Различие звезд по цвету примеры, разноцветные звезды. Виды звезд в наблюдаемой вселенной Различие звезд по цвету примеры 3

Мир небесных тел

Люди с давних пор относятся к солнцу с любовью и особым уважением. Ведь уже в древности они поняли, что без солнца не прожить ни человеку, ни зверю, ни растению.
Солнце - ближайшая к земле звезда. Как и друге звёзды, это огромное раскалённое небесное тело, которое постоянно излучает свет и тепло. Солнце - источник света и тепла для всего живого на Земле.

Используя информацию, впиши цифровые данные в текст.
Диаметр Солнца в 109 раз больше диаметра Земли. Масса Солнца в 330 тысяч раз больше массы нашей планеты. Расстояние от Земли до Солнца составляет 150 миллионов километров. Температура на поверхности Солнца достигает 6 тысяч градусов, а в центре Солнца - 15 - 20 миллионов градусов.

Невооруженным глазом человек может увидеть на ночном небе примерно 6 тысяч звёзд. Учёным же известны многие миллиарды звёзд.
Звёзды различаются по размеру, цвету, яркости.
По цвету различают белые, голубые, жёлтые и красные звёзды.

Солнце относится к жёлтым звёздам.

Голубые звёзды - самые горячие, далее идут белые, затем - жёлтые, самые холодные - красные звёзды.
Самые яркие звёзды, испускают в 100 тысяч раз больше света, чем Солнце. Но известны и такие, которые светят в миллион раз слабее Солнца.

Различие звёзд по цвету

Солнце и движущиеся вокруг него небесные тела составляют Солнечную систему. Постройте модель Солнечной системы. Для этого вылепите из пластилина модели планет и расположите их в правильной последовательности на листе картона. Подпишите на табличках названия планет и наклейте их на вашу модель.





Разгадай кроссворд.



открыть незаполненный кроссворд>>

1. Самая большая планета Солнечной системы. Ответ: Юпитер
2. Планета, имеющая хорошо заметные в телескоп кольца. Ответ: Сатурн
3. Самая близкая к Солнцу планета. Ответ: Меркурий
4. Самая далёкая от Солнца планета. Ответ: Нептун
5. Планета, на которой мы живём. Ответ: Земля
6. Планета - соседка Земли, расположенная ближе к Солнцу, чем Земля. Ответ: Венера
7. Планета - соседка Земли, расположенная дальше от Солнца, чем Земля.
Ответ: Марс
8. Планета, расположенная между Сатурном и Нептуном. Ответ: Уран

Пользуясь различными источниками информации, подготовьте сообщение о звезде, созвездии или планете, о которых вы хотели бы побольше узнать. Запишите основные сведения для вашего сообщения.

Марс - одна из пяти планет Солнечной системы, которые можно увидеть с Земли невооружённым глазом. С Земли он выглядит как маленькая красная точка, поэтому Марс иногда называют Красной планетой. Планета носит имя древнеримского бога войны, у неё есть два спутника Фобос и Деймос. Это имена двух сыновей бога войны, они переводятся как "Страх" и "Ужас". Марс - четвёртая планета от Солнца. По многим характеристикам он очень похож на Землю. Имеет атмосферу, на Марсе происходит смена времён года. На обоих полюсах планеты, как и на Земле, находятся ледяные шапки. По размеру Марс почти в два раза меньше нашей планеты.

Специалисты выдвигают несколько теорий их возникновения. Наиболее вероятная из низ гласит о том, что такие звезды голубого цвета, очень давно были двойными, и у них происходил процесс слияния. Когда 2 звезды объединяются, то возникает новая звезда с гораздо большой яркостью, массой, температурой.

Голубые звезды примеры:

  • Гамма Парусов;
  • Ригель;
  • Дзета Ориона;
  • Альфа Жирафа;
  • Дзета Кормы;
  • Тау Большого Пса.

Звезды белого цвета — белые звезды

Один ученый обнаружил очень тусклую звезду белого цвета, которая была спутником Сириуса и она получила название Сириус В. Поверхность это уникальной звезды разогрета до 25000 Кельвинов, а радиус её маленький.

Белые звезды примеры:

  • Альтаир в созвездии Орла;
  • Вега в созвездии Лиры;
  • Кастор;
  • Сириус.

Звезды желтого цвета — желтые звезды

Такие звезды имеют свечение желтого цвета, а их масса находиться в пределах массы Солнца — это около 0,8-1,4. Поверхность таких звезд обычно разогрета до температуры 4-6 тыс. Кельвинов. Живет такая звезда около 10 млрд. лет.

Желтые звезды примеры:

  • Звезда HD 82943;
  • Толиман;
  • Дабих;
  • Хара;
  • Альхита.

Звезды красного цвета — красные звезды

Первые красные звезды открыли в 1868 году. Их температура довольно таки низкая, а внешние слои красных гигантов заполнены большим количеством углерода. Ранее подобные звезды составляли два спектральных класса — N и R, но сейчас ученые смогли определить еще один общий класс — C.

С помощью телескопа можно наблюдать 2 миллиарда звезд до 21 звездной величины. Существует Гарвардская спектральная классификация звезд. В ней спектральные классы расположены в порядке уменьшения температуры звезд. Классы обозначены буквами латинского алфавита. Их семь: O — B — A — P — O — K — M.

Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого 02), представляются желтыми, звезды же спектральных классов К и М - красные.

Яркость и цвет звезд

Все звезды имеют цвет. Различают голубые, белые, желтые, желтоватые, оранжевые и красные звезды. Например, Бетельгейзе - красная звезда, Кастор - белая, Капелла - желтая. По яркости они делятся на звезды 1-й, 2-й, ... n-й звездной величины (n max = 25). К истинным размерам термин «звездная величина» отношения не имеет. Звездная величина характеризует световой поток, приходящий на Землю от звезды. Звездные величины могут быть и дробными, и отрицательными. Шкала звездных величин основана на восприятии света глазом. Разделение звезд на звездные величины по видимой яркости выполнил древнегреческий астроном Гиппарх (180 - 110 гг. до н. э.). Наиболее ярким звездам Гиппарх приписал первую звездную величину; следующие по градации блеска (т. е. примерно в 2,5 раза более слабые) он посчитал звездами второй звездной величины; звезды, слабее звезд второй звездной величины в 2,5 раза, были названы звездами третьей звездной величины и т. д.; звездам на пределе видимости невооруженным глазом была приписана шестая звездная величина.

При такой градации блеска звезд получалось, что звезды шестой звездной величины слабее звезд первой звездной величины в 2,55 раза. Поэтому в 1856 г, английский астроном Н. К. Погсои (1829—1891 гг.) предложил считать звездами шестой величины те, которые слабее звезд первой звездной величины ровно в 100 раз. Все звезды расположены на разных расстояниях от Земли. Проще было бы сравнивать звездные величины, если бы расстояния были равны.

Звездная величина, которую звезда имела бы при расстоянии в 10 парсек, называется абсолютной звездной величиной. Обозначается абсолютная звездная величина - M , а видимая звездная величина - m .

Химический состав наружных слоев звезд, с которых приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а содержание остальных элементов достаточно невелико.

Температура и масса звезд

Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности в единицу времени, определяется из закона Стефана - Больцмана.

Деление звезд на основании сопоставления светимости звезд сих температурой и цветом и абсолютной звездной величиной (диаграмма Герцшпрунга-Рессела):

  1. главная последовательность (в центре ее находится Солнце - желтый карлик)
  2. сверхгиганты (велики по размерам и большая светимость: Антарес, Бетельгейзе)
  3. последовательность красных гигантов
  4. карлики (белые - Сириус)
  5. субкарлики
  6. бело-голубая последовательность

Это разделение также и по возрасту звезды.

Различают следующие звезды:

  1. обычные (Солнце);
  2. двойные (Мицар, Албкор) делятся на:
  • а) визуально-двойные, если их двойственность замечена при наблюдении в телескоп;
  • б) кратные — это система звезд с числом больше чем 2, но меньше чем 10;
  • в) оптически-двойные - это такие звезды, что их близость является результатом случайной проекции на небо, а в пространстве они далеки;
  • г) физически-двойные — это звезды, которые образуют единую систему и обращаются под действием сил взаимного притяжения вокруг общего центра масс;
  • д) спектрально-двойные — это звезды, которые при взаимном обращении подходят близко друг к другу и их двойственность можно определить но спектру;
  • е) затменно-двойные - это звезды» которые при взаимном обращении загораживают друг друга;
  • переменные (б Цефея). Цефеиды — переменные по яркости звезды. Амплитуда изменения яркости составляет не более 1,5 звездной величины. Это пульсирующие звезды, т. е. они периодически расширяются и сжимаются. Сжатие наружных слоев вызывает их нагрев;
  • нестационарные.
  • Новые звезды - это звезды, которые существовали давно, но внезапно вспыхнули. Их яркость увеличилась за короткое время в 10 000 раз (амплитуда изменения яркости от 7 до 14 звездных величин).

    Сверхновые звезды - это звезды, которые были незаметны на небе, но неожиданно вспыхнули и увеличили яркость в 1000 раз относительно обычных новых звезд.

    Пульсар - нейтронная звезда, возникающая при взрыве сверхновой.

    Данные об общем числе пульсаров и времени их жизни свидетельствуют, что в среднем в столетие рождаются 2-3 пульсара, это приблизительно совпадает с частотой вспышек сверхновых в Галактике.

    Эволюция звезд

    Как и все тела в природе, звезды не остаются неизменными, они рождаются, эволюционируют, и наконец умирают. Раньше астрономы считали, что на образование звезды из межзвездных газа и пыли требуются миллионы лет. Но в последние годы были получены фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звезд. На снимках 1947 г. в этом месте зафиксирована группа из трех звездоподобных объектов. К 1954 г. некоторые из них стали продолговатыми, а к 1959 г. эти продолговатые образования распались на отдельные звезды. Впервые в истории человечества люди наблюдали рождение звезд буквально на глазах.

    Во многих участках неба существуют условия, необходимые для появления звезд. При изучении фотографий туманных участков Млечного Пути удалось обнаружить маленькие черные пятнышки неправильной формы, или глобулы, представляющие собой массивные скопления пыли и газа. Эти газопылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных за ними звезд. Размеры глобул огромны - до нескольких световых лет в поперечнике. Несмотря на то что вещество в этих скоплениях очень разрежено, общий объем их настолько велик, что его вполне хватает для формирования небольших скоплений звезд, по массе близких к Солнцу.

    В черной глобуле под действием давления излучения, испускаемого окружающими звездами, происходит сжатие и уплотнение вещества. Такое сжатие протекает в течение некоторого времени, зависящего от окружающих глобулу источников излучения и интенсивности последнего. Гравитационные силы, возникающие из-за концентрации массы в центре глобулы, тоже стремятся сжать глобулу, заставляя вещество падать к ее центру. Падая, частицы вещества приобретают кинетическую энергию и разогревают газопы левое облако.

    Падение вещества может длиться сотни лет. Вначале оно происходит медленно, неторопливо, поскольку гравитационные силы, притягивающие частицы к центру, еще очень слабы. Через некоторое время, когда глобула становится меньше, а поле тяготения усиливается, падение начинает происходить быстрее. Но глобула огромна, не менее светового года в диаметре. Это значит, что расстояние от ее внешней границы до центра может превышать 10 триллионов километров. Если частица от края глобулы начнет падать к центру со скоростью немногим менее 2 км/с, то центра она достигнет только через 200 ООО лет.

    Продолжительность жизни звезды зависит от ее массы. Звезды С массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного топлива и могут светить десятки миллиардов лет. Внешние слои звезд, подобных нашему Солнцу, с массами не большими 1,2 массы Солнца, постепенно расширяются и, в конце концов, совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик.

    Каждый человек знает, как смотрятся звезды на небе. Крошечные, сияющие холодным белоснежным светом огоньки. В древности люди не могли придумать объяснения этому явлению. Звезды считали очами богов, душами умерших предков, хранителями и заступниками, оберегающими покой человека в ночной тьме. Тогда никто и подумать не мог, что Солнце — это тоже звезда.

    Много веков прошло, прежде чем люди поняли, что представляют собой звезды. Виды звезд, их характеристики, представления о происходящих там химических и физических процессах — это новая область познания. Древнейшие астрологи даже предположить не могли, что такое светило на самом деле совсем не крохотный огонек, а невообразимых размеров шар раскаленного газа, в каком происходят реакции термоядерного синтеза. Есть странный парадокс в том, что неяркий звездный свет — это ослепительное сияние ядерной реакции, а уютное солнечное тепло — чудовищный жар миллионов кельвинов.

    Все звезды, которые можно увидеть на небосводе невооруженным глазом, находятся в галактике Млечный Путь. Солнце — тоже часть этой звездной системы, причем расположено оно на ее окраине. Невозможно себе вообразить, как смотрелось бы ночное небо, если б Солнце находилось в центре Млечного Пути. Ведь количество звезд в этой галактике — более 200 миллиардов.

    Немного об истории астрономии

    Древнейшие астрологи тоже могли бы рассказать необычное и увлекательное о звездах на небе. Уже шумеры выделяли отдельные созвездия и зодиакальный круг, они же в первый раз рассчитали деление полного угла на 3600. Они же создали лунный календарь и смогли синхронизировать его с солнечным. Египтяне считали, что Земля находится в центре Вселенной, но при этом знали, что Меркурий и Венера крутятся вокруг Солнца.

    В Китае астрономией как наукой занимались уже в конце ІІІ тысячелетия до н. э., а первые обсерватории появились в XII в. до н. э. Они изучали лунные и солнечные затмения, сумев при этом понять их причину и даже рассчитав прогнозные даты, наблюдали метеоритные потоки и траектории комет.

    Древнейшие инки знали различия между звездами и планетами. Есть косвенные подтверждения того, что им были известны Галилеевы спутники Юпитера и зрительная размытость очертаний диска Венеры, обусловленная наличием на планете атмосферы.

    Античные греки смогли обосновать шарообразность Земли, выдвинули предположение о гелиоцентричности системы. Они пытались рассчитать поперечник Солнца, пускай и ошибочно. Но греки были первыми, кто в принципе предположил, что Солнце больше Земли, ранее все, полагаясь на зрительные наблюдения, считали по другому. Грек Гиппарх в первый раз создал каталог светил и выделил разные виды звезд. Систематизация звезд в этом научном труде опиралась на интенсивность свечения. Гиппарх выделил 6 классов яркости, всего в каталоге было 850 светил.

    На что обращали внимание античные астрологи

    Первоначальная систематизация звезд основывалась на их яркости. Ведь конкретно этот критерий является единственно легкодоступным для астролога, вооруженного только телескопом. Самые яркие либо обладающие уникальными видимыми свойствами звезды даже получали собственные имена, причем у каждого народа они свои. Так, Денеб, Ригель и Алголь — названия арабские, Сириус — латинское, а Антарес — греческое. Полярная звезда в каждом народе имеет собственное название. Это, пожалуй, одна из самых принципиальных в «практическом смысле» звезд. Ее координаты на ночном небосводе неизменны, несмотря на вращение земли. Если остальные звезды движутся по небу, проходя путь от восхода до заката, то Полярная звезда не меняет своего местоположения. Поэтому конкретно ее использовали моряки и путешественники в качестве надежного ориентира. Кстати, вопреки распространенному заблуждению, это совсем не самая яркая звезда на небосклоне. Полярная звезда снаружи никак не выделяется — ни по размерам, ни по интенсивности свечения. Найти ее можно, только если знать, куда смотреть. Она располагается на самом конце «рукоятки ковша» Малой Медведицы.

    На чем основывается звездная систематизация

    Современные астрологи, отвечая на вопрос о том, какие виды звезд бывают, навряд ли станут упоминать яркость свечения либо расположение на ночном небосводе. Разве что в порядке исторического экскурса либо в лекции, рассчитанной на совсем уж дальную от астрономии аудиторию.

    Современная систематизация звезд основывается на их спектральном анализе. При этом обычно еще указывают массу, светимость и радиус небесного тела. Все эти показатели даются в соотношении с Солнцем, то есть конкретно его характеристики приняты в качестве единиц измерения.

    Систематизация звезд опирается на такой критерий, как абсолютная звездная величина. Это видимая степень яркости небесного тела без атмосферы, условно расположенного на расстоянии 10 парсек от точки наблюдения.

    Кроме этого учитывают переменности блеска и размеры звезды. Виды звезд в текущее время определяются их спектральным классом и уже детальнее — подклассом. Астрологи Рассел и Герцшпрунг независимо друг от друга проанализировали зависимость между светимостью, абсолютной звездной величиной, температурной поверхностью и спектральным классом светил. Они построили диаграмму с соответствующими осями координат и обнаружили, что результат совсем не хаотичен. Светила на графике располагались отчетливо различимыми группами. Диаграмма позволяет, зная спектральный класс звезды, определить хотя бы с приблизительной точностью ее абсолютную звездную величину.

    Как рождаются звезды

    Эта диаграмма послужила наглядным подтверждением в пользу современной теории эволюции данных небесных тел. На графике отчетливо видно, что самым многочисленным классом являются относящиеся к так называемой главной последовательности звезды. Виды звезд, принадлежащих к этому сегменту, находятся в наиболее распространенной на этот момент во Вселенной точке развития. Это этап развития светила, при котором энергия, затраченная на излучение, компенсируется полученной в процессе термоядерной реакции. Продолжительность пребывания на данном этапе развития определяется массой небесного тела и процентным содержанием элементов тяжелее гелия.

    Общепризнанная на этот момент теория эволюции звезд говорит, что на начальном этапе развития светило представляет собой разряженное циклопическое газовое облако. Под воздействием собственного тяготения оно сжимается, постепенно превращаясь в шар. Чем сильнее сжатие, тем лучше гравитационная энергия переходит в тепловую. Газ раскаляется, и когда температура добивается 15-20 млн К, в новорожденной звезде запускается термоядерная реакция. После этого процесс гравитационного сжатия приостанавливается.

    Основной период жизни звезды

    Поначалу в недрах юного светила преобладают реакции водородного цикла. Это самый долгий период жизни звезды. Виды звезд, находящихся на этом этапе развития, и представлены в самой массовой главной последовательности описанной выше диаграммы. Со временам водород в ядре светила завершается, превратившись в гелий. После этого термоядерное горение может быть только на периферии ядра. Звезда становится ярче, ее наружные слои существенно расширяются, а температура понижается. Небесное тело превращается в красный гигант. Этот период жизни звезды намного короче предыдущего. Предстоящая ее судьба исследована мало. Есть различные предположения, но достоверных им подтверждений пока не получено. Самая распространенная теория говорит, что когда гелия становится слишком много, звездное ядро, не выдерживая собственной массы, сжимается. Температура растет до тех пор, пока уже гелий не вступает в термоядерную реакцию. Чудовищные температуры приводят к очередному расширению, и звезда превращается в красного гиганта. Предстоящая судьба светила, по предположениям ученых, находится в зависимости от его массы. Но теории, касающиеся этого, всего лишь результат компьютерного моделирования, не подтвержденный наблюдениями.

    Остывающие звезды

    Предположительно, красные гиганты с малой массой будут сжиматься, превращаясь в карликов и постепенно остывая. Звезды средней массы могут трансформироваться в планетарные туманности, при этом в центре такого образования продолжит свое существование лишенное наружных покровов ядро, постепенно остывая и превращаясь в белоснежного лилипута. Если центральная звезда испускала существенное инфракрасное излучение, появляются условия для активации в расширяющейся газовой оболочке планетарной туманности космического мазера.

    Массивные светила, сжимаясь, могут достигать такого уровня давления, что электроны практически вминаются в атомные ядра, превращаясь в нейтроны. Поскольку между этими частицами нет сил электростатического отталкивания, звезда может сжаться до размера нескольких км. При этом ее плотность превысит плотность воды в 100 миллионов раз. Такая звезда называется нейтронной и представляет собой, по сути, огромное атомное ядро.

    Сверхмассивные звезды продолжают свое существование, последовательно синтезируя в процессе термоядерных реакций из гелия — углерод, потом кислород, из него — кремний и, наконец, железо. На этом этапе термоядерной реакции и происходит взрыв сверхновой. Сверхновые звезды, в свою очередь, могут превратиться в нейтронные либо, если их масса довольно велика, продолжить сжатие до критического предела и образовать черные дыры.

    Размеры

    Систематизация звезд по размеру может быть реализована двойственно. Физический размер звезды может определяться ее радиусом. Единицей измерения в данном случае выступает радиус Солнца. Существуют лилипуты, звезды средней величины, гиганты и сверхгиганты. Кстати, само Солнце является как раз лилипутом. Радиус нейтронных звезд может достигать всего нескольких км. А в сверхгиганте целиком поместится орбита планеты Марс. Под размером звезды может также пониматься ее масса. Она тесно связана с поперечником светила. Чем звезда больше, тем ниже ее плотность, и наоборот, чем светило меньше, тем плотность выше. Этот критерий вирируется не так уж сильно. Звезд, которые могли быть больше либо меньше Солнца в 10 раз, очень мало. Большая часть светил укладывается в интервал от 60 до 0,03 солнечных масс. Плотность Солнца, принимаемая за стартовый показатель, составляет 1,43 г/см3. Плотность белоснежных карликов добивается 1012 г/см3, а плотность разреженных сверхгигантов может быть в миллионы раз меньше солнечной.

    В стандартной систематизации звезд схема распределения по массе смотрится следующим образом. К малым относят светила с массой от 0,08 до 0,5 солнечной. К умеренным — от 0,5 до 8 солнечных масс, а к массивным — от 8 и поболее.

    Систематизация звезд. От голубых до белоснежных

    Систематизация звезд по цвету на самом деле опирается не на видимое свечение тела, а на спектральные характеристики. Спектр излучения объекта определяется химическим составом звезды, от него же зависит ее температура.

    Наиболее распространенной является Гарвардская систематизация, созданная сначала 20 века. Согласно принятым тогда стандартам систематизация звезд по цвету предполагает деление на 7 типов.

    Так, звезды с самой высочайшей температурой, от 30 до 60 тыс. К, относят к светилам класса О. Они голубого цвета, масса подобных небесных тел добивается 60 солнечных масс (с. м.), а радиус — 15 солнечных радиусов (с. р.). Линии водорода и гелия в их спектре довольно слабые. Светимость подобных небесных объектов может достигать 1 млн 400 тыс. солнечных светимостей (с. с.).

    К звездам класса В относят светила с температурой от 10 до 30 тыс. К. Это небесные тела бело-голубого цвета, их масса начинается от 18 с. м., а радиус — от 7 с. м. Самая низкая светимость объектов такого класса составляет 20 тыс. с. с., а линии водорода в спектре усиливаются, достигая средних значений.

    У звезд класса А температура колеблется от 7,5 до 10 тыс. К, они белоснежного цвета. Минимальная масса таких небесных тел начинается от 3,1 с. м., а радиус — от 2,1 с. р. Светимость объектов находится в границах от 80 до 20 тыс. с. с. Линии водорода в спектре этих звезд сильные, появляются линии металлов.

    Объекты класса F на самом деле желто-белого цвета, но смотрятся белоснежными. Их температура колеблется в пределах от 6 до 7,5 тыс. К, масса варьируется от 1,7 до 3,1 с.м., радиус — от 1,3 до 2,1 с. р. Светимость таких звезд варьируется от 6 до 80 с. с. Линии водорода в спектре ослабевают, линии металлов, наоборот, усиливаются.

    Таким образом, все виды белоснежных звезд попадают в пределы классов от А до F. Далее, согласно систематизации, следуют желтоватые и оранжевые светила.

    Желтоватые, оранжевые и красные звезды

    Виды звезд по цвету распределяются от голубых к красным, по мере понижения температуры и уменьшения размеров и светимости объекта.

    Звезды класса G, к которым относится и Солнце, добиваются температуры от 5 до 6 тыс. К, они желтоватого цвета. Масса таких объектов — от 1,1 до 1,7 с. м., радиус — от 1,1 до 1,3 с. р. Светимость — от 1,2 до 6 с. с. Спектральные линии гелия и металлов интенсивны, линии водорода все слабее.

    Светила, относящиеся к классу К, имеют температуру от 3,5 до 5 тыс. К. Смотрятся они желто-оранжевыми, но настоящий цвет этих звезд — оранжевый. Радиус данных объектов находится в промежутке от 0,9 до 1,1 с. р., масса — от 0,8 до 1,1 с. м. Яркость колеблется от 0,4 до 1,2 с. с. Линии водорода практически незаметны, линии металлов очень сильны.

    Самые холодные и маленькие звезды — класса М. Их температура всего 2,5 — 3,5 тыс. К и кажутся они красными, хотя на самом деле эти объекты оранжево-красного цвета. Масса звезд находится в промежутке от 0,3 до 0,8 с. м., радиус — от 0,4 до 0,9 с. р. Светимость — всего 0,04 — 0,4 с. с. Это умирающие звезды. Холоднее их только недавно открытые коричневые лилипуты. Для них выделили отдельный класс М-Т.

    Если внимательно присмотреться к ночному небу, легко заметить, что звезды, глядящие на нас, различаются по цвету. Голубоватые, белые, красные, они светят ровно или мерцают, подобно елочной гирлянде. В телескоп различия в цвете становятся более очевидными. Причина, приведшая к такому разнообразию, кроется в температуре фотосферы. И, вопреки логичному предположению, самыми горячими являются не красные, а голубые, бело-голубые и белые звезды. Но обо всем по порядку.

    Спектральная классификация

    Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело - цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

    Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

    Один Бритый Англичанин Финики Жевал Как Морковь

    Основных спектральных классов семь: O—B—A—F—G—K—M. Эта последовательность отражает постепенное снижение температуры (от О к М). Для ее запоминания существуют специальные мнемонические формулы. На русском языке одна из них звучит так: «Один Бритый Англичанин Финики Жевал Как Морковь». К этим классам добавляются еще два. Буквами C и S обозначаются холодные светила с полосами окислов металла в спектре. Рассмотрим звездные классы подробнее:

    • Класс О характеризуется самой высокой температурой поверхности (от 30 до 60 тысяч Кельвинов). Звезды такого типа превышают Солнце по массе в 60, а по радиусу — в 15 раз. Их видимый цвет — голубой. По светимости они опережают нашу звезду более чем в миллион раз. Голубая звезда HD93129A, относящаяся к этому классу, характеризуется одним из самых больших показателей светимости среди известных космических тел. По этому показателю она опережает Солнце в 5 миллионов раз. Голубая звезда располагается на расстоянии в 7,5 тысяч световых лет от нас.
    • Класс В обладает температурой в 10-30 тысяч Кельвинов, массой, в 18 раз превышающей аналогичный параметр Солнца. Это бело-голубые и белые звезды. Их радиус больше, чем у Солнца, в 7 раз.
    • Класс А характеризуется температурой в 7,5-10 тысяч Кельвинов, радиусом и массой, превышающими в 2,1 и 3,1 раз соответственно аналогичные параметры Солнца. Это белые звезды.
    • Класс F: температура 6000-7500 К. Масса больше солнечной в 1,7 раз, радиус — в 1,3. С Земли такие звезды выглядят также белыми, их истинный цвет — желтовато-белый.
    • Класс G: температура 5-6 тысяч Кельвинов. К этому классу относится Солнце. Видимый и истинный цвет таких звезд — желтый.
    • Класс К: температура 3500-5000 К. Радиус и масса меньше солнечных, составляют 0,9 и 0,8 от соответствующих параметров светила. Видимый с Земли цвет этих звезд - желтовато-оранжевый.
    • Класс М: температура 2-3,5 тысячи Кельвинов. Масса и радиус — 0,3 и 0,4 от аналогичных параметров Солнца. С поверхности нашей планеты они выглядят красно-оранжевыми. К классу М принадлежат Бета Андромеды и Альфа Лисички. Яркая красная звезда, знакомая многим, — это Бетельгейзе (альфа Ориона). Лучше всего искать ее на небе зимой. Красная звезда расположена выше и чуть левее

    Каждый класс делится на подклассы от 0 до 9, то есть от самых горячих до самых холодных. Номера звезд обозначают принадлежность к определенному спектральному типу и степень нагрева фотосферы по сравнению с другими светилами в группе. Например, Солнце относится к классу G2.

    Визуальные белые

    Таким образом, классы звезд с B по F с Земли могут выглядеть белыми. И только объекты, относящиеся к А-типу, имеют такую окраску на самом деле. Так, звезда Саиф (созвездие Орион) и Алголь (бета Персея) наблюдателю, не вооруженному телескопом, покажутся белыми. Они относятся к спектральному классу B. Их истинный цвет - бело-голубой. Также белыми кажутся Мифрак и Процион, самые яркие звезды в небесных рисунках Персей и Малый Пес. Однако их истинный цвет ближе к желтому (класс F).

    Почему звезды белые для земного наблюдателя? Цвет искажается из-за огромного расстояния, отделяющего нашу планету от подобных объектов, а также объемных облаков пыли и газа, нередко встречающихся в космосе.

    Класс А

    Белые звезды характеризуются не столь высокой температурой, как представители класса О и В. Их фотосфера нагревается до 7,5-10 тысяч Кельвинов. Звезды спектрального класса А значительно крупнее Солнца. Их светимость также больше — примерно в 80 раз.

    В спектрах А-звезд сильно выражены линии водорода серии Бальмера. Линии прочих элементов заметно слабее, однако они становятся более существенными по мере продвижения от подкласса А0 к А9. Для гигантов и сверхгигантов, относящихся к спектральному классу А, характерны чуть менее выраженные линии водорода, чем для звезд главной последовательности. В случае этих светил более заметными становятся линии тяжелых металлов.

    К спектральному классу А относится немало пекулярных звезд. Таким термином обозначают светила, обладающие заметными особенностями в спектре и физических параметрах, что затрудняет их классификацию. Например, довольно редкие звезды типа лямбды Волопаса характеризуются недостатком тяжелых металлов и очень медленным вращением. В число пекулярных светил входят и белые карлики.

    Классу А принадлежат такие яркие объекты ночного неба, как Сириус, Менкалинан, Алиот, Кастор и другие. Познакомимся с ними поближе.

    Альфа Большого Пса

    Сириус — самая яркая, хотя и не ближайшая, звезда на небе. Расстояние до него — 8,6 световых года. Для земного наблюдателя он кажется столь ярким потому, что имеет внушительные размеры и все-таки удален не так значительно, как многие другие крупные и яркие объекты. Ближайшая звезда к Солнцу — это Сириус в этом списке располагается на пятом месте.

    Относится он к и представляет собой систему из двух компонентов. Сириус А и Сириус В разделены расстоянием в 20 астрономических единиц и вращаются с периодом чуть меньше 50 лет. Первый компонент системы — звезда главной последовательности, принадлежит спектральному классу А1. Его масса в два раза превышает солнечную, а радиус — в 1,7 раз. Именно его можно наблюдать невооруженным глазом с Земли.

    Второй компонент системы — белый карлик. Звезда Сириус В практически равна нашему светилу по массе, что нетипично для таких объектов. Обычно белые карлики характеризуются массой в 0,6-0,7 солнечных. При этом размеры Сириуса В приближены к земным. Предполагается, что стадия белого карлика началась для этой звезды примерно 120 миллионов лет назад. Когда Сириус В располагался на главной последовательности, он, вероятно, представлял собой светило с массой в 5 солнечных и относился к спектральному классу В.

    Сириус А, по подсчетам ученых, перейдет на следующую стадию эволюции примерно через 660 млн лет. Тогда он превратится в красного гиганта, а еще чуть позже — в белого карлика, как и его компаньон.

    Альфа Орла

    Как и Сириус, многие белые звезды, названия которых приведены ниже, из-за яркости и нередкого упоминания на страницах научно-фантастической литературы хорошо знакомы не только людям, увлекающимся астрономией. Альтаир — одно из таких светил. Альфа Орла встречается, например, у и Стивина Кинга. На ночном небе эта звезда хороша заметна из-за яркости и относительно близкого расположения. Расстояние, разделяющее Солнце и Альтаир, составляет 16,8 световых лет. Из звезд спектрального класса А ближе к нам только Сириус.

    Альтаир по массе превышает Солнце в 1,8 раз. Его характерной особенностью является очень быстрое вращение. Один оборот вокруг оси звезда совершает меньше чем за девять часов. Скорость вращения в районе экватора — 286 км/с. Как результат «шустрый» Альтаир сплюснут с полюсов. Кроме того, из-за эллиптичной формы от полюсов к экватору снижается температура и яркость звезды. Этот эффект назван «гравитационным потемнением».

    Еще одна особенность Альтаира в том, что его блеск со временем меняется. Он относится к переменным типа дельты Щита.

    Альфа Лиры

    Вега — самая изученная звезда после Солнца. Альфа Лиры — первая звезда, у которой определили спектр. Она же стала вторым после Солнца светилом, запечатленным на фотографии. Вега вошла и в число первых звезд, до которых ученые измерили расстояние методом парлакса. Длительный период яркость светила принималась за 0 при определении звездных величин других объектов.

    Хорошо знакома альфа Лиры и астроному-любителю, и простому наблюдателю. Она является пятой по яркости среди звезд, входит в астеризм Летний треугольник вместе с Альтаиром и Денеб.

    Расстояние от Солнца до Веги - 25,3 световых года. Ее экваториальный радиус и масса больше аналогичных параметров нашего светила в 2,78 и 2,3 раз соответственно. Форма звезды далека от идеального шара. Диаметр в районе экватора заметно больше, чем у полюсов. Причина — огромная скорость вращения. На экваторе она достигает 274 км/с (для Солнца этот параметр равен чуть больше двух километров в секунду).

    Одна из особенностей Веги — окружающий ее пылевой диск. Предположительно, что он возник в результате большого числа столкновений комет и метеоритов. Пылевой диск вращается вокруг звезды и разогревается под действием ее излучения. В результате возрастает интенсивность инфракрасного излучения Веги. Не так давно в диске были обнаружены несимметричности. Вероятное их объяснение — наличие у звезды по крайней мере одной планеты.

    Альфа Близнецов

    Второй по яркости объект в созвездии Близнецов — это Кастор. Он так же, как и предыдущие светила, относится к спектральному классу А. Кастор — одна из самых ярких звезд ночного неба. В соответствующем списке он располагается на 23 месте.

    Кастор представляет собой кратную систему, состоящую из шести компонентов. Два основные элемента (Кастор А и Кастор В) вращаются вокруг общего центра масс с периодом 350 лет. Каждая из двух звезд является спектральной-двойной. Компоненты Кастора А и Кастора В менее яркие и относятся предположительно к спектральному классу М.

    Кастор С не сразу был связан с системой. Изначально он обозначался как самостоятельная звезда YY Близнецов. В процессе исследований этой области неба стало известно, что это светило физически связано с системой Кастора. Звезда вращается вокруг общего для всех компонентов центра масс с периодом в несколько десятков тысяч лет и также является спектральной-двойной.

    Бета Возничего

    Небесный рисунок Возничего включает примерно 150 «точек», многие из них — это белые звезды. Названия светил мало что скажут человеку, далекому от астрономии, но это не умаляет их значения для науки. Самым ярким объектом небесного рисунка, относящимся к спектральному классу А, является Менкалинан или бета Возничего. Имя звезды в переводе с арабского означает «плечо обладателя поводьев».

    Менкалинан — тройная система. Два ее компонента — субгиганты спектрального класса А. Яркость каждого из них превышает аналогичный параметр Солнца в 48 раз. Они разделены расстоянием в 0,08 астрономические единицы. Третий компонент — это красный карлик, удаленный от пары на 330 а. е.

    Эпсилон Большой Медведицы

    Самая яркая «точка» в, пожалуй, наиболее известном созвездии северного неба (Большая Медведица) — это Алиот, также относящийся к классу А. Видимая величина — 1,76. В списке самых ярких светил звезда занимает 33 место. Алиот входит в астеризм Большой ковш и располагается ближе других светил к чаше.

    Спектр Алиота характеризуется необычными линиями, колеблющимися с периодом в 5,1 дня. Предполагается, что особенности связаны с воздействием магнитного поля звезды. Колебания спектра, по последним данным, могут возникать из-за близкого расположения космического тела с массой в почти 15 масс Юпитера. Так ли это, пока загадка. Ее, как и другие тайны звезд, астрономы пытаются понять каждый день.

    Белые карлики

    Рассказ о белых звездах будет неполным, если не упомянуть о той стадии эволюции светил, которая обозначается как «белый карлик». Название свое такие объекты получили из-за того, что первые обнаруженные из них принадлежали спектральному классу А. Это был Сириус В и 40 Эридана В. На сегодняшний день белыми карликами называют один из вариантов финальной стадии жизни звезды.

    Остановимся более подробно на жизненном цикле светил.

    Звездная эволюция

    За одну ночь звезды не рождаются: любая из них проходит несколько стадий. Сначала облако газа и пыли начинает сжиматься под действием собственных Медленно оно приобретает форму шара, при этом энергия гравитации превращается в тепло — растет температура объекта. В тот момент, когда она достигает величины в 20 миллионов Кельвинов, начинается реакция ядерного синтеза. Эта стадия и считается началом жизни полноценной звезды.

    Большую часть времени светила проводят на главной последовательности. В их недрах постоянно идут реакции водородного цикла. Температура звезд при этом может различаться. Когда в ядре заканчивается весь водород, начинается новая стадия эволюции. Теперь топливом становится гелий. При этом звезда начинает расширяться. Ее светимость увеличивается, а температура поверхности, наоборот, падает. Звезда сходит с главной последовательности и становится красным гигантом.

    Масса гелиевого ядра постепенно увеличивается, и оно начинает сжиматься под собственным весом. Стадия красного гиганта заканчивается гораздо быстрее, чем предыдущая. Путь, по которому пойдет дальнейшая эволюция, зависит от изначальной массы объекта. Маломассивные звезды на стадии красного гиганта начинают раздуваться. В результате этого процесса объект сбрасывает оболочки. Образуется и оголенное ядро звезды. В таком ядре завершились все реакции синтеза. Оно называется гелиевым белым карликом. Более массивные красные гиганты (до определенного предела) эволюционируют в углеродных белых карликов. В их ядрах присутствуют более тяжелые элементы, чем гелий.

    Характеристики

    Белые карлики — тела, по массе, как правило, очень близкие к Солнцу. При этом их размер соответствует земному. Колоссальная плотность этих космических тел и происходящие в их недрах процессы необъяснимы с точки зрения классической физики. Тайны звезд помогла раскрыть квантовая механика.

    Вещество белых карликов представляет собой электронно-ядерную плазму. Сконструировать его даже в условиях лаборатории практически невозможно. Поэтому многие характеристики таких объектов остаются непонятными.

    Даже если изучать всю ночь звезды, обнаружить хотя бы один белый карлик без специальной аппаратуры не получится. Их светимость значительно меньше солнечной. По подсчетам ученых, белые карлики составляют примерно от 3 до 10% всех объектов Галактики. Однако на сегодняшний день найдены лишь те из них, которые расположены не дальше, чем на расстоянии 200-300 парсек от Земли.

    Белые карлики продолжают эволюционировать. Сразу после образования они имеют высокую температуру поверхности, но быстро остывают. Через несколько десятков миллиардов лет после образования, согласно теории, белый карлик превращается в черного карлика — не излучающее видимый свет тело.

    Белая, красная или синяя звезда для наблюдателя отличаются прежде всего цветом. Астроном смотрит глубже. Цвет для него сразу многое рассказывает о температуре, размерах и массе объекта. Голубая или светлая синяя звезда — гигантский раскаленный шар, по всем параметрам сильно опережающий Солнце. Белые светила, примеры которых описаны в статье, несколько меньше. Номера звезд в различных каталогах также многое сообщают профессионалам, но далеко не все. Большое количество сведений о жизни далеких космических объектов либо еще не получили объяснения, либо остаются даже не обнаруженными.