Виды связей в органических соединениях. Теория строения органических соединений

Многообразие неорганических и органических веществ

Органическая химия - это химия соединений угле­рода . К неорганическим со­единениям углерода относят: оксиды углерода, угольную кислоту, карбонаты и гидро­карбонаты, карбиды. Органи­ческие вещества, кроме угле­рода, содержат водород, кислород, азот, фосфор, серу и др. элементы . Атомы углерода могут образо­вывать длинные неразветвленные и разветвленные цепи, кольца, присоединять другие элементы, по­этому число органических соединений приблизи­лось к 20 млн, тогда как неорганических веществ насчитывается немногим более 100 тысяч.

Основой развития органической химии явля­ется теория строения органических соединений А. М. Бутлерова. Важная роль в описании стро­ения органических соединений принадлежит по­нятию валентности, которая характеризует спо­собность атомов к образованию химических связей и определяет их число. Углерод в органических соединениях всегда четырехвалентен . Основным постулатом теории А. М. Бутлерова является по­ложение о химическом строении вещества, т. е. химическая связь. Этот порядок отображают при помощи структурных формул. Теория Бутлерова утверждает идею о том, что каждое вещество име­ет определенное химическое строение исвойства веществ зависят от строения .


Теория химического строения органических соединений А. М. Бутлерова

Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии осно­вополагающей стала .


Теория химического строения органических соединений А. М. Бутлерова

Основным постулатом теории Бутлерова явля­ется положение о химическом строении вещества, под которым понимается порядок, последователь­ность взаимного соединения атомов в молекулы, т. е. химическая связь .

Химическое строение - порядок соединения атомов химических элементов в мо­лекуле согласно их валент­ности.

Этот порядок может быть отображен при помощи структурных формул, в кото­рых валентности атомов обозначаются черточка­ми: одна черточка соответствует единице валент­ности атома химического элемента . Например, для органического вещества метана, имеющего моле­кулярную формулу СН 4 , структурная формула вы­глядит так:

Основные положения теории А. М. Бутлерова:

· Атомы в молекулах органических веществ связаны друг с другом согласно их валентности . Углерод в органических со­единениях всегда четырехва­лентен, а его атомы способны соединяться друг с другом, образуя различные цепи.

· Свойства веществ опре­деляются не только их каче­ственным и количественным составом, но и порядком со­единения атомов в молекуле, т. е. химическим строением вещества .

· Свойства органических соединений зависят не только от состава вещества и поряд­ка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп ато­мов друг на друга.

Теория строения органи­ческих соединений является динамичным и развиваю­щимся учением. По мере развития знаний о при­роде химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структур­ных, электронными формулами. В таких форму­лах показывают направление смещения электрон­ных пар в молекуле .

Квантовая химия и химия строения органи­ческих соединений подтвердили учение о про­странственном направлении химических связей (цис- и транс изомерия), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в мо­лекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направле­ний и механизмов протекания химических реак­ций.

Органические вещества имеют ряд особенно­стей.

· В состав всех органических веществ входят углерод и водород, поэтому при горении они обра­зуют углекислый газ и воду .

· Органические вещества построены сложно и могут иметь огромную молекулярную массу (бел­ки, жиры, углеводы).

· Органические вещества можно расположить в ряды сходных по составу, строению и свойствам гомологов .

· Для органических веществ характерной яв­ляется изомерия .

Изомерия и гомология органических веществ

Свойства органических веществ зависят не толь­ко от их состава, но и от порядка соединения ато­мов в молекуле .

Изомерия - это явление существования разных веществ - изомеров с одинаковым качественным и количественным составом, т. е. с одинаковой молекуляр­ной формулой.

Различают два вида изо­мерии: структурную и про­странственную (стереоизо­мерию). Структурные изомеры отличаются друг от друга по­рядком связи атомов в молекуле; стереоизомеры - расположением атомов в пространстве при одинако­вом порядке связей между ними.

Основные виды изомерии:

· Структурная изомерия - вещества разли­чаются порядком связи атомов в молекулах:

1) изомерия углеродного скелета;

2) изомерия положения:

  • кратных связей;
  • заместителей;
  • функциональных групп;

3) изомерия гомологических рядов (межклассо­вая).

· Пространственная изомерия - молекулы ве­ществ отличаются не порядком связи атомов, а по­ложением их в пространстве: цис-, транс-изомерия (геометрическая).

Классификация органических веществ

Известно, что свойства органических веществ определяются их составом и химическим строени­ем. Поэтому неудивительно, что в основе класси­фикации органических соединений лежит именно теория строения - теория А. М. Бутлерова. Классифицируют органические вещества по наличию и по­рядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органиче­ского вещества является ее скелет - цепь атомов угле­рода . В зависимости от по­рядка соединения атомов углерода в этой цепи ве­щества делятся на ациклические , не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические , содержащие такие цепи (ци­клы) в молекулах.

Помимо атомов углерода и водорода молеку­лы органических веществ могут содержать атомы и других химических элементов. Вещества, в мо­лекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероци­клическим соединениям.

Гетероатомы (кислород, азот и др.) могут вхо­дить в состав молекул и ациклических соединений, образуя в них функциональные группы, например,

гидроксильную

карбонильную

,

кар­боксильную

,

аминогруппу

.

Функциональная группа - группа атомов, которая определяет наиболее характерные хими­ческие свойства вещества и его принадлежность к определенному классу соединений.

Номенклатура органических соединений

В начале развития орга­нической химии открывае­мым соединениям присваи­вались тривиальные назва­ния , часто связанные с исто­рией их получения: уксусная кислота (являющаяся осно­вой винного уксуса), масля­ная кислота (образующаяся в сливочном масле), гликоль (т. е. «сладкий») и т. д. По мере увеличения числа новых открытых веществ возникла необходимость связывать названия с их строением. Так появи­лись рациональные названия: метиламин, диэти­ламин, этиловый спирт, метилэтилкетон, в основе которых лежит название простейшего соединения. Для более сложных соединений рациональная но­менклатура непригодна.

Теория строения А. М. Бутлерова дала основу для классификации и номенклатуры органических соединений по структурным элементам и по распо­ложению атомов углерода в молекуле. В настоящее время наиболее употребляемой является номен­клатура, разработанная Международным союзом теоретической и прикладной химии (IUPAC) , кото­рая называется номенклатурой ИЮПАК . Правила ИЮПАК рекомендуют для образования названий несколько принципов, один из них - принцип замещения. На основе этого разработана замести­тельная номенклатура, которая является наиболее универсальной. Приведем несколько основных правил заместительной номенклатуры и рассмо­трим их применение на примере гетерофункцио­нального соединения, содержащего две функцио­нальные группы, - аминокислоты лейцина:

1. В основе названия соединений лежит родо­начальная структура (главная цепь ациклической молекулы, карбоциклическая или гетероцикличес­кая система). Название родоначальной структуры составляет основу названия, корень слова.

В данном случае родоначальной структурой яв­ляется цепь из пяти атомов углерода, связанных одинарными связями. Таким образом, коренная часть названия - пентан.

2. Характеристические группы и заместители (структурные элементы) обозначаются префикса­ми и суффиксами. Характеристические группы подразделяются по старшинству. Порядок стар­шинства основных групп:

Выявляют старшую характеристическую груп­пу, которую обозначают в суффиксе. Все остальные заместители называют в префиксе в алфавитном по­рядке.

В данном случае старшей характеристической группой является карбоксильная, т. е. это соеди­нение относится к классу карбоновых кислот, по­этому к коренной части названия добавляем -овая кислота. Второй по старшинству группой являет­ся аминогруппа, которая обозначается префиксом амино-. Кроме этого, молекула содержит углево­дородный заместитель метил-. Таким образом, ос­новой названия является аминометилпентановая кислота.

3. В название включают обозначение двойной и тройной связи, которое идет сразу после корня.

Рассматриваемое соединение не содержит крат­ных связей.

4. Атомы родоначальной структуры нумеруют. Нумерацию начинают с того конца углеродной це­пи, к которому ближе расположена старшая ха­рактеристическая группа:

Нумерацию цепи начинают с атома углерода, входящего в состав карбоксильной группы, ему присваивается номер 1. В этом случае аминогруп­па окажется при углероде 2, а метил - при угле­роде 4.

Таким образом, природная аминокислота лей­цин по правилам номенклатуры ИЮПАК называ­ется 2-амино-4-метилпентановая кислота.

Углеводороды. Классификация углеводородов

Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

В зависимости от строения углеродной цепи ор­ганические соединения разделяют на соединения с открытой цепью - ациклические (алифатичес­кие) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атома­ми углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические .

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие ци­клы с особой замкнутой системой р-электронов , об­разующих общую π-систему (единое π-электронноеоблако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и ци­клические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в от­личие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды на­зывают алканами , они имеют общую формулу С n Н 2n+2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее вре­мя - парафины:

Непредельные алифатические углеводороды, содержащие одну двойную связь, получили назва­ние алкены . Они имеют общую формулу C n H 2n:

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиена­ми . Их общая формула C n H 2n-2:

Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула C n H 2n — 2:

Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2n:

Особая группа углеводородов, ароматических, или аренов (с замкнутой общей л-электронной си­стемой), известна из примера углеводородов с об­щей формулой С n Н 2n — 6:

Таким образом, если в их молекулах один или большее число атомов водорода заменить на дру­гие атомы или группы атомов (галогены, гидрок­сильные группы, аминогруппы и др.), образуются производные углеводородов: галогенопроизводные, кислородсодержащие, азотсодержащие и другие ор­ганические соединения.

Гомологический ряд углеводородов

Углеводороды и их производные с одной и той же функциональной группой образуют гомологи­ческие ряды.

Гомологическим рядом называют ряд соедине­ний, принадлежащих к одному классу (гомологов), рас­положенных в порядке воз­растания их относительных молекулярных масс, сход­ных по строению и химиче­ским свойствам, где каждый член отличается от предыду­щего на гомологическую разность CH 2 . Например: CH 4 - метан, C 2 H 6 - этан, C 3 H 8 - пропан, C 4 H 10 - бутан и т. д. Сходство хи­мических свойств гомологов значительно упрощает изуче­ние органических соединений.

Изомеры углеводородов

Те атомы или группы атомов, которые опреде­ляют самые характерные свойства данного класса веществ, называются функциональными груп­пами .

Галогенопроизводные углеводородов можно рас­сматривать как продукты за­мещения в углеводородах од­ного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предель­ные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные .

Общая формула моногалогенопроизводных пре­дельных углеводородов:

а состав выражается формулой

где R - остаток от предельного углеводорода (алка­на), углеводородный радикал (это обозначение исполь­зуется и далее при рассмотрении других классов ор­ганических веществ), Г - атом галогена (F, Cl, Br, I).

Например:

Приведем один пример дигалогенопроизводного:

К кислородсодержащим органическим веще­ствам относят спирты, фенолы, альдегиды, кетоны, карбоновые кислоты, простые и сложные эфиры. Спирты - производные углеводородов, в кото­рых один или несколько атомов водорода замеще­ны на гидроксильные группы.

Спирты называют одноатомными, если они имеют одну гидроксильную группу, и предельны­ми, если они являются производными алканов.

Общая формула предельных одноатомных спир­тов :

а их состав выражается общей формулой:

Например:

Известны примеры многоатомных спиртов , т. е. имеющих несколько гидроксильных групп:

Фенолы - производные ароматических углево­дородов (ряда бензола), в которых один или не­сколько атомов водорода в бензольном кольце за­мещены на гидроксильные группы.

Простейший представитель с формулой C 6 H 5 OH или

называется фенолом.

Альдегиды и кетоны - производные углеводо­родов, содержащие карбонильную группу атомов

(карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углево­дородным радикалом. Общая формула альдегидов:

Например:

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами, об­щая формула кетонов:

Например:

Состав предельных альдегидов и кетонов выра­жается формулой С 2n Н 2n О.

Карбоновые кислоты - производные углеводо­родов, содержащие карбоксильные группы

(или -СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных однооснов­ных кислот:

Их состав выражается формулой С n Н 2n О 2 .

Например:

Простые эфиры представляют собой органиче­ские вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-O-R или R 1 -O-R 2 .

Радикалы могут быть одинаковыми или разны­ми. Состав простых эфиров выражается формулой C n H 2n+2 O.

Например:

Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной груп­пы в карбоновых кислотах на углеводородный ра­дикал.

Общая формула сложных эфиров:

Например:

Нитросоединения - производные углеводоро­дов, в которых один или несколько атомов водо­рода замещены на нитрогруппу -NO 2 .

Общая формула предельных мононитросоедине­ний:

а состав выражается общей формулой C n H 2n+1 NO 2 .

Например:

Нитропроизводные аренов:

Амины - соединения, которые рассматривают как производные аммиака (NH 3), в котором атомы водорода замещены на углеводородные радикалы. В зависимости от природы радикала амины мо­гут быть алифатическими, например:

и ароматическими, например:

В зависимости от числа замещенных на радика­лы атомов водорода различают:

первичные амины с общей формулой:

вторичные - с общей формулой:

третичные - с общей формулой:

В частном случае у вторичных, а также третич­ных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в кото­рых один атом водорода замещен на аминогруп­пу -NH 2 . Состав предельных первичных аминов выражается формулой C n H 2n + 3 N.

Например:

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радика­лом: аминогруппу -NH 2 и карбоксил -COOH.

Общая формула α-аминокислот (они наиболее важны для построения белков, из которых состоят живые организмы):

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой C n H 2n+1 NO 2.

Например:

Известны и другие важные органические соеди­нения, которые имеют несколько разных или одинаковых функциональных групп, длинные линей­ные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлеж­ности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы ве­ществ: углеводы, белки, ну­клеиновые кислоты, антибио­тики, алкалоиды и др.

В настоящее время из­вестно также много соедине­ний, которые можно отнести и к органическим, и к неорганическим. х назы­вают элементоорганическими соединениями. Некоторые из них можно рассматривать как производные углеводородов.

Например:

Существуют соединения, имеющие одинаковую молекулярную формулу, выражающую состав ве­ществ.

Явление изомерии состо­ит в том, что могут существо­вать несколько разных по свойствам веществ, имеющих одинаковый состав молекул, но разное строение. Эти ве­щества называют изомерами.

В нашем случае это меж­классовые изомеры: цикло­алканы и алканы, алкадиены и алкины, предельные одно­атомные спирты и простые эфиры, альдегиды и кетоны, предельные одноос­новные карбоновые кислоты и сложные эфиры.

Структурная изомерия

Выделяют следующие разновидности струк­турной изомерии : изомерию углеродного скелета, изомерию положения, изомерию различных клас­сов органических соединений (межклассовую изо­мерию).

Изомерия углеродного скелета обусловлена раз­личным порядком связи между атомами углерода , образующими скелет молекулы. Как уже было показано, молекулярной формуле С 4 Н 10 соответ­ствуют два углеводорода: н-бутан и изобутан. Для углеводорода С 5 Н 12 возможны три изомера: пентан, изопентан и неопентан.

C увеличением числа атомов углерода в молеку­ле число изомеров быстро растет. Для углеводоро­да С 10 Н 22 их уже 75, а для углеводорода С 20 Н 44 - 366 319.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:

Изомерия различных классов органических соединений (межклассовая изомерия) обусловле­на различным положением и сочетанием атомов в молекулах веществ, имеющих одинаковую мо­лекулярную формулу, но принадлежащих к раз­ным классам. Так, молекулярной формуле С 6 Н 12 соответствует ненасыщенный углеводород гексен-1 и циклический углеводород циклогексан.

Изомерами являются углеводород, относящий­ся к алкинам, - бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:

Диэтиловый эфир и бутиловый спирт имеют одинаковую молекулярную формулу С 4 Н 10 O:

Структурными изомерами являются аминоук­сусная кислота и нитроэтан, отвечающие молекулярной формуле С 2 Н 5 NO 2:

Изомеры этого типа содержат различные функ­циональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры поло­жения.

Пространственная изомерия

Пространственная изомерия подразделяется на два вида: геометрическую и оптическую.

Геометрическая изомерия характерна для со­единений, содержащих двойные связи, и цикли­ческих соединений . Так как свободное вращение атомов вокруг двойной связи или в цикле невоз­можно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис-положение), либо по разные стороны (транс­положение). Обозначения цис- и транс- обычно от­носят к паре одинаковых заместителей.

Геометрические изомеры различаются по физи­ческим и химическим свойствам .

Оптическая изомерия возникает, если молеку­ла несовместима со своим изображением в зеркале . Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называ­ют асимметрическим. Примером такой молекулы является молекула α-аминопропионовой кислоты (α-аланина) CH 3 CH(NH 2)OH.

Молекула α-аланина ни при каком перемеще­нии не может совпасть со своим зеркальным отра­жением. Такие пространственные изомеры называ­ются зеркальными, оптическими антиподами, или энантиомерами. Все физические и практически все химические свойства таких изомеров идентичны.

Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов - биологических катали­заторов. Молекулы данных веществ должны под­ходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположе­ние участков молекул и другие пространственные факторы имеют для течения этих реакций боль­шое значение. Такие реакции называются стерео­селективными.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологиче­ское действие (начиная от вкуса и запаха и закан­чивая лекарственным действием) резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологичес­кой активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов - обмена веществ.


Изомерия

Электронное строение атома углерода

Углерод, входящий в состав органических соединений проявляет постоянную валентность. На последнем энергетическом уровне атома углерода содержится 4 электрона , два из которых занимают 2s-орбиталь, имеющую сферическую форму, а два электрона занимают 2р-орбитали, имеющие гантелеподобную форму. При возбуждении один электрон из 2s-орбитали может переходить на одну из вакантных 2р-орбиталей. Этот переход требует некоторых энергетических затрат (403 кДж/моль). В результате возбужденный атом углерода имеет 4 неспаренных электрона и его электронная конфигурация выражается формулой 2s 1 2p 3 .. Так, в случае углеводорода метана (СН 4) атом углерода образует 4 связи с s-электронами атомов водорода. При этом должны были бы образовываться 1 связь типа s-s (между s-электроном атома углерода и s-электроном атома водорода) и 3 p-s-связи (между 3 р-электронами атома углерода и 3 s-электронами 3-х атомов водорода). Отсюда вытекает вывод о неравноценности четырех ковалентных связей, образуемых атомом углерода. Однако, практический опыт химии свидетельствует о том, что все 4 связи в молекуле метана абсолютно равноценны, а молекула метана имеет тетраэдрическое строение с валентными углами 109,5 0 , чего не могло бы быть при неравноценности связей. Ведь только орбитали р-электронов ориентированы в пространстве по взаимно перпендикулярным осям x, y, z, а орбиталь s-электрона имеет сферическую форму, поэтому направление образования связи с этим электроном было бы произвольным. Объяснить это противоречие смогла теория гибридизации. Л.Поллинг высказал предположение, что в любых молекулах не существует изолированных друг от друга связей. При образовании связей орбитали всех валентных электронов перекрываются. Известно несколько типов гибридизации электронных орбиталей . Предполагается, что в молекуле метана и других алканов в гибридизацию вступает 4 электрона.

Гибридизация орбиталей атома углерода

Гибридизация орбиталей — это изменение формы и энергии некоторых электронов при образовании ковалентной связи, приводящее к более эффективному перекрыванию орбиталей и повышению прочности связей. Гибридизация орбиталей происходит всегда, когда в образовании связей участвуют электроны, принадлежащие к различным типам орбиталей.

1. sp 3 -гибридизация (первое валентное состояние углерода). При sp 3 -гибридизации 3 р-орбитали и одна s-орбиталь возбужденного атома углерода взаимодействуют таким образом, что получаются орбитали абсолютно одинаковые по энергии и симметрично расположенные в пространстве. Это преобразование можно записать так:

При гибридизации общее число орбиталей не изменяется, а изменяется только их энергия и форма. Показано, что sр 3 -гибридизация орбитали напоминают объемную восьмерку, одна из лопастей которой значительно больше другой. Четыре гибридных орбитали вытянуты от центра к вершинам правильного тетраэдра под углами 109,5 0 . Связи образованные гибридными электронами (например связь s-sp 3) более прочные, чем связи, осуществляемые негибридизованными р-электронами (например, связь-s-p). Поскольку гибридная sp 3 -орбиталь обеспечивает большую площадь перекрывания электронных орбиталей, чем негибридизованная р-орбиталь. Молекулы, в которых осуществляется sp 3 — гибридизация имеют тетраэдрическое строение. К ним, кроме метана, относятся гомологи метана, неорганические молекулы типа аммиака. На рисунках показана гибридизованная орбиталь и тетраэдрическая молекула метана.


Химические связи, возникающие в метане между атомами углерода и водорода относятся к типу σ-связей (sp 3 -s-связь). Вообще говоря любая сигма-связь характеризуется тем, что электронная плотность двух связанных между собой атомов, перекрывается по линии, соединяющей центры (ядра) атомов. σ-Связи отвечают максимально возможной степени перекрывания атомных орбиталей, поэтому они достаточно прочны.

2. sp 2 -гибридизация (второе валентное состояние углерода). Возникает в результате перекрывания одной 2s и двух 2р орбиталей. Образовавшиеся sp 2 -гибридные орбитали располагаются в одной плоскости под углом 120 0 друг к другу, а негибридизованная р-орбиталь перпендикулярно к ней. Общее число орбиталей не меняется — их четыре.

Состояние sp 2 -гибридизации встречается в молекулах алкенов, в карбонильной и карбоксильной группах, т.е. у соединений, имеющих в своем составе двойную связь. Так, в молекуле этилена гибридизованные электроны атома углерода образуют 3 σ-связи (две связи типа sp 2 -s между атомом углерода и атомами водорода и одна связь типа sp 2 -sp 2 между атомами углерода). Оставшийся негибридизованным р-электрон одного атома углерода образует π-связь с негибридизованным р-электроном второго атома углерода. Характерной особенностью π-связи является то, что перекрывание орбиталей электронов идет вне линии, соединяющей два атома. Перекрывание орбиталей идет выше и ниже σ-связи, соединющей оба атома углерода. Таким образом двойная связь является комбинацией σ- и π-связей. На первых двух рисунках показано, что в молекуле этилена валентные углы между атомами, образующими молекулу этилена, составляют 120 0 (соответственно ориентации с пространстве трех sp 2 -гибридных орбиталей). На рисунках показано образование π-связи.


Поскольку площадь перекрывания негибридизованных р-орбиталей в π-связях меньше, чем площадь перекрывания орбиталей в σ-связях, то π-связь менее прочна, чем σ-связь и легче разрывается в химических реакциях.

3. sp-гибридизация (третье валентное состояние углерода). В состоянии sр-гибридизации атом углерода имеет две sр-гибридные орбитали, расположенные линейно под углом 180 0 друг к другу и две негибридизованные р-орбитали расположенные в двух взаимно перпендикулярных плоскостях. sр-гибридизация характерна для алкинов и нитрилов, т.е. для соединений, имеющих в своем составе тройную связь.

Так, в молекуле ацетилена валентные углы между атомами составляют 180 o . Гибридизованные электроны атома углерода образуют 2 σ-связи (одна связь sp-s между атомом углерода и атомом водорода и другая связь типа sp-sp между атомами углерода. Два негибридизованных р-электрона одного атома углерода образуют две π-связи с негибридизованными р электронами второго атома углерода. Перекрывание орбиталей р-электронов идет не только выше и ниже σ-связи, но и спереди и сзади, а суммарное облако р-электронов имеет цилиндрическую форму. Таким образом тройная связь является комбинацией одной σ-связи и двух π-связей. Наличие в молекуле ацетилена менее прочных двух π-связей, обеспечивает способность этого вещества вступать в реакции присоединения с разрывом тройной связи.


Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Данный урок поможет вам получить представление о теме «Ковалентная связь в органических соединениях». Вы вспомните природу химических связей. Узнаете о том, за счет чего образуется ковалентная связь, что является основой этой связи. На этом уроке также рассматривается принцип построения формул Льюиса, рассказывается о характеристиках ковалентной связи (полярности, длине и прочности), объясняется теория А. Бутлерова, рассказывается о том, что такое индуктивный эффект.

Тема: Введение в органическую химию

Урок: Ковалентная связь в органических соединениях.

Свойства связи (полярность, длина, энергия, направленность)

Химическая связь имеет в основном электростатический характер. Например, молекула водорода образуется из двух атомов, потому что двум электронам энергетически выгодно находиться в поле притяжения двух ядер (протонов). Это состояние в виде молекулы Н 2 обладает меньшей энергией по сравнению с двумя отдельными атомами водорода.

Большинство органических веществ содержат .

Для образования ковалентной связи между двумя атомами каждый атом обычно предоставляет в общее пользование по одному электрону.

В упрощенной модели используется двухэлектронное приближение, т.е. все молекулы строятся на основании суммирования двух электронных связей, характерных для молекулы водорода.

С точки зрения закона взаимодействия электрических зарядов (закон Кулона) электроны не могут сблизиться из-за огромных сил электростатического отталкивания. Но, согласно законам квантовой механики, электроны с противоположно направленными спинами взаимодействуют друг с другом и образуют электронную пару.

Если ковалентную связь обозначать как пару электронов, получим еще один вид записи формулы вещества - электронную формулу или формулу Льюиса

(амер. Дж. Льюис, 1916 г.). Рис. 1.

Рис. 1. Формулы Льюиса

В органических молекулах имеются не только одинарные связи, но еще двойные и тройные. В формулах Льюиса их обозначают, соответственно, двумя или тремя парами электронов. Рис. 2

Рис. 2. Обозначение двойной и тройной связей

Рис. 3. Ковалентная неполярная связь

Важной характеристикой ковалентной связи является ее полярность . Связь между одинаковыми атомами, например в молекуле водорода или между атомами углерода в молекуле этана неполярная - в ней электроны в равной степени принадлежат обоим атомам. См. Рис. 3.

Рис. 4. Ковалентная полярная связь

Если же ковалентная связь образована различными атомами, то электроны в ней смещены к более электроотрицательному атому. Например, в молекуле хлороводорода электроны смещены к атому хлора. На атомах возникают небольшие частичные заряды, которые обозначают d+ и d-. Рис. 4.

Чем больше разница между электроотрицательности атомов, тем более полярная связь.

Взаимное влияние атомов в молекуле приводит к тому, что может происходить смещение электронов связи, даже если они находятся между одинаковыми атомами.

Например, в 1,1,1-трифторэтане CH 3 CF 3 электроотрицательные атомы фтора «стягивают» на себя электронную плотность с атома углерода. Часто это обозначают стрелочкой вместо валентной черточки.

В результате у атома углерода, связанного с атомами фтора, возникает недостаток электронной плотности, и он перетягивает валентные электроны к себе. Такое смещение электронной плотности по цепи связей называется индуктивным эффектом заместителей . Рис. 5.

Рис. 5. Смещение электронной плотности в 1,1,1-трифторэтане

Длина и прочность связи

Важными характеристиками ковалентной связи являются ее длина и прочность. Длина большинства ковалентных связей составляет от 1*10 -10 м до 2*10 -10 м или от 1 до 2 в ангстремах (1 А = 1*10 -10 м).

Прочность связи - это энергия, которую нужно затратить, чтобы разорвать эту связь. Обычно приводят величины разрыва 1 моль или 6,023*10 23 связей. См. табл. 1.

Одно время считалось, что молекулы можно изображать структурными формулами, лежащими в плоскости бумаги, и эти формулы отражают, почти отражают, истинное строение молекулы. Но примерно в середине 19 века выяснилось, что это не так. Впервые к такому выводу пришел, как я уже говорил на предыдущих уроках, тогда еще студент Вант-Гофф. А сделал он это на основании экспериментов выдающегося французского биолога и химика Пастера.

Дело в том, что Пастер занимался изучением солей винной кислоты. И ему, можно сказать, повезло. Кристаллизуя смешанную соль винной кислоты, он под микроскопом обнаружил, что у него получается, в общем-то, набор совершенно одинаковых, весьма симпатичных кристаллов. Но эти кристаллы легко разделить на две группы, которые никак не совместимы друг с другом, а именно: все кристаллы делятся на две части, одна из которых является зеркальным отражением другой.

Так была впервые открыта оптическая, или зеркальная, . Пастер смог вручную пинцетом под микроскопом разделить эти кристаллы и обнаружил, что все химические свойства практически совпадают. Не совпадает только одно, скорее, физическое свойство, а именно: растворы одного типа кристаллов и ему зеркального другого типа кристаллов по-разному вращали плоскость поляризации света, проходящего через них.

Рис. 6. Модели молекулы метана

Для того чтобы объяснить результаты экспериментов Пастера, Вант-Гофф предположил, что атом углерода находится всегда в неплоском окружении, причем это не плоское окружение не имеет ни центра, ни плоскости симметрии. Тогда атом углерода, соединенный с 4 другими различными фрагментами молекулы, не одинаковыми между собой, должен обладать зеркальной симметрией. Именно тогда Вант-Гофф предположил тетраэдрическое строение атома углерода. Оптическая изомерия следовала из этого предположения. В результате удалось объяснить пространственное строение органических соединений. Рис. 6.

Но ученые столкнулись с еще одной загадкой, которую не удалось разрешить до сих пор. Дело в том, что в природе органические соединения, которые образуются действительно в органической живой материи, как правило, содержат левовращающие, имеется в виду плоскость поляризации проходящего света, аминокислоты и правовращающие сахара. В то время как при любом органическом синтезе обязательно получается смесь таких изомеров.

Причина такой избирательности живой природы не ясна до сих пор. Но это не мешает ученым продолжать синтезировать все новые органические соединения и изучать их свойства.

В нарисованных на плоскости формулах не отражается пространственное расположение атомов относительно друг друга. Однако тетраэдрическое строение атома углерода в молекулах с одинарными связями приводит к существованию оптической изомерии

Подведение итога урока

Вы получили представление о теме «Ковалентная связь в органических соединениях». Вы вспомнили природу химических связей. Узнали о том, за счет чего образуется ковалентная связь, что является основой этой связи. Рассмотрели принцип построения формул Льюиса. Узнали о характеристиках ковалентной связи (полярности, длине и прочности), что такое индуктивный эффект.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 12, 15 (с. 11) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Составьте структурные и электронные формулы этана С 2 Н 6 , этена С 2 Н 4 , пропина С 3 Н 8.

3. Приведите примеры из неорганической химии, показывающие, что атомы в молекуле влияют друг на друга и их свойства при этом изменяются.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1. Гибридизация атомных орбиталей углерода

Атомная орбиталь - это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако - это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.

Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона.

В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона. На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму.

Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) s р 3 -орбиталей:

Это - s р 3 -гибридизация.

Гибридизация - выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

ТЕТРАЭДР (углы = 109°28?

s р 2 -Гибридизация - смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные s р 2 -орбитали.

Эти s р 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°.

Негибридизованная р -орбиталь перпендикулярна к плоскости трех гибридных s р 2 -орбиталей (ориентирована вдоль осиz ).

Верхняя половина р -орбитали находится над плоскостью, нижняя половина - под плоскостью.

Тип s р 2 -гибридизации углерода бывает у соединений с двойной связью:

С=С, С=О, С=N.

Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.)

Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи(р )-связью.

s р -Гибридизация s - и одной р s р -орбиталей. s р -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две р у -связей. На рисунке s р -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Тройная углерод-углеродная связь С?С состоит из у-связи, возникающей при перекрывании sp -гибридных орбиталей, и двух р-связей.

2. Реакции электрофильного замещения атомов водорода в ряду бензола

1. Реакция галогенирования . Реакция галогенирования бензольного кольца осуществляется в присутствии катализаторов (чаще всего галогенидов железа или алюминия). Роль катализатора состоит в образовании сильнополяризованного комплекса с галогеном: ФОРМУЛА. Крайний слева атом хлора в комплексе становится электрононенасыщенным в результате поляризации связи Cl - Cl и способным к взаимодействию с нуклеофильными реагентами (в данном случае с бензолом):

д - комплекс отщепляет протон и превращается в продукт замещения (хлорбензол). Протон взаимодействует с - с регенерацией хлорида алюминия, образуя при этом хлористый водород:

В случае избытка галогена могут быть получены ди- и полигалогензамещенные, вплоть до полного замещения всех атомов водорода в бензоле.

Прямое йодирование в ароматическом ядре не удается провести вследствие малой реакционной способности йода. Прямое фторирование ароматических углеводородов протекает настолько энергично, что образуется сложная смесь продуктов, в которой целевые фторпроизводные содержатся в небольших количествах. В зависимости от условий проведения реакции галогенирования алкилбензолов галоген может замещать атомы водорода в бензольном кольце («на холоду» в присутствии кислот Льюиса) или в боковой цепи (при нагревании или на свету). В последнем случае реакция идет по свободнорадикальному механизму, подобно механизму замещения в алканах.

2. Реакция нитрования . Бензол медленно реагирует с концентрированной азотной кислотой. Скорость нитрования значительно возрастает, если реакцию нитрования проводить смесью концентрированных азотной и серной кислот (обычно в соотношении 1:2); эту смесь называют нитрующей.

Процесс происходит благодаря тому, что серная кислота, как более сильная, протонирует азотную кислоту, а образовавшаяся протонированная частица разлагается на воду и активный электрофильный реагент - нитроний-катион (катион нитрония).

Реакция нитрования бензола является реакцией электрофильного замещения и носит ионный характер. Вначале происходит образование р -комплекса в результате взаимодействия электронов бензольного кольца с положительно заряженной частицей нитроний-катиона.

Затем происходит переход р-комплекса в у-комплекс. При этом два р -электрона из шести идут на образование ковалентной связи С-NO2+. Оставшиеся четыре -электрона распределяются между пятью углеродными атомами бензольного кольца. Образуется у -комплекс в виде неустойчивого карбкатиона.

Неустойчивый у -комплекс под воздействием иона HSO4- теряет протон с формированием ароматической структуры нитробензола.

3. Реакция сульфирования . Для введения сульфогруппы в бензольное кольцо используют дымящуюся серную кислоту, т. е. содержащую избыток серного ангидрида (SO3). Электрофильной частицей является SO3. Механизм сульфирования ароматических соединений включает следующие стадии:

4. Реакция алкилирования по Фриделю-Крафтсу. Роль катализатора (обычно AlCl3) в этом процессе заключается в усилении поляризации галогеналкила с образованием положительно заряженной частицы, которая вступает в реакцию электрофильного замещения: ФОРМУЛА

3. Антрацен: строение и основные химические свойства

Антрацен - соединение, молекула которого состоит из трех ароматических колец, лежащих в одной плоскости. Его получают из антраценовой фракции каменноугольной смолы, кипящей при 300…350 °С. В лабораторной практике антрацен можно получить

а) по реакции Фриделя-Крафтса:

б) по реакции Фиттига:

В молекуле антрацена наиболее активны девятое и десятое положения, находящиеся под влиянием двух крайних колец. Антрацен легко вступает в реакции присоединения по этим положениям:

При действии окислителей антрацен легко образует антрахинон, который широко используется для синтеза красителей:

4. Сопряженные диены и способы их синтеза

Диеновыми углеводородами (диенами) называют ненасыщенные углеводороды, имеющие две двойные связи, общей формулы СnH2n-2.

Две двойные связи в молекуле углеводорода могут быть расположены различным образом. Если они сосредоточены у одного углеродного атома, их называют кумулированными:-C=C=C- Если две двойные связи разделены одной простой связью, их называют сопряженными:-C=C - C=C- Если же двойные связи разделены двумя и более простыми связями, то их называют изолированными: -C=C- (CH2)n - C=C-

5. Правила ориентации в бензольном кольце

При изучении реакций замещения в бензольном кольце было обнаружено, что если в нем уже содержится какой-либо заместитель, то в зависимости от его характера второй вступает в определенное положение. Таким образом, каждый заместитель в бензольном кольце проявляет определенный направляющий или ориентирующий эффект. На положение вновь вводимого заместителя также оказывает влияние природа самого заместителя, т. е. имеет ли действующий реагент электрофильную или нуклеофильную природу. Все заместители по характеру своего направляющего действия в делятся на две группы.

Заместители первого рода направляют вводимую группу в орто- и пара - положения:

К заместителям этого рода относятся следующие группы, расположенные в порядке убывания своей ориентирующей силы: N(CH3)2,NH2, OH, CH3 и другие алкилы, а также Cl, Br, I.

Заместители второго рода в реакциях электрофильного замещения направляют вводимые группы в мета-положение. К заместителям этого рода относятся следующие группы: - NO2,- C N, - SO3H, - CHO, - COOH.

6. Природа двойной связи и химические свойства этиленовых соединений

По современным представлениям две связи, соединяющие два ненасыщенных углеродных атома, не одинаковы: одна из них является у-связью, а другая р-связью. Последняя связь менее прочна и «разрывается» при реакциях присоединения.

О неравноценности двух связей в непредельных соединениях говорит, в частности, сравнение энергии образования простой и двойной связей. Энергия образования простой связи равна 340 кДж/моль (примерно 82 ккал/моль), а двойной - 615 кДж/моль (примерно 147 ккал/моль). Естественно, что для разрыва р -связи затрачивается меньше энергии, чем для разрыва у-связи. Таким образом, непрочность двойной связи объясняется тем, что одна из двух связей, образующих двойную связь, имеет иное электронное строение, чем обычные -связи, и обладает меньшей прочностью.

Названия олефинов обычно производят от названия соответствующих предельных углеводородов, но окончание -ан заменяется окончанием -илен. По международной номенклатуре вместо окончания -илен олефинам придают более краткое окончание -ен .

Изомерия олефинов зависит от изомерии цепи атомов углерода, т. е. от того, является ли цепь неразветвленной или разветвленной, и о тположения двойной связи в цепи. Существует еще и третья причина изомерии олефинов: различное расположение атомов и атомных групп в пространстве, т. е. стереоизомерия. Изомерия, зависящая от различного расположения в пространстве атомов и атомных групп, получила название пространственной изомерии , или стереоизомерии .

Геометрическая , или цис- и транс-изомерия , - это вид пространственной изомерии, зависящей от различного расположения атомов по отношению к плоскости двойной связи.

Для обозначения места двойной связи (а также ответвлений в цепи) согласно международной номенклатуре ИЮПАК нумеруют атомы углерода самой длинной цепи, начиная с того конца, к которому ближе стоит двойная связь. Таким образом, два изомера бутилена, обладающие неразветвленной цепью, будут называться бутен-1 и бутен-2:

1. Реакция гидрирования . Непредельные углеводороды легко присоединяют водород по двойной связи в присутствии катализаторов 67 (Pt, Pd, Ni). С Pt или Pd катализатором реакция идет при 20…100 °С, с Ni - при более высоких температурах:

2. Реакция галогенирования . Алкены при обычных условиях присоединяют галогены, особенно легко хлор и бром. В результате образуются дигалогенопроизводные алканов, содержащие галогены у соседних атомов углерода, так называемые вицинальные дигалогеналканы: CH

3CH=CH2 + Cl2> CH3CHClCH2Cl

3. Реакция присоединения галогенводородов. Гидрогалогенирование

4. Реакция гидратации алкенов. В обычных условиях алкены не реагируют с водой. Но в присутствии катализаторов при нагревании и давлении они присоединяют воду и образуют спирты:

5. Реакция присоединения серной кислоты. Взаимодействие алкенов с серной кислотой протекает аналогично присоединению галогенводородов. В результате образуются кислые эфиры серной кислоты:

6. Реакция алкилирования алкенов . Возможно каталитическое присоединение к алкенам алканов с третичным атомом углерода (катализаторы - H2SO4, HF, AlCl3 и BF3):

7. Реакция окисления алкенов . Алкены легко окисляются. В зависимости от условий окисления образуются различные продукты.При сжигании на воздухе алкены превращаются в диоксид углерода и воду: CH2=CH2 + 3O2> 2CO2 + 2H2O.

При взаимодействии алкенов с кислородом воздуха в присутствии серебряного катализатора образуются органические окиси:

Аналогично действуют на этилен гидропероксиды ацилов (реак- ция Прилежаева):

Одна из наиболее характерных реакций окисления - взаимодействие алкенов со слабощелочным раствором перманганата калия KMnO4 c образованием двухатомных спиртов - гликолей (реакция Вагнера). Реакция протекает на холоду следующим образом:

Концентрированнные растворы окислителей (перманганат калия в кислой среде, хромовая кислота, азотная кислота) разрывают молекулу алкена по двойной связи с образованием кетонов и кислот:

8. Реакция озонирования алкенов. Она также широко используется для установления структуры алкенов:

9. Реакции замещения. Алкены в определенных условиях способны и к реакциям замещения. Так, при высокотемпературном (500…550 °С) хлорировании алкенов происходит замещение водорода в аллильном положении:

10. Реакция полимеризации алкенов

СН2 = СН2 > (-СН2 - СН2 -)n получается полиэтилен

11. Реакция изомеризации . При высоких температурах или в присутствии катализаторов алкены способны изомеризоваться, при этом происходит либо изменение строения углеродного скелета, либо перемещение двойной связи:

7. Нафталин и его строение. Правило Хюккеля

Углеводороды нафталинового ряда являются основным ароматическим углеводородом каменноугольной смолы. Существует большое число полициклических ароматических соединений, в которых бензольные кольца имеют общие орторасположенные атомы углерода. Наиболее важные из них - нафталин, антрацен и фенантрен. В антрацене кольца соединены линейно, тогда как в фенантрене - под углом в отличие от молекулы бензола не все связи в ядре нафталина имеют одинаковую длину:

Правило Хюккеля : ароматической является плоская моноциклическая сопряженная система, содержащая (4n + 2) p-электронов (где n = 0,1,2...).

Таким образом, ароматическими будут плоские циклические сопряженные системы, содержащие 2, 6,10, 14 и т.д. p-электронов.

8. Алкины и sp-гибридизация атома углерода. Способы получения алкинов

Углеводороды ряда ацетилена имеют общую формулу

Сn H2n -2

Первый простейший углеводород этого ряда - ацетилен С2Н2. В структурной формуле ацетилена, как и у других углеводородов этогоряда, содержится тройная связь:

Н - С? С - Н.

s р -Гибридизация - это смешивание (выравнивание по форме и энергии) одной s - и одной р -орбиталей с образованием двух гибридных s р -орбиталей. s р -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода.

Две р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно направлениям у -связей.

На рисунке s р -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Тройная углерод-углеродная связь С?С состоит из у-связи, возникающей при перекрывании sp-гибридных орбиталей, и двух р-связей.

Карбид кальция производят в промышленном масштабе нагреванием угля в электрических печах с негашеной известью при температуре около 2500 °С по реакции

CaO + 3C> CaC2 + CO.

Если на карбид кальция подействовать водой, то он бурно разлагается с выделением газа - ацетилена:

Более новый промышленный метод получения ацетилена - пиролиз углеводородов, в частности, метана, который при 1400 °С дает смесь ацетилена с водородом:

2CH4> H-C=C-H + 3H2.

1. Дегидрогалогенирование вицинальных дигалогеналканов

2. Реакция ацетиленидов натрия с первичными алкилгалогенидами:

3. Дегалогенирование вицинальных тетрагалогеналканов:

9. Методы получения и химические свойства спиртов

Спирты - это производные углеводородов, в которых один или несколько атомов водорода замещены на соответствующее число гидроксильных групп (-ОН).

Общая формула спиртов

где R - алкильная или замещенная алкильная группа.

Характер радикала R, с которым связана гидроксильная группа, определяет предельность или непредельность спиртов, а количество гидроксильных групп определяет его атомность: спирты бывают одноатомные, двухатомные, трехатомные и многоатомные.

Получение: 1. Гидратация алкенов

2. Ферментативный гидролиз углеводов . Ферментативный гидролиз сахаров под действием дрожжей - наиболее древний синтетический химический процесс - до сих пор имеет огромное значение для получения этилового спирта.

При использовании крахмала в качестве исходного материала, кроме этилового спирта, образуется еще (в меньших количествах) сивушное масло, представляющее собой смесь первичных спиртов, главным образом изопентилового, изопропилового и изобутилового.

3. Синтез метилового спирта:

4. Реакция гидроборирования-окисления алкенов :

5. Синтезы спиртов с помощью реактива Гриньяра :

Свойства: Химические свойства спиртов определяются как строением алкильного радикала, так и реакционноспособной гидроксильной группой. Реакции, идущие с участием гидроксильной группы, могут протекать либо с разрывом связи С-ОН (360 кДж/моль), либо с разрывом связи О-Н (429 кДж/моль) А. Разрыв связи С-ОН

1. Реакция с галогенводородами:

ROH + HX >RX + H2O.

Реакционная способность уменьшается в ряду: HI > HBr > HCl

2. Реакция с тригалогенидами фосфора:

3. Дегидратация спиртов в присутствии водоотнимающих агентов:

Б. Разрыв связи О-Н

4. Реакция спиртов с металлами (Na, K, Mg, Al)

5. Образование эфиров :

Реакция этерефикации

6. Реакции окисления При окислении спиртов хромовой смесью или KMnO4 в растворе серной кислоты состав продуктов зависит от характера углеродного атома (первичный, вторичный или третичный), с которым связана гидроксильная группа: первичные спирты образуют альдегиды, вторичные спирты - кетоны.

9. Алкадиены и способы их получения

Диеновыми углеводородами (диенами) называют ненасыщенные углеводороды, имеющие две двойные связи, общей формулы

Две двойные связи в молекуле углеводорода могут быть расположены различным образом.

Если они сосредоточены у одного углеродного атома, их называют кумулированными:

Если две двойные связи разделены одной простой связью, их называют сопряженными:

Если же двойные связи разделены двумя и более простыми связями, то их называют изолированными:-C=C- (CH2)n - C=C-

Диены обычно получают теми же методами, что и простые алкены. Например, наиболее важный диен, бутадиен-1,3 (используемый для получения синтетического каучука), получают в США при дегидрировании бутана:

В СССР применялся промышленный синтез бутадиена-1,3 по методу С.В. Лебедева (1933) из этилового спирта при 400…500 °С над катализатором MgO-ZnO:

Реакция включает следующие стадии: дегидрирование спирта до альдегида, альдольную конденсацию ацетальдегида, восстановление альдоля до бутандиола-1,3 и наконец дегидратацию спирта:

10. Электроотрицательность элементов и типы химических связей

Элемктроотрицамтельность (ч) (относительная электроотрицательность) -- фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары, то есть способность атомов оттягивать к себе электроны других атомов.

Самая высокая степень электроотрицательности у галогенов и сильных окислителей (p-элементов VII-группы, O, Kr, Xe), а низкая -- у активных металлов (s-элементов I группы).

Ионная. Электронная конфигурация инертного газа для любого атома может образоваться благодаря переносу электронов: атомы одного из элементов отдают электроны, которые переходят к атомам другого элемента.

В данном случае между этими атомами образуется так называемая ионная (электровалентная, гетерополярная) связь.

Такого типа связь возникает между атомами элементов, обладающих существенно различной электроотрицательностью (например, между типичным металлом и типичным неметаллом).

Ковалентная связь. При взаимодействии атомов, равных (атомы одного и того же элемента) или близких по электроотрицательности, переноса электронов не происходит. Электронная конфигурация инертного газа для таких атомов образуется вследствие обобщения двух, четырех или шести электронов взаимодействующими атомами. Каждая из обобществленных пар электронов образует одну ковалентную (гомеополярную) связь:

Ковалентная связь - наиболее распространенный в органической химии тип связи. Она достаточно прочная.

Ковалентная связь и соответственно молекула могут быть неполярными, когда оба связанных атома обладают одинаковым сродством к электрону (например, Н:Н). Она может быть полярной, когда электронная пара вследствие большего сродства к электрону одного из атомов оттянута в его сторону:

При таком способе обозначения + и - означают, что на атоме со значком - избыточная электронная плотность, а на атоме со значком + электронная плотность несколько понижена по сравнению с изолированными атомами.

Донорно-акцепторная связь. При взаимодействии атомов, имеющих неподеленные электронные пары с протоном или другим атомом, у которого не хватает до образования октета (дублета) двух электронов, неподеленная электронная пара становится общей и образует между этими атомами новую ковалентную связь.

При этом атом, отдающий электроны, называется донором, а атом, принимающий электроны, называется акцептором:

химический ковалентный бензольный нафталин

В возникающем ионе аммония образовавшаяся ковалентная связь отличается от связей, существовавших в молекуле аммиака, только способом образования, по физическим и химическим свойствам все четыре связи N-H абсолютно идентичны.

Семиполярная связь. Эта разновидность донорно-акцепторной связи часто встречается в молекулах органических соединений (например, в нитросоединениях, в сульфоксидах и др.).

Размещено на Allbest.ru

Подобные документы

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Основные положения данного метода. Гибридизация атомных орбиталей и условия их образования. Правила выбора канонических форм. Гибридизация атома углерода и гибридных орбиталей.

    презентация , добавлен 15.10.2013

    Характеристика ковалентной связи, понятия насыщаемости, направленности и полярности. Гибридизация атомных орбиталей и ионная связь. Межмолекулярные химические связи (вандерваальсовы силы). Типы кристаллических решеток. Молекулярная структура льда.

    презентация , добавлен 11.08.2013

    Гибридизация – квантово-химический способ описания перестройки орбиталей атома в молекуле по сравнению со свободным атомом. Изменение формы и энергии орбиталей атома при образовании ковалентной связи и достижения более эффективного перекрывания орбиталей.

    презентация , добавлен 22.11.2013

    Характеристика ковалентной связи: насыщаемость, направленность, полярность. Гибридизация атомных орбиталей. Ионная, молекулярная, водородная и металлическая химические связи. Вандерваальсовы силы, межмолекулярное взаимодействие; кристаллические решетки.

    презентация , добавлен 22.04.2013

    Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.

    контрольная работа , добавлен 05.08.2013

    Виды спиртов, их применение, физические свойства (кипение и растворимость в воде). Ассоциаты спиртов и их строение. Способы получения спиртов: гидрогенизация окиси углерода, ферментация, брожение, гидратация алкенов, оксимеркурирование-демеркурирование.

    реферат , добавлен 04.02.2009

    Электронное строение и физико-химические свойства спиртов. Химические свойства спиртов. Область применения. Пространственное и электронное строение, длины связей и валентные углы. Взаимодействие спиртов с щелочными металлами. Дегидратация спиртов.

    курсовая работа , добавлен 02.11.2008

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Особенности описания гибридизации атомных орбиталей. Концепция резонанса. Правила выбора канонических форм. Условия образования молекулярных орбиталей и заполнение их электронами.

    презентация , добавлен 22.10.2013

    Химические свойства: реакции электрофильного замещения, присоединения, гидрирование и галогенирования. Алкилирование по Фриделю-Крафтсу. Правила ориентации в бензольном кольце. Влияние заместителей в ядре на и распределение изомеров при нитровании.

    реферат , добавлен 21.02.2009

    Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

Виды изомерии в органических соединениях

Изомерия-явление сущ-ия Изомеров.Изомер-вещ-ва имеющие одинаковый сост-в атомов, но различное в строе ние.

А) Структурная изомер-я 1)Изомерия углеродного скелета.

Различая во взаимном расположении атомов С.

2)Изомерия по положению кратной связи

(двойной).

3)Из положения функциональной группы Различия положения функциональной группы относительно углеродного скеле та.

В) Пространственная изомер-я

Связана с различным положе нием атомов или групп атомов относительно двойной связи.(цис-(ванна) и транс-изомеря(кресло), зеркальная изоиерия)

Предельные углеводороды, их химические свойства.

Алканы (парафины) - это насы щенные (предельные) углево дороды с открытой цепью. Они имеют общую формулу СnН2n+2, В алканах атомы углерода связаны между собой только простыми (одинарными) связями, а остальные валент ности углероданасыщены ато мами водорода. Характерный суффикс для насыщенных углеводородов-ан.,

СН4 - метан; С2Н6 - этан; С3Н8 - пропан

С4Н10 - бутан (2 изомера)

С5Н12 - пентан (3 изомера)

С6Н14 - гексан, С7Н16 - гептан

Химические св-ва:

1)Замещение: CH4+Cl2→CH3Cl+HCl (хлористый метил)

CH3Cl+HCl→CH2Cl2+HCl (хлористый метилен) CH2Cl2+Cl2→CHCl3+HCl (хлороформ)

3)Нитрование: характерно для имеющим вторичный или третичный атом углерода.

Р-я КОНОВАЛОВА

4)При температуре 100-500ºС и доступе кислорода образуются жирные кислоты, а при температуре 500-600ºС наблюдается крекинговый процесс

Р-я горения CH4+2O2 →CO2+H20(полное), 2СН4+О2à2СО+4Н2(неполное)

Каталитическое окисление2СН3-СН2-СН2-СН3 + 5О2 →4СН3СООН (уксусная кислота),

Реакция отщипления: (крекинг)

Изомеризация

Получение алканов.

Получение метана

в промышленности:

1. Фракционированием природного газа и перегонкой нефти.

2. Синтез из элементов при высокой температуре (вольтова дуга),

C + 2H2 →CH4

Химические способы получения: 1)Из солей органических кислот. Cплавление ацета та натрия со щелочью: СН3СOONa + NaOH →CH4 + Na2CO3



2)Синтез Вюрца: CH3Cl+2Na+ClCH2-CH3→2NaCl+C3H8

3)Из магний органических соединений: CH3Br+Mg→CH3MgBr
CH3MgBr+H2O→CH4+Mg(OH)Br

4)Синтез Бертло: C2H5I+HI→C2H6+I2

5)Из алкенов

6) Восстановление галогенпроизводных алканов. CH3Cl+H2→(p,pt)→CH4+HCl

Правила ориентации

1. Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие.

2. По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода .
Ориентанты 1-го рода (орто-пара -ориентанты) направляют последующее замещение преимущественно в орто - и пара -положения.
К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):

R (+I ); -OH (+M,-I ); -OR (+M,-I ); -NH 2 (+M,-I ); -NR 2 (+M,-I )
+M-эффект в этих группах сильнее, чем -I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто - и пара -положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.
Пример:

Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства:-F (+M<–I ), -Cl (+M<–I ), -Br (+M<–I ).
Являясь орто-пара -ориентантами, они замедляют электрофильное замещение. Причина - сильный –I -эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета -ориентанты) направляют последующее замещение преимущественно в мета -положение.
К ним относятся электроноакцепторные группы:

-NO 2 (–M, –I ); -COOH (–M, –I ); -CH=O (–M, –I ); -SO 3 H (–I ); -NH 3 + (–I ); -CCl 3 (–I ).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто - и пара -положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета -положении, где электронная плотность несколько выше.
Пример:



Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C 6 H 5 CH 3 > бензол C 6 H 6 > нитробензол C 6 H 5 NO 2 .

Хим. Св-ва.

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

1. Гидрирование карбонильных соединений, как и алкенов, идет в присутствии ката-

лизаторов (Ni, Pt, Pd). Из альдегидов при восстановлении образуются первичные спир-

ты, H-COH + H2→СH3OH;

2. Присоединение Н2О

R-COH+H2O=R-CH(OH)2 (двухатомный спирт) 3. Взаимодействие сенильной кислотой R-COH+H-CN=R-CH(OH)(CN) (оксинитрил)

4. Взаимодействие со спиртами R-COH+R1-OH=R-CH(OR1)(OH)(полуацеталь) R-COH+R1-OH=(t* HCl)=R-CH(OR1)(OR1) (ацеталь)

РЕАКЦИИ ЗАМЕЩЕНИЯ КАРБОНИЛЬНОЙ ГРУППЫ

CH3-COH+PCl5→CH3-CHCl2+POCl3

РЕАКЦИИ ОБУСЛОВЛЕННЫЕ ЗАМЕЩЕНИЕМ В РАДИКАЛЕ

CH3-COH+Br2=Br-CH2-COH+HBr (бромуксусный альдегид)

Р.ОКИСЛЕНИЯ

CH3-COH+Ag2O→CH3COOH+2Ag

Р.АЛЬДОЛЬНОЙ КОНЦЕНТРАЦИИ

CH3COH+ CH3COH→CH3-CH(CH3)-CH2-COH→CH3-CH=CH-COH+H2O

Получение альдегидов.

К альдегидам относят органические соединения, име ющие в своем составе карбо нильную группуС=О, соединен ную в альдегидах с одним углеводо родным радикалом

1 окисление метанола на медном катализаторе при 300О

CH3OH + O2 →2H-COH(формальдегид,муравьиный альдегид) + 2H2O;

2. Дегидрирование метанола в газовой фазе на катализаторе (Сu, Ni).СН3OH→H-COH + H2

С2H2 + H2O CH2=CH-OH CH3-COH(уксусный ангедр

3 ЩЕЛОЧНОЙ ГИДРОЛИЗ ДИГАЛОГЕНПРОИЗВОДНЫХ

CH3-CHCl2+2NaOH→CH3-C(OH)3+2NaCl→CH3COH+H2O+2NaCl

4. Р.КУЧЕРОВА CH≡CH+H2O→CH3COH

Дикарбоновые кислоты.

Карбоновые кислоты - это производные углеводоро дов, имеющие в своем составе

одну или несколько карбоксиль ных групп. Общая формула карбоновых кислот - R-COOH. Карбоксильная группа в свою очередь состоит из

карбонильной (>С=О) и гидроксильной (-ОН) групп В зависимости от количества карбоксильных групп карбоновые кислоты делят на

одноосновные(монокарбоновые), двухосновные(дикарбоно вые) и многоосновные кислоты. Это орг.соединения содержа щие две карбоксильные групп пы. Двухосновные кислоты

НООС-СООН щавелевая (этандиовая)

НООС-СН2-СООН малоновая пропандиовая

НООС-СН2-СН2-СООН янтарная (бутандиовая)

НООС-СН2-СН2-СН2-СООНпентандиовая, глутаровая

НООС-СН2-СН2-СООН янтарная=(-Н2О)=ангидрид янтарной кислоты

ПОЛУЧЕНИЕ:

1)окисление 2хатомных спиртов CH2(OH)- CH2(OH)→[O],-H2O→COH-COH→[O]→COOH-COOH

2)из дигалогенпроизводных Cl-CH2-CH2-Cl→(2KCl)→N≡C-CH2-CH2-C≡N→(+6H2O,-2NH3)→HOOC-CH2-CH2-COOH+2H2O

ХИМИЧЕСКИЕ СВ-ВА

1)реакции замещения

COOH-COOH→(+NaOH,-H2O)→ COONa-COOH→(+NaOH,-H2O)→ COONa-COONa

2)выдеоение СО2 при нагревание

COOH-COOH→CO2+HCOOH

COOH-CH2-COOH→CO2+CH3COOH

3)выделение Н2О принагревание

СООН-CH2-CH2-COOH→(t,-H2O)→ (-CH2-COOOC-CH2-)ЦИКЛ

4) COOH-COOH→[O]→CO2+CO+H2O

5) COOH-CH2-COOH+2C2H5O→CO(O-C2H5)-CH2-CO(O-C2H5)+H2O

6) СООН-CH2-CH2-COOH+2NH4OH→ СООNH4-CH2-CH2-COONH4→(-H2O)→ СОNH2-CH2-CH2-CONH2→(-NH3)→(-CH2-C(O)-NH-C(O)-CH2-)→(-CH=CH-NH-CH=CH-)

Хим св-ва

1)Хар-ны все реакции на карбоксильную группу-окисление

Образование простых эфиров

Образование двух видов сложных эфиров

Разложение при нагревании

Выделение воды при нагревании(альфа кислоты)

Бета кислоты

Гама кислоты

Оптическая изомерия.

Коламин

Серин

Лецетин

Ди - и трипептиды.

этоорганические вещества, молекулы которых построены из аминокислот, соединённых пептидной связью. В зависимости от числа входящих в молекулу аминокислот различают дипептиды, трипептиды и т.д., а также полипептиды. Как правило, молекулы пептидов линейны, причём один конец цепи заканчивается карбоксильной группой (-СООН ), а другой – аминогруппой (-NH 2 ). Но цепь может быть и замкнута в циклическую структуру. Присоединение происходит за счет выделения воды из карбонильной группы одной а/к и аминогруппы другой. Так как белки синтезируются в виде полипептидных цепей, граница между полипептидом и простым белком условна. Пептидами являются многие важные для организмов вещества – некоторые гормоны, антибиотики, токсины.

Нуклеозиды и нукпеотиды.

Нуклеиновые кислоты состоят из мононуклеотидов. Нуклеотид состоит из трёх компонентов: 1 .азотистое основание (пуриновое или перимединовое), 2 .сахар: рибоза (С 5 Н 10 О 5) или дезоксирибоза C 5 H 10 O 4 .,фосфорная к-та. Пуриновые основания. Родоначальник – ПУРИН:

Пиримидиновые основания. ПИРИМИДИН:

Азотистые основания: АМФаденозинмонофосфат (адениловая к-та):

АТФ аденозинтрифосфат:

Нуклеозиды – это нуклеотиды без фосфорной кислоты. Аденозин:

Присоединение фосфорной к-ты возможно по трем положениям гидроксогрупп рибозы: 2, 3, 5. Аденин, гуанин и цитозин входят как в ДНК, так и РНК. Тимин – только в ДНК, урацил – только в РНК.

Схема строения РНК и ДНК.

Структура ДНК: цепь ДНК представляет собой углеводофосфатную последовательность, с которой соединены азотистые основания. Молекулы фосфорной кислоты соединяют собой молекулы оксирибозы, группы ОН 3 и 5 углерода. Молекула ДНК имее 2 цепи нуклеотидов, расположенных параллельно друг другу. Эти две цепи удерживаются за счет водородных связей. Комплементарность обеспечивает одинаковое расстояние между азотистыми основаниями. Последовательность азотистых оснований одной цепи строго соответствует последовательность оснований другой цепи.

Структура РНК. Нить РНК – этопоследовательность рибонуклеотидов, соединенных в одну цепь. (линейная структура). Соединение рибонуклеотидов между собойосуществляется эфирной связью между 3-ей –ОН рибозы одного нуклеотида и 5-ой –ОН рибозы следующего нуклеотида. Азотистые основания РНК – А и Г (пуриновые) и Ц и У (пиримидиновые). А и Г присоединяются к пентозе черезN 9-ого положения. Ц и У – через атом N в 1-ом положении. Отличительная особенность ДНК от РНК то, что для неё не характерно устойчивое спиральное строение. Она линейна. РНК)

Диализ. Электрофорез.

Диализ- это метод очистки белковых растворов от низкомолекулярных примесей. Для проведения диализа необходим цилиндр, у которого вместо дня ППМ, поры которой пропускают мелкие молекулы, но не пропускают молекулы белков. Цилиндр с раствором белка с примесями погружается в емкость с дистиллированной водой. Мелкие молекулы примесей свободно проходят через поры мембраны, равномерно распределяясь между областями внутри и снаружи цилиндра. Для полной очистки необходимо погружать цилиндр в проточную воду. С помощью диализа очищаются белковые растворы фармакологической промышленности. Этот метод лежит в основе «искусственной почки».

Электрофарез – это метод разделения белков на отдельные фракции. В основе работы аппарата эф лежит способность заряженных белковых молекул двигаться в электрическом поле к противоположно заряженному электроду. Различные молекулы – различная скорость, зависящая от молекулярной массы, суммарного заряда, формы. Аппарат для эф состоит из горизонтально расположенного носителя (гелиевого) и электродов, создающих электрическое поле. На носитель наносится раствор с электролитами. Исследуемый раствор наносят в стартовую зону и подают напряжение. Через определенный промежуток времени белки с разной молекулярной массой распределяются по зонам. Из каждой зоны белки можно извлечь и измерить количественно.

Катализ. Виды катализа.

Катализ - химическое явление, суть которого заключается в изменении скоростей химических реакций при действии некоторых веществ (их называют катализаторами).

Гомогенный катализ – катализатор и реагенты находятся в одной фазе.

Гетерогенный катализ – катализатор обычно твердый, а реакция протекает на его поверхности.

Адсорбция, суть, значение.

Адсорбция – оседание частиц на поверхности адсорбента. Активированный уголь в противогазах защищает от воздействия ядовитых газов.

67)Хроматография:

Хроматография – метод разделения и анализа смесей веществ и изучения физико – химических свойств веществ, основан на распределении компонентов между двумя фазами: подвижной и неподвижной. Неподвижной служит твердое вещество(сорбент) или пленка жидкости, нанесенное на твердое вещество. Подвижная – это жидкость или газ, протекаемый через неподвижную фазу. Можно очищать вещество от примесей.

Явление диффузии.

Диффузия – односторонний переход растворимого вещества из большей концентрации в меньшую.

Типы химических связей в органических соединениях

Ковалентной связью называется внутримолекулярная химическая связь, осуществляемая за счет одной или нескольких электронных пар, сильно взаимодействующих с ядрами обоих соединяемых атомов.

Сигма-связь – связь, образованная в результате перекрывания электронных облаков и расположенная на прямой, соединяющей центры ядер атомов.

Пи – связь – связь, образованная в результате перекрывания электронных облаков и расположенная вне прямой, соединяющей центры ядер атомов.

Органическая химия имеет исключительно важное познавательное и народнохозяйственное значение.

Природные органические вещества и их превращения лежат в основе явлений Жизни. Поэтому органическая химия является химическим фундаментом биологической химии и молекулярной биологии – наук, изучающих процессы, происходящие в клетках организмов на молекулярном уровне. Исследования в этой области позволяют глубже понять суть явлений живой природы.

Множество синтетических органических соединений производится промышленностью для использования в самых разных отраслях человеческой деятельности – это нефтепродукты, горючее для различных двигателей, полимерные материалы (каучуки, пластмассы, волокна, пленки, лаки, клеи и т.д.), поверхностно-активные вещества, красители, средства защиты растений, лекарственные препараты, вкусовые и парфюмерные вещества и т.п. Без знания основ органической химии современный человек не способен грамотно использовать все эти продукты цивилизации.

Сырьевыми источниками органических соединений служат нефть и природный газ, каменный и бурый угли, горючие сланцы, торф, продукты сельского и лесного хозяйства.

Критерием деления соединений на органические и неорганические служит их элементный состав.

К органическим соединениям относятся химические вещества, содержащие в своем составе углерод, например:

CH 3 -CN, CH 3 -CH 2 -OH, CS 2 , CH 3 COOH, CH 3 -NH 2 , CH 3 -NO 2 , CH 3 -COOC 2 H 5 .

Органические соединения отличаются от неорганических рядом характерных особенностей:

· почти все органические вещества горят или легко разрушаются при нагревании с окислителями, выделяя СО 2 (по этому признаку можно установить принадлежность исследуемого вещества к органическим соединениям);

· в молекулах органических соединений углерод может быть соединен почти с любым элементом периодической системы;

· органические молекулы могут содержать последовательность атомов углерода, соединенных в цепи (открытые или замкнутые);

· молекулы большинства органических соединений не диссоциируют на достаточно устойчивые ионы;

· реакции органических соединений протекают значительно медленнее и в большинстве случаев не доходят до конца;

· среди органических соединений широко распространено явление изомерии ;

· органические вещества имеют более низкие температуры фазовых переходов (т. кип., т. пл.).

Органических соединений насчитывается гораздо большее количество, чем неорганических.

Основные положения теории химического строения Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы – предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Уже с того момента, когда исследователи научились определять элементный состав соединений, было замечено, что часто соединения с одинаковым элементным составом обладают совершенно разными химическими и физическими свойствами. Выявление причин такого поведения стимулировало создание теории строения органических соединений. Впервые такая теория была сформулирована А.М. Бутлеровым.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии , предсказал существование различных изомеров и впервые получил некоторые из них.

Строение атома углерода

Очевидно, что все реакции, в которые вступают органические молекулы, связаны со строением атома углерода конкретной молекулы и перестройкой его внешних валентных орбиталей в процессе превращений.

В невозбужденном состоянии атом углерода имеет 2 электрона на s -орбитали второго подуровня (2s -орбитали), а также 2 электрона на двух (из всего 3) p -орбиталей 2 подуровня (2p x - и 2p y -орбиталях):

Таким образом, на внешних орбиталях у углерода имеется 4 электрона, способных к образованию связей. Согласно теории, формы s - и р-орбиталей описывают вероятность нахождения электрона относительно ядра атома. Негибридизованные s - и р-орбитали имеют формы сферы и равномерной «гантели» и располагаются в пространстве согласно нижеприведенной схеме:

При образовании соединений из атомарного углерода (или в составе соединений углерода) происходит изменение формы и расположения в пространстве относительно ядра атома внешних орбиталей углерода, называемое гибридизацией . Схематически гибридизацию можно представить таким образом:

Из четырех негибридизованных атомных s - и р-орбиталей, имеющих разную форму, в результате sp 3 -гибридизации (что означает изменение одной s - и трех р -орбиталей) получаются четыре равноценных по энергии и форме гибридизованны е молекулярные орбитали, имеющие форму искаженной гантели.

Для обеспечения минимальных стерических затруднений и взаимного отталкивания эти четыре равноценные орбитали расположены в пространстве на равных друг от друга расстояниях, направлены к вершинам тетраэдра (ядро атома углерода располагается в центре тетраэдра), а пространственные углы между орбиталями составляют около 109° 28’:

В таком состоянии четыре связи в результате перекрывания орбиталей могут быть образованы беспрепятственно. В такой гибридизации углерод присутствует (исключительно) в составе алканов, циклоалканов и спиртов.

Таким образом, например, выглядит молекула этана (желтыми сферами показаны атомы водорода, точнее, их s -орбитали):

Связь между атомами углерода образована перекрыванием гибридизованных орбиталей. Такие связи называют s - связями (сигма-связями). Вокруг s - связи возможно вращение фрагментов молекулы.

Гибридизация – изменение формы и расположения в пространстве относительно ядра атома его внешних электронных орбиталей , при образовании связей с другими атомами. Другое определение: гибридизация – смешение орбиталей , в результате которого происходит их выравнивание по форме и энергии.

Атом углерода, имеющий при себе кратную связь (алкены -С=С -, карбонильные соединения >C =O , карбоновые кислоты и их производные -СООН, -COOR и т.д.), имеет другую гибридизацию (sp 2), соответственно, форму и расположение в пространстве внешних орбиталей:

В состоянии sp 2 -гибридизации при углероде имеется только 3 гибридизованных орбитали (полученные из одной s - и двух р-орбиталей), которые расположены в одной плоскости под углом 120° между ними, а четвертая (негибридизованная ) р-орбиталь располагается перпендикулярно этой плоскости. Двойная связь образуется в результате перекрывания негибридизованных орбиталей между соседними атомами углерода (или между углеродом и кислородом), на рисунке представлена молекула этилена (этена):

Связи, образуемые перекрыванием негибридизованных р-орбиталей, называют p - связями. Таким образом, кратная (двойная) связь в молекуле этена образована одной сигма- и одной пи-связью.

Вращение фрагментов молекулы вокруг p - связи по понятным причинам при нормальной температуре невозможно (необходима дополнительная энергия на разрыв перекрывающихся р-орбиталей), это обуславливает наличие пространственных (геометрических) изомеров у алкенов, при наличии некоторых дополнительных условий, о которых будет сказано ниже.

На рисунке негибридизованные р-орбитали находятся на расстоянии – разнесены искусственно, для лучшего восприятия, хотя в реальности они «соприкасаются» друг с другом, перекрываясь сверху и снизу, но образуя только одну дополнительную связь.

Углерод при тройной связи (в алкинах и нитрилах) находится в состоянии sp -гибридизации :

Пара гибридизованных орбиталей расположена в линию, под углом 180° и противоположно направлена. Две негибридизованные р-орбитали, согласно принципу минимального отталкивания и для минимизации стерических затруднений, расположены перпендикулярно этой линии и под углом 90° между собой. Тройная связь в алкинах образуется в результате перекрывания гибридизованных орбиталей (одна s - связь) и двух негибридизованных р-орбиталей соседних атомов углерода (две p -связи). Так, например, выглядит модель молекулы ацетилена (этин ):

В результате протекания реакций углерод способен как менять, так и сохранять состояние своей гибридизации.

Типы связей в молекулах органических веществ

Преобладающим типом связи в молекулах органических соединений является ковалентная связь. Пара электронов связи поделена между атомами в примерно равной степени, если характеризовать связи С-С или С-Н. Это вызвано примерно равным сродством к электрону (электроотрицательностью ) атомов С и Н.

В случае, когда углерод связан с более электроотрицательным атомом (галогены, кислород, азот), связь может быть в значительной степени поляризована, а на атомах могут образовываться частичные положительные (на углероде) и отрицательные (на атомах галогенов, кислорода, азота) заряды. Однако степень ионности такой связи минимальна.

Вследствие неполярности связи С-С и С-Н преимущественным способом ее разрыва является гомолитический , когда пара электронов делится поровну между атомами. При таком разрыве связи образуются незаряженные, но очень реакционно-способные частицы с неспаренными электронами, называемые радикалами. Для алканов очень характерны реакции с промежуточным образованием радикалов. Инициируются такие превращения введением извне энергии, достаточной для разрыва связи (нагрев) или соединений, инициирующих образование радикалов при слабом нагревании или облучении ультрафиолетом (перекиси, галогены, азосоединения , химические инициаторы, генерирующие радикалы в результате химической реакции). В общем и целом, алканы и циклоалканы с ненапряженными циклами химически относительно инертны .

В отличие от них, алкены значительно более реакционноспособны . Причиной этого является ненасыщенность (кратная связь) и доступность рыхлой электронной плотности перекрывающихся р-орбиталей p - связи для действия электрофильных реагентов (соединений с пустыми внешними орбиталями или электронодефицитных соединений). В результате происходит исчезновение кратной связи и присоединение электрофилов. Реакции протекают с промежуточным образованием положительно заряженных интермедиатов (карбкатионов) или радикалов.

Другая группа реакций связана с поляризацией связи углерод-галоген, кислород или азот. Эти реакции имеют более сложный механизм и зависимость от строения субстрата, реагента и условий реакции (растворитель, катализатор и т.д.).

Существуют и более сложные типы реакций (циклоприсоединение или реакция Дильса–Альдера ), детальный механизм которых изучен пока не во всех тонкостях.

Типы реакций в органической химии

Таким образом, можно различить всего несколько типов реакций, в которые вступают органические соединения:

1)реакции замещения , когда один атом (или группировка атомов) замещаются другим атомом (или группировкой атомов). Углеродный скелет при этом остается неизменным. Реакции протекают через предварительный разрыв связи с последующим образованием новой;

2)реакции присоединения . Характерны для соединений, имеющих ненасыщенность (кратные связи), в результате чего возможно присоединение других молекул (водорода, воды, галогенов, кислорода, галогеноводородов и т.д.);

3)реакции отщепления (элиминирования), когда от молекулы органического соединения отщепляются молекулы (воды, аммиака, галогенов, галогеноводородов, водорода, СО, СО 2 и т.д.). Такие реакции часто носят наименование по виду отщепляемой молекулы, соответственно, дегидратация, дезаминирование , дегалогенирование , дегидрогалогенирование , дегидрирование, декарбонилирование , декарбоксилирование и т.д.;

4)реакции конденсации , когда происходит укрупнение углеродного скелета молекулы;

5)реакции крекинга (или расщепления), в результате которых происходит расщепление углеродного скелета на более мелкие молекулы;

6)реакции окисления , сопровождающиеся удалением молекул водорода (частный случай реакции отщепления), или с одновременным внедрением молекул кислорода (превращение спиртов в альдегиды и кетоны и, далее, в кислоты);

7)реакции изомеризации (или перестройки углеродного скелета или циклов);

8)реакции полимеризации , в результате которой из мелких молекул (мономеров) получаются длинные неразветвленные молекулы полимеров. В живой природе известны примеры образования разветвленных полимерных молекул, структурными единицами в которых выступают органические молекулы моносахаридов (углеводов).

Классификация органических соединений

Несмотря на многообразие органических соединений, основу их молекул составляют цепи и кольца, образованные из атомов углерода. Соединения, в состав которых входят только углерод и водород, называются углеводородами . При этом часть валентностей углерода затрачивается на образование связей с соседними атомами углерода, а свободные валентности связывают углерод с водородом, кислородом, азотом, серой и, значительно реже, с другими атомами периодической системы. Очень часто такой «скелет» из атомов углерода сохраняется в результате химических превращений, претерпеваемых молекулой органического соединения, что значительно облегчает предсказание состава продуктов. Часто реакции ограничиваются заменой одного или нескольких атомов водорода на другой элемент или группу атомов (по другому называемой группировкой или функциональной группой ), в результате чего получается органическое соединение другого класса. В зависимости от группировки, заменившей один из атомов водорода в молекуле органического соединения в результате реакции, различают классы органических соединений.

Часто в результате реакции происходит замена одной функциональной группы на другую, при сохранении углеродного скелета. Однако известны и многочисленные реакции, сопровождающиеся изменением углеродного скелета молекулы.

Таблица

Некоторые функциональные группы органических соединений

Функциональная группа

Название группы

Класс соединений

Общая структура

Примеры

- Cl , -F, -Br, -I

(-Х)

Галоген

Галогениды

Бромбензол

Этенилхлорид (винилхлорид)

-ОН

Гидроксил (окси, гидрокси )

Спирты, фенолы

R-OH

Фенол

Метанол

> С=О

Карбонил (оксо )

Альдегиды, кетоны

Пропанон (ацетон)

Этаналь (ацетальдегид)

-СООН

Карбоксил (карбокси )

Карбоновые кислоты

Этановая кислота (уксусная кислота)

- NO 2

Нитро

Нитросоединения

Нитрометан

-NH 2

Амино

Амины

Аминометан (метиламин)

-CN

Циано

Нитрилы

Этаннитрил (ацетонитрил )

Гомологи и гомологические ряды

Гомологи – органические соединения (одного класса, см. выше), различающиеся на одну или несколько метиленовых групп (звеньев -С Н 2 -). Гомологами у алканов являются, например, метан, этан, пропан, бутан и т.д., у которых число атомов углерода изменяется на единицу (или на такое же число метиленовых звеньев).

Гомологами ароматических соединений являются бензол, толуол, ксилолы, мезитилен , этилбензол и прочие алкилзамещенные бензолы. Эти соединения по брутто-формуле также различаются на одно или несколько метиленовых звеньев (-СН 2 -). Соответственно, гомологами являются метанол, пропанол и этанол, ацетон и метилэтилкетон , уксусная и пропионовая кислоты и т.д.

Изомерия органических соединений

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными).

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов. Например, н -бутан и изобутан имеют одну молекулярную формулу C 4 H 10 , но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами. Еще до создания теории строения были известны вещества одинакового элементного состава, но с разными свойствами. Такие вещества были названы изомерами , а само это явление – изомерией . В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом, изомерия – это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4 атомов углерода и 10 атомов водорода возможно существование двух изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную ипространственную изомерию.

Структурная изомерия

Структурные изомеры – соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C 4 H 8 соответствует 5 структурных изомеров:

Среди органических соединений теоретически возможно существование колоссального количества только структурных изомеров. Так, среди алканов, содержащих только атомы углерода и водорода, число возможных изомеров увеличивается в геометрической прогрессии с увеличением количества атомов углерода. Если для соединения состава С 4 Н 10 возможно существование только двух изомеров, то для пентанов С 5 Н 12 число таких изомеров увеличивается до трех, С 6 Н 14 имеет 5 изомеров, С 7 Н 16 – 9 изомеров, С 8 Н 18 – 18 изомеров, С 9 Н 20 – 35 изомеров, а для соединения пентакозан С 25 Н 52 теоретически возможно существование ни много ни мало- 36 797 588 изомеров.

На приведенном выше примере можно различить следующие изомеры:

- положения двойной связи (бутен-1 и бутен-2);

- углеродного скелета (бутены-1 и -2 и изобутилен);

- размеров цикла (циклобутан и метилциклопропан );

- межклассовые изомеры (алкены и циклоалканы ).

Межклассовыми изомерами являются, например, этанол и диметиловый эфир, имеющие одинаковую брутто-формулу С 2 Н 6 О, но совершенно разное строение и относящиеся к разным классам. У них различаются не только химические свойства (более инертный диметиловый эфир не реагирует с металлическим натрием, в отличие от этанола), но и физические. Этанол – жидкость при нормальной температуре, тогда как диметиловый эфир – газ.

Циклические и ациклические органические соединения

Можно заметить, что среди структурных изомеров органических соединений могут существовать молекулы, содержащие в своем составе циклы, построенные из атомов углерода разного числа (а часто и не один такой цикл в составе молекулы). На этом основании различают али циклические соединения (содержащие циклы, или просто циклические соединения) и а циклические соединения (циклов не содержащие, а построенные исключительно из цепей атомов углерода, часто разветвленных).

Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающиеся по химическим свойствам группы: алифатические циклические (сокращенно алициклические ) и ароматические соединения.

Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов – гетероатомов (от греч. heteros – другой, иной) – кислород, азот, серу и др.

Пространственная изомерия

Пространственные изомеры (геометрические изомеры, стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические (зеркальные) и цис-транс- изомеры . В показанном выше примере пространственными изомерами может обладать бутен-2, существующий в природе в виде цис - и транс- бутенов-2:

Пространственная изомерия появляется, в частности, тогда, когда углерод имеет четыре разных заместителя:

Если поменять местами любые два из них, получается другой пространственный изомер того же состава. Физико-химические свойства таких изомеров существенно различаются. Соединения такого типа отличаются способностью вращать плоскость пропускаемого через раствор таких соединений поляризованного света на определенную величину. При этом один изомер вращает плоскость поляризованного света в одном направлении, а его изомер – в противоположном. Вследствие таких оптических эффектов этот вид изомерии называют оптической изомерией .

Более подробно с оптической изомерией можно познакомиться в разделе кислородсодержащих и азотсодержащих органических соединений.

Оптическая изомерия – частный случай пространственной изомерии. Оптическими изомерами называют различающиеся пространственным расположением группировок и атомов молекулы, имеющие одинаковый состав и одинаковый порядок связи атомов. Растворы таких соединений способны вращать плоскость пропускаемого через них поляризованного света на определенный угол.

1.3.3. Номенклатура органических соединений

Вследствие наличия огромного числа органических соединений огромное значение приобретает система их обозначения (наименования) таким образом, чтобы по названию можно было легко установить его структуру (химическое строение), а соответственно, и все химические и физические свойства. Таким образом, наименование должно максимально точно отражать химическое строение органического соединения, включая возможность идентификации структурных и геометрических изомеров. К настоящему моменту времени сложилось три типа номенклатуры органических соединений:

1. тривиальная ;

2. рациональная ;

3. систематическая (или заместительная, или номенклатура IUPAC ).

Наличие тривиальных названий связано с историей. Ранее исследователи часто давали наименования соединениям по источнику их выделения или по каким-либо органолептическим, физико-химическим свойствам. Тривиальные наименования находятся в обращении иногда на таких же правах (если не чаще), чем систематические названия. Так, например, до сих пор бытует название уксусная кислота, муравьиная кислота, лактоза, мочевина и многие другие названия.

Рациональная номенклатура

Этот тип номенклатуры получил распространение в результате того, что часть соединений может быть названа как некое родоначальное соединение, от которого они отличаются заместителями. Примером может являться неопентан («новый пентан»), углеводород класса алканов состава С 5 Н 12 . Название «неопентан » считается тривиальным, и ровным счетом ничего не говорит о его строении. Согласно номенклатуре второго типа, этот углеводород можно назвать тетраметилметаном . Название тетраметилметан уже значительно более информативно в смысле сведений о строении молекулы. Можно представить себе молекулу метана, у которой все четыре атома водорода заменены метильными группами.

Систематическим же названием неопентана является наименование 2,2-диметилпропан , составленное по правилам, разработанным Международным союзом чистой и прикладной химии (IUPAC – International Union of Pure and Applied Chemistry ). Структурная формула неопентана приведена ниже:

Детальное рассмотрение правил наименования органических соединений нами будет сделано позднее, при рассмотрении отдельных классов органических соединений, поскольку в каждом случае имеются свои особенности.

Замещение атомов водорода в молекулах алканов на любой гетероатом (галоген, азот, серу, кислород и т.д.) или группу вызывает перераспределение электронной плотности. Природа этого явления различна. Она зависит от свойств гетероатома (его электроотрицательности) и от типа связей, по которым это влияние распространяется.

Индуктивный эффект

Если влияние заместителя передается при участии s - связей, то происходит постепенное изменение электронного состояния связей. Такая поляризация называется индуктивным эффектом (I) , изображается стрелкой в направлении смещения электронной плотности. Электронная плотность всегда смещается в сторону БОЛЕЕ ЭЛЕКТРООТРИЦАТЕЛЬНОГО атома или группы атомов:

СН 3 -СН 2 -->Cl ,

HO СН 2 -СН 2 --> Cl ,

СН 3 -СН 2 --> COOH ,

СН 3 -СН 2 --> NO 2 и т.д.

Индуктивный эффект обусловлен стремлением атома или группы атомов подавать или оттягивать на себя электронную плотность, в связи с чем он может быть положительным или отрицательным. Отрицательный индуктивный эффект проявляют элементы, более электроотрицательные, чем углерод, т.е. галогены, кислород, азот и другие, а также группы с положительным зарядом на элементе, связанном с углеродом. Отрицательный индуктивный эффект уменьшается справа налево в периоде и сверху вниз в группе периодической системы:

F > O > N,

F > Cl > Br > J.

В случае заместителей с полным зарядом отрицательный индуктивный эффект увеличивается с возрастанием электроотрицательности атома, связанного с углеродом:

>O + - >> N + < .

В случае сложных заместителей отрицательный индуктивный эффект определяется природой атомов, составляющих заместитель. Кроме этого, индуктивный эффект зависит от характера гибридизации атомов. Так, электроотрицательность атомов углерода зависит от гибридизации электронных орбиталей и изменяется в следующем направлении:

sp3 < sp2 < sp .

Положительный индуктивный эффект проявляют элементы, менее электроотрицательные, чем углерод; группы с полным отрицательным зарядом; алкильные группы. +I-эффект уменьшается в ряду:

(СН 3 ) 3 С - > (CH 3) 2 CH- > CH 3 -CH 2 - > CH 3 - > H-.

Индуктивный эффект заместителя быстро затухает по мере увеличения длины цепи.

Таблица

Сводная таблица заместителей и их электронных эффектов

X - галоген)

Эффекты

СН 3 > CH 3 -CH 2 - > (CH 3) 2 CH- >> CH 2 X

I, +M

(CH 3) 3 C-

I, M = 0

Атом, присоединенный к p -

X- (галоген ), -O - , -OH, -OR, -NH 2 , -NHR, -NR 2 , -SH, -SR,

–I, +M

присоединенный к p -

СНХ 2 , -CX 3 , -C=N=S

–I, –M

Более электроотрицательный углерод (в сравнении с sp3):

СН=СН- , -С=

(но легко передают М-эффект в любом направлении)

–I, M = 0

N + H 3 , -N + R 3 , (-S + R 2 ,-O + H 2),

–I, M = 0

Мезомерный эффект

Наличие заместителя со свободной парой электронов или вакантной р-орбиталью , присоединенного к системе, содержащей p-электроны, приводит к возможности смешения р-орбиталей заместителя (занятых или вакантных) с p-орбиталями и перераспределению электронной плотности в соединениях. Такой эффект называется мезомерным .

Смещение электронной плотности обычно незначительно и длины связей практически не меняются. О незначительном смещении электронной плотности судят по дипольным моментам, которые даже в случае больших эффектов сопряжения на крайних атомах сопряженной системы невелики.

Мезомерный эффект изображают изогнутой стрелкой, направленной в сторону смещения электронной плотности. Электронная плотность всегда смещается в сторону более электроотрицательного атома , находящегося на краю структуры и связанного с остальной структурой кратной связью :

В зависимости от направления смещения электронного облака мезомерный эффект может быть положительным (+М), атом или когда группировка атомов передают электроны в пи-систему:

и отрицательным (- М), когда группировка атомов вытягивает электроны из пи-системы:

Положительный мезомерный эффект (+М) уменьшается при увеличении электроотрицательности атома, несущего неподеленную пару электронов, вследствие снижения тенденции отдавать ее, а также при увеличении объема атома. Положительный мезомерный эффект галогенов изменяется в следующем направлении:

F > Cl > Br > J (+M -эффект).

Положительным мезомерным эффектом обладают группировки с неподеленными парами электронов на атоме, присоединенном к сопряженной пи -системе:

- NH 2 ( NHR , NR 2) > OH ( OR ) > X (галоген) (+М-эффект).

Положительный мезомерный эффект уменьшается в том случае, если атом связан с группой-акцептором электронов:

-NH 2 > -NH-CO-CH 3 .

Отрицательный мезомерный эффект возрастает с увеличением электроотрицательности атома и достигает максимальных значений, если атом-акцептор несет заряд:

>C=O + H >> >C=O.

Уменьшение отрицательного мезомерного эффекта наблюдается в случае, если группа- акцептор сопряжена с донорной группой:

-CO-O - << - СО -NH 2 < -CO-OR < -CO-H(R) << -CO- CO- < -CO-X (галоген ) (– М- эффект).

Таблица

Заместитель или группа атомов ( X - галоген)

Эффекты

СН 3 > CH 3 -CH 2 - > (CH 3) 2 CH- >> CH 2 X

I, +M

(CH 3) 3 C-

I, M = 0

Атом, присоединенный к p - системе, имеет неподеленную пару электронов:

X- (галоген

–I, +M

присоединенный к p - системе атом, в свою очередь, связан с более электроотрицательным атомом:

N=O, -NO 2 , -SO 3 H, -COOH, -CO-H, -CO-R, -CO-OR, -CN, - СНХ 2 , -CX 3 , -C=N=S

–I, –M

СН=СН- , -С= СН (этинил ), -С 6 Н 4 - (фенилен )

–I, M = 0

Атом, не имеющий р-орбиталей , но с полным положительным зарядом

–I, M = 0

Гиперконъюгация или сверхсопряжение

Эффект, подобный положительному мезомерному , возникает при замещении водорода у кратной связи алкильной группой. Этот эффект направлен в сторону кратной связи и называется гиперконъюгацией (сверхсопряжением):

Эффект напоминает положительный мезомерный, поскольку отдает электроны в сопряженную p - систему:

Сверхсопряжение уменьшается в последовательности:

СН 3 > CH 3 -CH 2 > (CH 3) 2 CH > (CH 3) 3 C.

Для проявления эффекта гиперконъюгации необходимо наличие хотя бы одного атома водорода при атоме углерода, соседствующем с p - системой. Трет-бутильная группировка не проявляет этого эффекта, а потому мезомерный эффект ее равен нулю.

Таблица

Сводная таблица заместителей и их электронных эффектов

Заместитель или группа атомов ( X - галоген)

Эффекты

СН 3 > CH 3 -CH 2 - > (CH 3) 2 CH- >> CH 2 X

I, +M

(CH 3) 3 C-

I, M = 0

Атом, присоединенный к p - системе, имеет неподеленную пару электронов:

X- (галоген ), -O - , -OH, -OR, -NH 2 , -NHR, -NR 2 , -SH, -SR,

–I, +M

присоединенный к p - системе атом, в свою очередь, связан с более электроотрицательным атомом:

N=O, -NO 2 , -SO 3 H, -COOH, -CO-H, -CO-R, -CO-OR, -CN, - СНХ 2 , -CX 3 , -C=N=S

–I, –M

Более электроотрицательный углерод:

СН=СН- , -С= СН (этинил ), -С 6 Н 4 - (фенилен )

(но легко передают М-эффект в любом направлении)

–I, M = 0

Атом, не имеющий р-орбиталей, но с полным положительным зарядом

N + H 3 , -N + R 3 , (-S + R 2 , -O + H 2),