньше - возможно, под действием ферментов, выделяемых грибом.

Похожие межклеточные контакты характерны для классических грибно-водорослевых симбиотических систем - лишайников. Аскомицеты в ходе своей эволюции много раз вступали в симбиоз с водорослями и цианобактериями, образуя лишайники. Лишайникообразующие группы разбросаны по всему филогенетическому дереву аскомицетов. Это значит, что такие эволюционные события происходили многократно и независимо в разных эволюционных линиях грибов (см. F. Lutzoni et al., 2001. Major fungal lineages are derived from lichen symbiotic ancestors). По-видимому, аскомицеты в целом «предрасположены» (преадаптированы) к формированию мутуалистических комплексов с одноклеточными водорослями. Эксперименты американских ученых, возможно, проливают свет на ранние стадии формирования таких комплексов.

Впрочем, не следует переоценивать сходство полученных в эксперименте мутуалистических систем с лишайниками. Хотя бы потому, что у большинства лишайников только грибной компонент не может жить в одиночку, тогда как фотосинтезирующие компоненты (одноклеточные водоросли и цианобактерии), как правило, могут прекрасно жить и без гриба. То есть лишайники не являются облигатно-мутуалистическими системами. Да и отсутствие доступа к атмосферному CO2 вряд ли является проблемой, с которой водорослям часто приходится сталкиваться в природе. Главное в обсуждаемой работе - демонстрация общего принципа. Исследование показало, что облигатный мутуализм может сложиться мгновенно, без всякой эволюции - просто за счет того, что изменившиеся условия делают виды взаимозависимыми. Разумеется, для того, чтобы из такого наспех сформированного симбиотического комплекса развилось что-то действительно сложное и высоко интегрированное, вроде лишайника, без миллионов лет коэволюции уже не обойтись.

ОПРЕДЕЛЯЕМ ПРОБЛЕМУ УРОКА

Антошка: На коре деревьев и камнях я видел растения в виде тонких кожистых измятых пластинок и серых ветвистых трубочек. Биолог: Это не растения, а лишайники - особая группа живых организмов. Они больше похожи на целую экосистему, чем на отдельный организм.

Сформулируй вопросы, которые нужно задать биологу, чтобы понять его слова. Сравни с авторским вариантом (стр. 171).

Чем лишайники отличаются от растений и грибов?

ВСПОМИНАЕМ ТО, ЧТО ЗНАЕМ

Что такое симбиоз? (§ 13)

Симбиоз - взаимовыгодное сожительство организмов разных видов.

Что такое экосистема? (§ 2)

Экосистема - это единство неживой природы и живых организмов разных «профессий».

Какие примеры симбиоза ты уже изучал? (§ 13, 17)

Симбиоз клубеньковых бактерий с бобовыми растениями; коров с бактериями в их желудке; грибов с деревьями и травами.

РЕШАЕМ ПРОБЛЕМУ, ОТКРЫВАЕМ НОВЫЕ ЗНАНИЯ

Найди в тексте ответы на вопросы:

1) Почему лишайники нельзя назвать растениями?

2) Каковы отличия этой группы от других организмов?

Лишайники – это симбиоз гриба и водоросли. Поэтому лишайник представляет собой не только отдельный организм, но и целую миниатюрную «экосистему», которая может жить самостоятельно.

Лишайники существенно отличаются от других групп организмов, в том числе и от свободноживущих грибов и водорослей, особой биологией: способами размножения, медленным ростом, отношением к экологическим условиям и др.

Лишайники часто обитают в местах, где другие наземные растения выжить не могут.

Выскажи предположение, о чём говорится в тексте с таким названием. С чем связана такая особенность лишайников?

В тексте объясняется, в чем преимущество лишайников в выживании в неблагоприятных для других организмах условиях.

В одном организме лишайника уже присутствуют и водоросли-производители, и грибы-потребители. Поэтому лишайник представляет собой не только отдельный организм, но и целую миниатюрную «экосистему», которая может жить самостоятельно. При симбиозе гриба и водоросли возможно заселение мест, где друг без друга они нежизнеспособны.

Чтобы проверить своё предположение, прочитай текст, ведя диалог с автором: В - задай вопрос автору текста; О - спрогнозируй ответ; П - проверь себя по тексту. После чтения текста сделай вывод по проблеме урока.

Каких именно «профессий» и почему? О Попытайтесь вспомнить.

В одном организме лишайника уже присутствуют и водоросли-производители, и грибы-потребители.

Только совместными усилиями они могут поддерживать круговорот веществ.

Вывод: Симбиоз гриба и водоросли в лишайнике позволяет им выжить в неблагоприятных для других организмах условиях.

Какими свойствами должна обладать верхняя поверхность лишайника?

Верхняя поверхность лишайника должна быть плотная и гладкая.

ПРИМЕНЯЕМ НОВЫЕ ЗНАНИЯ

1. Что такое лишайники?

Лишайники - не растения, а симбиоз гриба и водоросли.

2. Какие ты знаешь группы лишайников?

1. Накипные лишайники - тонкие плёнки разных цветов, которы плотно прилегают к поверхности, на которой обитают.

2. Листоватые лишайники в виде пластин, местами плотно прижатых к грунту, а местами отходящих от него.

3. Кустистые лишайники в виде воронок, ветвящихся трубочек, ветвистых лент и жгутов.

3. Почему лишайники могут селиться в самых сухих местах?

Лишайник насыщается влагой после дождя или росы.

4. Как гриб и водоросль, сосуществуя в лишайнике, помогают друг другу?

В лишайнике гриб укрывает водоросль и удерживает для неё влагу, а водоросль поставляет грибу органические вещества.

5. Почему лишайники считают отдельной группой живых организмов, а не экосистемой совместно обитающих водорослей и грибов?

Гриб и водоросль в лишайнике очень тесно взаимодействуют между собой.

Виды грибов, составляющих лишайник, в природе вообще не существуют без водорослей, именно поэтому лишайники не могут являться экосистемой совместно обитающих водорослей и грибов.

6. Вообразите биосферу, где растут только лишайники. С какими проблемами встретились бы её обитатели? Пусть один из вас предлагает идеи, а другой оценивает. Затем поменяйтесь заданиями.

Одна из проблем, с которой бы столкнулась биосфера из одних лишайников – это накопление продуктов распада этих организмов за счет отсутствия разрушителей. Круговорот веществ прекратился бы, планета превратилась бы в свалку отмерших лишайников.

Еще одной проблемой могло стать истощение в атмосфере запасов углекислого газа. За счет процесса фотосинтеза, происходящего в водорослях, активно накапливался бы кислород. Конечно, частично он используется при дыхании водорослей и грибов лишайника, но этого объема может быть недостаточно для сохранения баланса кислорода и углекислого газа.

7. Почему не бывает лишайников в форме высокого дерева?

Лишайники растут очень медленно: за год увеличиваются на считаные миллиметры, а некоторые - на доли миллиметра.

МОИ БИОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Увлажни листоватый или кустистый лишайник. Рассмотри приземную сторону листоватого или внутреннюю сторону кустистого под микроскопом. Рассмотри верхнюю сторону. Рассмотри срез лишайника. Постарайся обнаружить клетки водорослей и гифы грибов. Зарисуй их.


Царство растений. Водоросли

Водоросли – обитатели воды. Они живут в водоемах с красной водой, соленой, а есть и такие, которые живут на коре деревьев.

Водоросли:

– одноклеточные (хламидомонада, хлорелла)

– многоклеточные (улотрикс, спирогира).

Группа водорослей содержит отделы: Зеленые, Бурые, Красные. Водоросли являются производителями первичного органического вещества. Водоросли поддерживают уровень кислорода в атмосфере. Из водорослей получают множество химических веществ, необходимых человеку:

– альгинаты;

– кизельгур;

– ламинария используется в пищу, порфира – настоящий деликатес;

– одноклеточная водоросль – хлорелла использовалась в качестве лабораторного объекта в космических исследованиях.

Человек использует водоросли в хозяйстве, употребляет их в пищу.

Кроме пользы водоросли могут наносить определенный вред, например при разложении остатков в водоеме накапливается огромное число аэробных бактерий, которые приводят к резкому истощению запасов кислорода в воде. В результате начинается гибель всех других организмов водоема.

Царство растений. Лишайники

Лишайники - необычные растения. У них нет ясно выраженных листьев и стеблей, расселяются они при помощи спор. Тайну лишайника - "растения-сфинкса", как называл его К. А. Тимирязев, - ученые долго не могли разгадать. Наконец, удалось установить, что лишайники вовсе не самостоятельные организмы, а... сочетание гриба с водорослью! Оказывая друг на друга благотворное влияние, эти два растения слились настолько полно, что получился своеобразный организм. Столь поразительному факту некоторые ученые даже отказывались верить. Но их сомнениям пришел конец, когда удалось осуществить "искусственный синтез" лишайника из составляющих его гриба и водоросли.

Польза, которую гриб получает от сожительства с водорослью, очевидна. Водоросль питает себя и своего сожителя органическими веществами, которые синтезирует при помощи животворных солнечных лучей из углекислого газа, поглощаемого из воздуха или воды.

Грибы же доставляют водорослям минеральные соли. Кроме того, пронизывая гифами места своего произрастания и оплетая водоросли, они помогают им удержаться на твердой поверхности почвы, коры деревьев, скал, защищают их от холода и засухи. Именно поэтому так живучи лишайники, так легко переносят они и изнуряющую жару, и морозы.

Такое сожительство различных организмов, основанное на взаимной пользе, часто встречается в природе. Оно получило название симбиоза.

Лишайники разнообразны по внешнему виду и окраске. Они бывают кустистые, листоватые и накипные.

Тело лишайника – слоевище – единый организм, состоящий из гриба и водоросли, живущих в симбиозе. На грибных нитях иногда появляются присоски, которые проникают внутрь клеток водоросли.

Лишайники впитывают влагу всей поверхностью тела, главным образом влагу дождей, росы, туманов. Это позволяет поселяться им на голых, бесплодных скалах, на поверхности стекла, на крышах, в пустынях, везде, где есть свет. Без света фотосинтез в клетках водоросли не идет и лишайник погибает.

Размножение вегетативное (кусочками слоевища или группами клеток гриба и водоросли). Возможно самостоятельное размножение симбиотического гриба спорами.

Лишайники – индикаторы чистоты воздуха, корм для оленей, сырье для химической промышленности, некоторые можно употреблять в пищу.

Царство растений. Мхи

Мхи впервые появились на Земле более 350 млн. лет назад - намного раньше динозавров. Они входят в группу так называемых бриофитов, к которой принадлежат также менее знакомые нам печеночники и антоцеротовые.

Это, как правило, низкорослые растения, не более нескольких сантиметров в высоту, стелющиеся по земле. В подавляющем большинстве мхи не имеют специальных тканей, осуществляющих перенос питательных веществ и воды из одной части растения в другую. Нет у них и настоящих корней, стеблей и листьев. Так, «корни» мха предназначены лишь для удержания его на одном месте. Вода и питательные вещества впитываются всей поверхностью растения. Нет у мхов ни цветков, ни семян. Вместо этого обычно на верхушке растения появляются небольшие спороносные коробочки на длинных тонких ножках - так называемые спорогонии. Из спор вырастают растения, в которых образуются женские и мужские половые клетки - яйцеклетки и сперматозоиды. Оплодотворенные яйцеклетки, в свою очередь, дают начало новому поколению споро-образующих растений. Цикл включает в себя, таким образом, чередование полового и бесполого поколения (гаметофита и спорофита).

Многолетние растения, низкорослые, тело – таллом покрыто узкими зелеными листьями, корней нет. Приспособлены к обитанию во влажных местах и прикрепляются тонкими нитевидными выростами стебля – ризоидами. Питание – хлорофилл. Поглощение воды осуществляется всей поверхностью тела.

Питание автотрофное – хлорофилл содержится в хлоропластах зеленых клеток.

Размножаются бесполым путем – спорами и половым – слиянием мужских и женских гамет. Половое поколение – гаметофит, стебель с листьями, образующий половые клетки (гаметы) больше выражен, чем бесполое – спорофит, на котором формируются споры.

Наблюдается чередование поколений. Одно из поколений у всех растений всегда преобладает над другим. Это поколение называют доминирующим. Мхи единственные из наземных растений, у которых гаметофит доминирует над спорофитом.

Отмирающие части мхов образуют торф. Болота и леса, в которых произрастают мхи, служат накопителями влаги и влияют на водный режим территории.



Считается, что мутуализм (взаимовыгодный симбиоз) двух видов живых существ должен формироваться постепенно, в результате долгой коэволюции. Однако эксперименты американских биологов показали, что многие виды грибов и одноклеточных водорослей могут образовывать мутуалистические системы практически мгновенно, без предшествующего периода взаимной адаптации и без каких-либо генетических модификаций. Для этого гриб и водоросль должны оказаться в среде, где они будут друг для друга единственными источниками необходимых веществ, таких как углекислый газ и аммоний. Исследование подтвердило гипотезу «экологического соответствия», согласно которой не все существующие в природе мутуалистические системы следует трактовать как результат длительной предшествующей коэволюции.

Облигатным (обязательным) мутуализмом называют взаимовыгодные отношения между двумя видами, не способными существовать друг без друга. Принято считать, что такие отношения формируются постепенно, в ходе длительной коэволюции и взаимной адаптации, «притирки» организмов друг к другу. Несомненно, во многих случаях так оно и было (см. Н. Проворов, Е. Долгих, 2006. Метаболическая интеграция организмов в системах симбиоза).

Разумеется, не всякий вид способен встроиться в новое окружение. При интродукции происходит своеобразная сортировка, в ходе которой одни пришельцы приживаются на новом месте, а другие погибают. Так или иначе, приходится признать, что целостное и взаимосвязанное сообщество может сформироваться не только за счет идущей миллионы лет коэволюционной «притирки» видов друг к другу, но и за счет подбора из числа случайных мигрантов таких видов, которые удачно дополняют друг друга и хорошо уживаются вместе. Эту идею, известную под названием ecological fitting (что можно приблизительно перевести как «экологическое соответствие» или «экологический подбор»), начиная с 1980-х годов развивает известный американский эколог Дэниел Джензен (Daniel Janzen).

Могут ли облигатно-мутуалистические системы, обычно считающиеся чем-то вроде апофеоза коэволюции, формироваться по такой же схеме, то есть без всякой коэволюции - просто за счет случайного соответствия двух случайно встретившихся видов, которые при определенных условиях оказываются неспособными жить друг без друга? Эксперименты, проведенные биологами из Гарвардского университета (США), позволяют ответить на этот вопрос утвердительно.

Авторы работали с обычными пекарскими почкующимися дрожжами Saccharomyces cerevisiae и не менее обычными одноклеточными водорослями хламидомонадами (Chlamydomonas reinhardtii ). В природе эти виды в мутуалистических отношениях замечены не были. В лаборатории, однако, они вступили в неразрывную связь легко и быстро, без всякой эволюции или генетических модификаций. Для этого оказалось достаточно выращивать дрожжи и хламидомонады без доступа воздуха в среде, где глюкоза является единственным источником углерода, а нитрит калия - единственным источником азота.

Схема мутуалистических взаимоотношений дрожжей и хламидомонад довольно проста (рис. 1). Дрожжи питаются глюкозой и производят углекислый газ, необходимый хламидомонадам для фотосинтеза (использовать содержащуюся в среде глюкозу хламидомонады не умеют). Водоросли, со своей стороны, восстанавливают нитрит, переводя азот в доступную для дрожжей форму (аммоний). Таким образом, дрожжи обеспечивают хламидомонады углеродом, а хламидомонады снабжают дрожжи азотом. В таких условиях ни один из видов не может расти без другого. Это и есть облигатный мутуализм.

Авторы убедились, что мутуалистическая система благополучно растет в широком диапазоне концентраций глюкозы и нитрита, хотя в одиночку ни один из двух видов в этих условиях не выживает. Только при очень сильном снижении концентрации глюкозы или нитрита рост смешанной культуры прекращается.

Если раскупорить систему, то есть предоставить ей доступ к атмосферному CO 2 , получается сообщество, в котором только один из участников (дрожжи) не может жить без другого, тогда как второй участник (хламидомонады) уже не нуждается в первом для выживания. Впрочем, даже в этом случае хламидомонады лучше растут в присутствии дрожжей, чем без них (очевидно, дополнительный CO 2 , выделяемый дрожжами, идет им на пользу). Таким образом, система остается мутуалистической, хотя со стороны водорослей мутуализм уже не облигатный. Ни один из видов не вытесняет другой.

Если добавить в среду аммоний, получается обратная ситуация: теперь дрожжи могут жить без водорослей (и вообще не нуждаются в них), тогда как водоросли по-прежнему не могут жить без дрожжей. Это уже не мутуализм, а комменсализм (нахлебничество со стороны водорослей). В этом случае дрожжи, которые размножаются быстрее водорослей, заполняют всё жизненное пространство, доводя хламидомонады до вымирания. Авторы предполагают, что устойчивость таких асимметричных систем (в которых только один из участников сильно зависит от другого) определяется соотношением скоростей размножения. Если зависимый вид размножается быстрее, чем независимый, то сожительство двух видов может быть устойчивым; в противном случае независимый вид может полностью вытеснить своего напарника.

Авторы провели аналогичные эксперименты с другими видами хламидомонад и грибов-аскомицетов. Оказалось, что почти все виды дрожжей в данных условиях образуют облигатно-мутуалистические взаимоотношения с хламидомонадами. Правда, продуктивность (скорость роста) симбиотических комплексов оказывается разной. От чего она зависит, определить не удалось: авторы не нашли связи ни со склонностью дрожжей к кислородному дыханию или бескислородному метаболизму (брожению), ни с природными местообитаниями дрожжей, ни со скоростью размножения, ни со степенью влияния концентрации нитритов на рост дрожжей. Очевидно, дело в каких-то других особенностях изученных видов.

Одноклеточная водоросль хлорелла отказалась вступать в мутуалистические отношения с дрожжами, потому что она сама умеет питаться глюкозой и в смешанной культуре вытесняет дрожжи. Не стали образовывать облигатно-мутуалистические комплексы с водорослями дрожжи Hansenula polymorpha , потому что они сами умеют использовать нитрит в качестве источника азота. Но все же исследование показало, что самые разные виды аскомицетов и хламидомонад готовы вступить в симбиотические отношения друг с другом, попав в подходящие условия.

Из многоклеточных (точнее, образующих нитчатые гифы) аскомицетов были протестированы два классических лабораторных объекта - Neurospora crassa и Aspergillus nidulans . Оба вида умеют восстанавливать нитрит и потому не образуют облигатно-мутуалистических систем с хламидомонадами. Однако генетически модифицированные штаммы этих грибов, лишенные способности утилизировать нитрит, вступили в симбиоз с водорослями точно так же, как и дрожжи. Как выяснилось, при этом клетки хламидомонад вступают в непосредственный физический контакт с гифами грибов: под микроскопом видны гифы, обвешанные хламидомонадами, как новогодняя елка (рис. 2).

Мутуалистические взаимоотношения хламидомонад с дрожжами, по-видимому, тоже требуют установления физических контактов между клетками. Об этом свидетельствует тот факт, что систематическое встряхивание смешанной культуры дрожжей и водорослей резко замедляет рост симбиотической системы.

При помощи электронного микроскопа авторы обнаружили плотные контакты, образующиеся между клеточными стенками Aspergillus nidulans и Chlamydomonas reinhardtii , причем клеточная стенка водоросли в местах контакта становится тоньше - возможно, под действием ферментов, выделяемых грибом.

Похожие межклеточные контакты характерны для классических грибно-водорослевых симбиотических систем - лишайников. Аскомицеты в ходе своей эволюции много раз вступали в симбиоз с водорослями и цианобактериями, образуя лишайники. Лишайникообразующие группы разбросаны по всему филогенетическому дереву аскомицетов. Это значит, что такие эволюционные события происходили многократно и независимо в разных эволюционных линиях грибов (см. F. Lutzoni et al., 2001. Major fungal lineages are derived from lichen symbiotic ancestors). По-видимому, аскомицеты в целом «предрасположены» (преадаптированы) к формированию мутуалистических комплексов с одноклеточными водорослями. Эксперименты американских ученых, возможно, проливают свет на ранние стадии формирования таких комплексов.

Впрочем, не следует переоценивать сходство полученных в эксперименте мутуалистических систем с лишайниками. Хотя бы потому, что у большинства лишайников только грибной компонент не может жить в одиночку, тогда как фотосинтезирующие компоненты (одноклеточные водоросли и цианобактерии), как правило, могут прекрасно жить и без гриба. То есть лишайники не являются облигатно-мутуалистическими системами. Да и отсутствие доступа к атмосферному CO 2 вряд ли является проблемой, с которой водорослям часто приходится сталкиваться в природе. Главное в обсуждаемой работе - демонстрация общего принципа. Исследование показало, что облигатный мутуализм может сложиться мгновенно, без всякой эволюции - просто за счет того, что изменившиеся условия делают виды взаимозависимыми. Разумеется, для того, чтобы из такого наспех сформированного симбиотического комплекса развилось что-то действительно сложное и высоко интегрированное, вроде лишайника, без миллионов лет коэволюции уже не обойтись.

Все составляющие части животного и растительного мира находятся в тесной взаимосвязи между собой и вступают в сложные взаимоотношения. Некоторые благоприятны для участников или вообще жизненно важны, например лишайники (представляют собой результат симбиоза гриба и водоросли), другие безразличны, третьи же приносят вред. Исходя из этого, принято различать три вида взаимоотношений организмов - это нейтрализм, антибиоз и симбиоз. Первый, по сути, не представляет ничего особенного. Это такие отношения между популяциями, обитающими на одной территории, при которых они не влияют друг на друга, не взаимодействуют. А вот антибиоз и симбиоз - примеры, которых встречаются очень часто, являются важными компонентами естественного отбора и участвуют в дивергенции видов. Остановимся на них более подробно.

Симбиоз: что это такое?

Представляет собой достаточно распространенную форму взаимовыгодного сожительства организмов, при которой существование одного партнера невозможно без другого. Наиболее известный случай - это симбиоз гриба и водоросли (лишайники). Причем первый получает продукты фотосинтеза, синтезируемые вторым. А водоросль извлекает минеральные соли и воду из гиф гриба. Жизнь по отдельности невозможна.

Комменсализм

Комменсализм - это фактически одностороннее использование одним видом другого, без оказания на него вредного воздействия. Может осуществляться в нескольких формах, но основных две:


Все остальные в какой-то мере являются модификациями этих двух форм. Например, энтойкия, при которой один вид обитает в теле другого. Наблюдается это у рыбок карапус, которые используют в качестве жилища клоаку голотурий (вид иглокожих), но питаются за ее пределами различными мелкими рачками. Или эпибиоз (одни виды живут на поверхности у других). В частности, усоногие рачки хорошо себя чувствуют на горбатых китах, абсолютно им не мешая.

Кооперация: описание и примеры

Кооперация - это такая форма взаимоотношений, при которой организмы могут прожить отдельно, но иногда объединяются для общей пользы. Получается, что это необязательный симбиоз. Примеры:

Взаимное сотрудничество и совместное проживание в животной среде не редкость. Приведем лишь некоторые наиболее интересные примеры.


Симбиотические отношения между растениями

Симбиоз растений очень распространен, и если приглядеться внимательно к окружающему нас миру, то можно невооруженным глазом увидеть его.

Симбиоз (примеры) животных и растений


Примеры очень многочисленны, и многие отношения между разными элементами растительного и животного мира еще мало изучены.

Что такое антибиоз?

Симбиоз, примеры которого встречаются практически на каждом шагу, в том числе и в жизни человека, в составе естественного отбора является важным компонентом эволюции в целом.