Экспериментальные коллизии лейденского опыта. Загадка лейденской банки

В 1913г. Петербургский университет получил нового сотрудника - физика А.Ф.Иоффе. При специальности инженера-технлога, имея склонность к научной работе, до этого он в течение нескольких лет трудился в Мюнхенском университете под руководством лучшего физика-экспериментатора Европы В.К.Рентгена. Там же он и защитил докторскую диссертацию.

Теперь его научным руководителем стал физик О.Д.Хвольсон. В беседе о предстоящих исследовательских работах этот руководитель предложил ему «продолжить замечательную традицию русских ученых» воспроизводить лучшие научные заграничные работы. Понятно, что ученику Рентгена, самого первого лауреата Нобелевской премии по физике, даже слышать об этом было странно. Он переспросил: «Не лучше ли ставить новые еще не разрешенные вопросы?». На что Хвольсон ответил: «Но разве можно в физике придумать что-то новое? Для этого надо быть Джи-Джи Томсоном».

Действительно, Дж.Томсон, первооткрыватель электрона, был крупным физиком. Но потом оказалось, что и А.Ф.Иоффе тоже умел задавать вопросы в науке и вся мировая полупроводниковая техника по сути началась с него. К тому же он явился организатором русской научной школы, учениками которой гордилась бы любая страна мира, среди которых И.В.Курчатов и нобелевские лауреаты Н.Н.Семёнов, П.Л.Капица.

Умение задавать природе вопросы и получать на них ответы с помощью эксперимента считается самым важным в жизни науки. А деятели, которые умеют это делать, как раз и являются выдающимися учеными. Но нее так уж и неправ был и О.Д.Хвольсон. Фундамент современной физики состоит из выводов работ первопроходцев, которые регулярно проверяются, перепроверяются, уточняются. В случае неподтверждения выводов рушатся целые разделы наук, а затем кропотливо возводятся новые стены, филиалов этой науки, которые ведут к новым открытиям, к новым построениям. Такой процесс длится столетиями и нет этому конца.

Здесь мы поведаем историю об эксперименте одного ученого, которого заинтересовал перспективный научный вопрос о физическом явлении и который пытался решить его с помощью простого и убедительного опыта, но приведшего к ситуации, называемой коллизией. Это тот случай, когда полученные результаты противоречат друг другу.

Никто не сможет назвать точную дату научного открытия того факта, что электрические заряды можно накапливать с помощью специальных устройств, впоследствии названных лейденскими банками и позже получивших свое развитие в приборах, именующихся . Но можно утверждать, что после 1745г. с помощью лейденской банки удалось выяснить высокую скорость распространения электричества, его влияние на организм человека и животных, возможность поджигания электрическими искрами горючих газов и т.д. Тысячи исследователей пытаются применить этот прибор для нужд народного хозяйства. Однако саму лейденскую банку почему-то никто и не пытается изучать.

Первый вопрос природе по самой банке задает великий американский ученый-самоучка Бенджамин Франклин. Напомним, что лейденская банка в то время представляла собой обыкновенную закупоренную бутылку с водой, в пробку которой был вставлен железный стержень, касающийся этой воды. Саму бутылку или держали в руках, или ставили на свинцовый лист. Таким и было всё её устройство.

Франклин задался вопросом выяснить, где же в этом простом аппарате из стекла металла и воды может накапливаться электричество . В железном стержне, воде или самой бутылке? Сейчас, когда существуют различные измерительные приборы и половина населения пользуется компьютерами, этот вопрос многих поставит в тупик. Посмотрим, как решалась эта задача в 1748г, когда единственным измерительным прибором был сам экспериментатор, пропускающий через себя болезненные электрические удары. Большей частью будем приводить описание экспериментов самим автором опытов, чтобы убедиться в их гениальной простоте.

«Намереваясь исследовать наэлектризованную банку, чтобы установить, где скрыта ее сила, мы поместили ее на стекло и вынули пробку с проводом. Затем, взяв банку в одну руку и поднеся другой палец к ее горловине, мы извлекли из воды сильную искру со столь же сильным ударом, как если бы провод оставался на своем месте, а это показало, что сила скрывается не в проводе». Здесь автор проводом называет выводной стержень банки.

«После этого в целях выяснения, не находится ли электричество, как нам это думалось, в воде, мы опять наэлектризовали банку. Поставив ее на стекло, вынули из нее, как и раньше, провод с пробкой; затем всю воду из банки мы перелили в пустую бутылку, которая тоже стояла на стекле. Мы считали, что если электричество находилось в воде, то при прикосновении к этой бутылке мы получим удар. Никакого удара не последовало. Отсюда мы сделали вывод, что электричество либо было потеряно при переливании, либо же осталось в банке».

«Верным оказалось, как мы установили, последнее, потому что при испытании этой банки последовал удар, хотя в нее мы налили простую воду из чайника». Франклину ничего не оставалось, как признать, что заряд в банке мог быть только в её стекле.

«Чтобы выяснить затем, присуще это свойство стеклу бутылки или ее форме, мы взяли лист стекла, положили его на ладонь, прикрыли сверху пластинкой свинца и наэлектризовали последнюю. Поднесли к ней палец, в результате чего последовала искра с ударом». Таким способом было определено, что форма стекла на результат не влияет. Результатом решения этой задачи стало для Франклина изобретение плоского конденсатора, одной пластиной которого являлась ладонь экспериментатора, а другой - лист свинца. Впрочем, в дальнейшем он ладонь заменяет также на свинцовый лист.

У кого могли возникнуть сомнения в научной чистоте эксперимента янки? Он смело мог утверждать, что в электрической емкости «в сконденсированном виде» заряд находится в СТЕКЛЕ. Эти опыты при необходимости мог повторить любой и проверить выводы Франклина. Наверняка такие опыты производились и выводы подтверждались многими учеными. Была даже создана демонстрационная модель лейденской банки, с помощью которой показывали учащимся упрощенный вариант опыта, потом оказавшимся с неправильным выводом. Ведь если бы Франклин вместо воды применил в опыте ртуть, результат мог быть прямо противоположным.

Эксперименты с лейденской банкой были весьма эффектными и полностью отвечали идеям просвещенного абсолютизма, поэтому стали модными в высшем свете и в них принимали участие даже венценосные особы. А аббат Ж.А.Нолле даже занял пост официального электрика при короле Людовике XV. Он то и дал название прибору по имени университетского города Лейдена в Голландии, где скорее всего и был изобретен этот прибор.

Десяток лет экспериментов не пропали даром. Было точно установлено, что результаты опытов не зависят от состава воды (годилась любая). Более того, вместо воды в банку можно было насыпать свинцовую дробь или просто внутри ее укрепить свинцовую фольгу. На действие банки это не отражалось. Банки для усиления действия научились собирать в батареи.

Было установлено, что банки большего объема (следовательно, и с большей поверхностью стекла) давали более сильные разряды. А вот зависимость удара от толщины стекла была обратной. Более тонкие стекла давали более сильный разряд. Удивительно, что с помощью силы электрического удара исследователя, ученые довольно точно подошли к хорошо знакомой нам формуле емкости плоского конденсатора. Впоследствии историки науки в шутку назовут этот метод измерений ШОКМЕТРОМ. (От французского ШОК - удар, толчок).

Для объяснений электрических явлений в научной среде были выдвинуты несколько теорий, нашедших применение среди ученых. Среди них была и унитарная теория электричества, предложенная самим Франклином. Согласно этой теории электричество представляло собой некую невесомую жидкость, которая заполняла все тела. Если в телах было больше или меньше этой жидкости, то тело приобретало заряд. При избытке этой жидкости тело имело заряд положительный, при недостатке - отрицательный. Эта теория позже найдет свое развитие в электронной теории проводимости.

С помощью этой теории было легко объяснить явления, происходящие в конденсаторе (лейденской банке). При зарядке электрическая жидкость из одной обкладки конденсатора перетекает в другую обкладку. Следствием является положительный заряд одной обкладки и отрицательный другой. Стекло между ними служит только изолятором и ничем другим. Разрядить такой конденсатор легко. Достаточно замкнуть эти пластины проводником или телом человека. Но результаты опыта Франклина говорили о том, что заряд находится в стекле! Как же все это понимать?

Некоторые ученые, чтобы подтвердить правильность унитарной теории, пытались убрать из опыта стекло. Они заряжали два металлических бруска, которые висели рядом. Несомненно, что они представляли собой конденсатор, но без стекла. Увы, такой конденсатор экспериментатора током не ударял и вопрос оставался нерешенным.

В 1757 году в Петербурге вышел свет труд российского академика Франца Эпинуса «Опыт теории электричества и магнетизма», в которой описан опыт, решивший эту задачу. За основу он взял свою мысль о том, что электризация брусков была правильной, но потрясение экспериментатора ударом не было по причине малой емкости такого конденсатора. А увеличить емкость его можно увеличением обкладок конденсатора и уменьшением расстояния между ними. В связи с тем, что экспериментатор для свершения этого опыта изобретает новый вид электрической емкости - конденсатора с воздушным диэлектриком мы приводим текст самого Ф.Эпинуса.

«Итак, чтобы получить большую поверхность, я позаботился об изготовлении деревянных пластин, поверхность которых имела около восьми квадратных футов, я подвесил их, обложив металлическими листами на расстоянии полутора дюймов друг от друга в положении параллельном одна другой». Он зарядил такой конденсатор и разрядил через себя..

«Я немедленно получил сильное потрясение, совершенно подобное тому, какое вызывает лейденская банка. Кроме того, этот прибор был в состоянии воспроизвести и все другие явления, которые получаются в банке; нет нужды повергать их рассмотрению». Заметим, что восемь квадратных футов это чуть меньше квадратного метра.

Последнее замечание о «всех других явлениях» весьма существенно. Оно подчеркивает, что электричество из такого конденсатора ТОЧНО ТАКОЕ ЖЕ, как и из лейденской банки. Но здесь не было стекла, а предполагать, что заряды находятся в окружающем воздухе было непродуктивно. Позже, в 1838году такие вещества «при посредстве или через которые действуют электрические силы» М.Фарадей назовет ДИЭЛЕКТРИКАМИ. Эпинус же делает в книге замечание: «Я понял, что с Франклиным случилось нечто такое, что может случиться с каждым человеком», намекая на латинскую пословицу - Errare humanum est - человеку свойственно ошибаться.

Ф.Эпинус выслал в Америку свое сочинение специально для Франклина, но тот уже практически перестал заниматься исследованиями по электричеству, исключая практическое применение изобретенного им громоотвода. Он стал политиком. А Екатерина II отлучила от академической деятельности в России и Ф.Эпинуса. Она назначила его учителем физики для своего сына Павла, ставшего потом императором. А ведь он был приглашен в Петербург на смену погибшего при исследованиях атмосферного электричества Г.В.Рихмана. Так и получилось, что вопрос по поводу опытов с лейденской банкой оставался нерешенным еще долгое время.

И вот передо мной учебник по электричеству 1918г. издания. Это перевод книги французского автора Жоржа Клода с длинным названием «Электричество для всех и каждого удобопонятно изложенное». В нем идет описание опыта с лейденской банкой, как и у Франклина, но уже при отсутствии воды вообще. См. рисунок.

Слева изображена лейденская банка в сборе. Буквами А, В и С обозначены ее составные части. А и В - это внутренняя и наружная обкладки банки. С - это стеклянный стакан, служащий диэлектриком. Такая банка в сборе заряжается при демонстрационном опыте, затем заряженная разбирается демонстратором в резиновых рукавицах. Для доказательства факта, что обкладки банки не имеют заряда, их контактируют друг с другом. Убеждаются, что искры нет. Затем банку собирают. К удивлению она оказывается снова заряженной и дает мощнейшую искру. Этот опыт ставил многих в тупик. А наука не терпит неясностей. Однако объяснение ситуации было дано только в 1922 году.

В том году в лондонском «Философском журнале» была напечатана статья физика Дж.Адденбрука «Изучение опытов Франклина с лейденской банкой», где автор пришел к удивительным результатам, расставившим все точки над i . Оказывается, стекло в обычных условиях всегда покрыто водяной пленкой, мы это наблюдаем по запотеванию окон. Кстати, эта пленка не всегда наблюдается визуально. Вот там то и остаются заряды на разбираемом конденсаторе и играют роль обкладок в стоящем отдельно стакане. При употреблении Адденбруком стакана не из стекла, а из парафина, на котором не образуется стеклянная пленка, получается результат противоположный франклиновскому. В сухой атмосфере «эффект Франклина» на разборной лейденской банке тоже не наблюдается.

Ларчик, оказывается, открывался просто. Но ключик к нему искали почти 175 лет.

Литература:

1.В.Франклин. Опыты и наблюдения над электричеством. М., АН СССР, 1956, Стр. 29-30.

2. Ф.У.Т.Эпинус. Теория электричества и магнетизма. М., АН СССР, 1951, Стр. 70-92.

3. Жорж Клод. Электричество для всех и каждого удобопонятно изложенное бывшего воспитанника школы химии и физики в Париже. Перевод с франц. С-Петербург, Издание В.И.Губинского. Год издания не указан. (1918)

4. Л.Крыжановский. Загадка лейденской банки. «Квант» №11, 1991. с 28,29.



Для изготовления лейденских банок могут быть взяты любые стеклянные банки из-под консервированных фруктов, широкогорлые бутылки или просто чайные стаканы. Емкость конденсатора — лейденской банки зависит от ее объема. По­этому для того, чтобы накопить больше электричества, надо делать больше и лейденскую банку. Самыми подходящими для этого будут стеклянные банки из-под консервов емкостью в 0,5 или 1 литр. Нам нужно взять четыре одинаковых банки.
Все банки на 3/4 их высоты необходимо оклеить станиолем— оловянной фольгой, употребляемой для обертки чая, шоко­лада и других продуктов. Также оклеиваются банки и изнутри. Необходимо заклеить станиолем с обеих сторон дно банки. При этом надо следить, чтобы на станиоле не получалось складок и разрывов. Если же где-нибудь будут небольшие дырочки, их заклеивают кружочками станиоля. Приклеивать станиоль можно конторским клеем. Можно обойтись и без внутренней обклейки банки, а просто насыпать немного в банку мелко настриженной фольги и спустить в нее прием­ник из проволоки.
Приемник для лейденской банки можно изготовить различ­ными способами. Приемник — это металлический стержень с шариком или петлей на конце, служащий для соединения внутренней обкладки банки с кондуктором электрической машины. Укрепить его в банке можно путем широкого кольца, сделанного на противоположном конце стержня. Кольцо это должно плотно входить в банку до самого дна. Можно также свить спираль по внутреннему диаметру банки. Если для банки будет использована бутылка с широким горлом, то стержень укрепляется в пробке, которой закрывается бу­тылка. Стержень должен доходить до дна банки и плотно прижиматься к станиолю. Чтобы не поцарапать и не про­рвать внутреннюю обкладку банки, на конце стержня также надо сделать маленькое колечко, могущее пройти через горло бутылки. Если горло бутылки не позволит вам оклеить ее внутренность, то внутреннюю обкладку банки заменит налитая в нее вода с небольшим добавлением соли. Уровень воды должен соответствовать уровню внешней обкладки. Можно в бутылку насыпать дроби до такого же уровня.
Батарея из лейденских банок изготовляется просто. Все приемники банок соединяются между собой голым медным проводом, а банки устанавливаются на доску, оклеенную ста­ниолем. Такая батарея будет накапливать электричества в четыре раза больше, чем одна банка. Изготовление лейденских банок и батареи из них показано на рис. 5 а и б.

Рис. 5. Лейденские банки и их соединение в батареи.
а—лейденские банки, б— батарея из лейденских банок, в—разрядник.

Вопрос 7. Что вы знаете о Лейденской банке?

7F55 Лейденская банка - первый электрический конденсатор, изобретённый голландскими учёными Мушенбреком и его учеником Кюнеусом в 1745 в Лейдене. Параллельно и независимо от них сходный аппарат, под названием «медицинская банка» изобрёл немецкий учёный Клейст. Лейденская банка представляла собой закупоренную наполненную водой стеклянную банку, оклеенную внутри и снаружи фольгой. Сквозь крышку в банку был, воткнут металлический стержень. Лейденская банка позволяла накапливать и хранить сравнительно большие заряды, порядка микрокулона. Изобретение лейденской банки стимулировало изучение электричества, в частности скорости его распространения и электропроводящих свойств некоторых материалов. Выяснилось, что металлы и вода, лучшие проводники электричества. Благодаря Лейденской банке удалось впервые искусственным путем получить электрическую искру. Очень много материала нашел каждый из нас по данному вопросу. Интересной оказалась история создания этой банки. Простейшим конденсатором является лейденская банка. Это старинный прибор. Название его происходит от голландского города Лейдена, где впервые стали изготовлять такие конденсаторы еще в середине XVIII века. Лейденскую банку нетрудно сделать самому. Для этого можно использовать стеклянную банку. Стенки банки с внешней и внутренней поверхности на 2/3 высоты оклейте фольгой. Они будут служить обкладками конденсатора. Работать нужно аккуратно, чтобы не образовалось складок на фольге. Затем возьмите полиэтиленовую крышку, вставьте в середину ее металлический стержень длиной 8-10 см. На верхний конец стержня насадите стальной шарик (или деревянный, оклеенный фольгой). Из фольги сделайте метелочку и укрепите ее на нижнем конце стержня. Длина метелочки должна быть такой, чтобы при закрытой крышке она касалась внутренней поверхности банки. Закройте банку крышкой - и прибор готов. Чтобы «наполнить» такой конденсатор электрическими зарядами, заряжайте металлический круг электрофора и прикасайтесь его краем к шарику лейденской банки. При этом на внутренней обкладки будут скапливаться положительные заряды, а на внешней - отрицательные. ИСТОРИЯ ЛЕЙДЕНСКОЙ БАНКИ В середине ХУШ столетия экспериментальные исследования новой, неведомой электрической силы перемещаются во Францию. В Париже в ту пору жил католический священник по имени Жан Антуан Нолле (1700 - 1770). Принадлежал он к ордену иезуитов, был хорошо образован, начитан и увлекался физикой. Аббат Нолле - именно под таким именем вошел он в историю науки - являлся профессором физики, читал лекции в разных аудиториях, сопровождая их эффектными опытами, не пропускал заседаний Парижской академии, был знаком и переписывался буквально со всеми более или менее известными естествоиспытателями. В конце тридцатых годов аббат Нолле часто бывал в доме директора Парижского ботанического сада Шарля Франсуа Дюфе, члена Парижской Академии, человека страстно увлеченного опытами с электрической материей. Он добывал таинственную силу, натирая стеклянную трубку суконной тряпочкой, и накапливал электричество в различных изолированных телах. Однажды, когда Нолле посетил своего друга, тот показал ему петли из шелковых шнурков, свисавшие с потолочной балки в его лаборатории. Однако это не смущало экспериментатора. Он залез в петли и расположился в них так, чтобы ни рукавом, ни полой камзола не коснуться пола. Затем предложил Нолле с помощью той же стеклянной трубки зарядить его электричеством. И когда после этого он захотел взять в руку небольшую стеклянную палочку, которую ему протянул аббат, из пальцев Дюфе выскочила вдруг большая голубая искра, которая с явно расслышанным треском кольнула обоих исследователей. Можно понять тот ужас, с которым позже аббат Нолле рассказывал об этом всему Парижу. В том же году Дюфе опубликовал подробное сообщение об изучении электрических искр и голубоватого свечения, которое окружало электризуемые тела. «Возможно, - писал он,- что в конце концов удался найти средство для получения электричества в больших масштабах и, следовательно, усилить мощь электрического огня, который во многих из этих опытов представляется (если можно сопоставлять нечто маленькое с чем-то очень большим) как бы одной природы с громом и молнией». И это было едва ли не первым в истории науки опубликованным высказыванием об электрической природе молнии. Начиная примерно с середины XVIII века опыты с электричеством, получаемым от трения, стали любимыми развлечениями образованных людей. Изумительные и совершенно непонятные свойства электризуемых тел не только притягивать к себе пушинки и соломинки, но и светиться, рождать искры, сопровождаемые треском, который отдаленно напоминал гром, - все это приводило людей в подлинный восторг. Но как научиться добывать большие порции электричества? После Герике и Гауксби электрические машины, основанные на добывании чудесной силы путем трения, долгое время оставались слабосильными установками. Им еще предстояло пройти длинный путь развития, прежде чем они стали настоящими физическими приборами, пригодными для научной деятельности ученых. И исследователи электричества наверняка бы еще долгое время топтались на месте, если бы не одно слу- чайное изобретение. Речь идет о так называемой лейденской банке. Шел XVIII век. Соборный настоятель небольшого померанского городка, некто Эвальд Георг фон Клейст, потихоньку от прихожан занимался электрическими опытами. Не то чтобы он боялся преследований. Нет, слава богу, в XVIII столетии ученых уже не обвиняли в колдовстве и не жгли на кострах. И не потому, разумеется, что отцы церкви стали более мягкосердечны- ми. Время изменилось, изменилось и общественное мнение. Теперь многие представители монашеских орденов занимались наукой, да и пастыри божьи....Но вводить стадо господне во искушение не стоило. И потому пастор фон Клейст результатов своих исследований не публиковал и за эксперименты принимался лишь после ухода экономки, тщательно занавесив окна. Электрическая машина, отца настоятеля была чрезвычайно слабой. И искры, которые он извлекал из нее, никакого впечатления при свете не производили. Тут поневоле задумаешься: а нельзя ли накопить эту силу? Однажды, в счастливые часы занятий электрическими исследованиями, фон Клейст решил попробовать зарядить электричеством гвоздь. Ну а почему бы нет? Скорее всего, именно этот предмет попался ему под руку. Он вставил железный стержень в бутылочку из-под микстуры - отца настоятеля мучил кашель - и поднес к кондуктору машины. Несколько оборотов стеклянного шара, и электричество должно было родиться и перейти на гвоздь. Далее его следовало вынуть из бутылочки. Клейст взялся за головку гвоздя и тут же получил весьма ощутимый электрический удар. Но откуда? Его машина неспособна была давать и десятой доли таких зарядов. Он решил повторить опыт. Ах, эта немецкая дотошность! Отец настоятель записывал мельчайшие подробности каждого опыта. Еще и еще... Каждый раз накопившаяся сила исправно и довольно чувствительно щелкает настоятеля собора по пальцу. А что будет, если налить в склянку спирт или ртуть? Удары усиливаются! Некоторое время спустя, убедившись, что он, священник из города Каммина, открыл тщетно отыскиваемый способ накапливания электричества, Эвальд Георг фон Клейст описал результат своих опытов и послал письмо в Данциг тамошнему протодиакону. Отец протодиакон физикой не увлекался, но был хорошо знаком с бургомистром Даниелем Гралатом - организатором общества естествоиспытателей в Данциге. Общество жаждало деятельности, и потому новинка фон Клейста пришлась как нельзя более кстати. Бургомистр Гралат начал с того, что взял бутыль большего размера с большим гвоздем и научился заря- жать эту систему, используя в качестве обкладки вместо собственной руки фольгу. Это было тоже открытием. Потом он составил из бутылей с электричеством батарею и... бедные члены общества! Именно они первыми испытывали на себе результат увлечений своего председателя. ...Строго говоря, как ученый, Питер ван Мушенбрук не был звездой первой величины. Но в Лейденском университете были прекрасная физическая лаборатория, давние традиции и слава серьезного учебного заведения. Лучи этой славы привлекали учеников, которые давали доход профессору Мушенбруку. Тем более что герр профессор умел красно и значительно говорить, надувал щеки и тряс париком, рассказывая о своих несравненных опытах... Умение подать себя и в науке дело не последнее. Двести же с лишним лет назад находилось немало простаков, называвших ловкого интерпретатора не иначе, как «великий Мушенбрук». Однажды некий Кунеус, сын богатого лейденского горожанина, желавший поразвлечься, решил наполнить электрической материей банку с водой. По воззрениям того времени - мысль вовсе не такая уж и абсурдная. Вода - жидкость, и электрическая материя обладает свойствами жидкости. Кунеус налил в банку воду, взял в руку и опустил туда металлический стержень, соединенный с кондуктором электрической машины, затем стал крутить ручку. Некоторое время спустя он решил стержень вынуть... Кунеус рассказывал позже, что, коснувшись стержня, испытал ни с чем не сравнимое потрясение. Отдадим должное профессору Мушенбруку, который тут же решил проверить открытие ученика на себе. Сильный электрический удар поверг его в большое изумление. "Испытать его еще раз я не согласился бы даже ради французской короны", - именно так заявил он, рассказывая об эффекте. Одним из первых о лейденском эксперименте узнал аббат Нолле. Именно о лейденском, а не об изобретении зарядной банки в стране «грубых тевтонцев». Нолле не только усовершенствовал лейденскую банку, он составил из нескольких целую батарею и получил сильные, стреляющие искры. В Версале в присутствии короля и придворных Нолле выстраивает 180 мушкетеров кольцом. Велит им взяться за руки, а крайним предлагает прикоснуться к электродам лейденской банки, заряженной от электрической машины. «Было очень курьезно видеть„- пишет очевидец,- разнообразие жестов и слышать вскрик, исторгаемый неожиданностью у большей части получающих удар». А король веселился... Еще больший интерес появился в его глазах, когда почтенный аббат поставил рядом с невинной банкой клетку с беззаботно порхающим воробьем. Вот подсоединены контакты. Банка заряжена. Наступил момент, когда птичка слишком близко приблизилась к предательским контактам. Проскочила голубая искра, раздался треск, и несчастная пичуга упала на пол клетки бездыханной. - Бpaвo! - сказал Людовик XV и поднялся с кресла. - Браво! - повторили придворные, спеша уйти вместе с королем от этого ученого служителя бога, только что продемонстрировавшего им, что электричество может не только развлекать... Благодаря популяризаторской деятельности Нолле опыты со столь простым и доступным прибором, как лейденская банка, получили широкое распространение. Их повторяли в аристократических салонах и в ярмарочных балаганах. Голубыми искрами, извлеченными из пальцев наэлектризованного добровольца, поджигали спирт и порох, убивали мышей и цыплят. В одном из парижских монастырей 700 благочестивых братьев во Христе, взявшись за руки, образовали живую цепь. И все, как один, высоко подпрыгнули и возопили от страха, когда крайние монахи разрядили через себя батарею невзрачных банок, наполненных таинственной электрической жидкостью. Опыты повторяли в Англии и Италии, в России и Германии. В газетах писали о чудесных исцелениях паралича благодаря электрическим ударам...


Здравствуйте. Хотелось бы показать, как делается лейденская банка или самый простой конденсатор.
Но для начала немного информации для тех, кто не знает, что это такое ну а те, кто в курсе может и пропустить или почитать, дабы освежить память.
Лейденская банка - первый электрический конденсатор, изобретённый голландским учёным Питером Ван Мушенбруком и его учеником Кюнеусом в 1745 в Лейдене. Параллельно и независимо от них сходный аппарат под названием «медицинская банка» изобрёл немецкий учёный Эвальд Юрген фон Клейст.
Этот старинный прибор, может накапливать статическое электричество, чем меня и привлек.

Состоит он из емкости (банки) обернутой фольгой с внешней стороны и внутренней обклеенной собственно той же фольгой на две трети высоты, они и будут обкладками нашего конденсатора, а емкость (кстати, не должен пропускать электричество) будет диэлектриком между ними.

Из инструментов мне понадобились:
1) Ножницы.
2) Шило.
3) Плоскогубцы.
4) Паяльник.
Из материалов:
1)Емкость.
2)Фольга.
3)Кусочек медного провода.
4)Скотч.
5)Шарик от подшипника.

И так. За основу я взял емкость от закончившейся холодной сварки. Поначалу хотел из стеклянной баночки, но они все были толстостенные и большие.


Отрезал кусочек фольги для донышка, (чтобы увеличить полезную площадь и благодаря этому повысить производительность).


Следом я обернул фольгой снаружи стенку своей емкости, старался, чтобы фольга как можно плотнее прилегала к ней, ведь это тоже влияет на то, сколько она заряда будет накапливать.



Кстати в первой лейденской банке эту фольгу успешно заменила рука ученого Мусхенбрук (Мушенбрек) (1692-1761 гг.), обхватывавшего сосуд и понявшего, что лучше не стоило трогать провод, который был соединен к электростатической машине зарядившей лейденскую банку.
Поискав в закромах, нашел шарик от подшипника, жаль, конечно, что не нашлось большего диаметра, но он тоже неплохо собирает статическое электричество.


Решил закрепить посредством пайки. Для начала зачистил место пайки наждачной бумагой.

Затем полудил канифолью и спаял медную проволоку с шариком.


На нижней фотографии видно цепочку, которую я ставил для контакта с внутренней обкладкой, но впоследствии отказавшись от фольги (ввиду отсутствия клея или фольгоскотча), которая внутри и заменив фольгу водой, она была демонтирована.


А вот и он в укомплектованном виде.


Электростатической машины чтобы проверить, у меня пока нет.
Пришлось заряжать его при помощи телевизора (зомбоящика). Поелозив два-три раза по экрану шариком, насобирал достаточное количество электрических зарядов для разряда искры.

А бьет, я вам скажу не хило, сильнее, чем пьезоэлемент зажигалки.
Не хотел я, конечно же, повторять опыт Питера Ван Мушенбрука но пришлось ввиду своей неаккуратности и легко отвлекаемости.

Тем, кто захочет сделать лейденскую банку собственными руками и не знает, как это сделать могу сказать следующее:

Сосуд может быть и стеклянный. Для маленькой лейденской банки лучше, если стенки будут тоньше.

Вместо фольги удобнее использовать фольгоскотч и следите за тем, чтобы пузырьки воздуха не оставались между скотчем и сосудом.

Если Вы решите внутреннюю сторону банки обклеить фольгоскотчем, то необходимо проследить за тем, чтобы проволока с шариком касались с внутренней обкладкой (можно запаять многожильный провод и сделать как бы кисточку или сделать типа пружинки из одножильного провода, в общем, вариантов масса). А если с водой, то провод обязательно должен касаться воды.

Шарик можно из любого материала даже диэлектрик только его нужно будет тоже покрыть фольгой (и чтобы фольга касалась провода), если захотите по быстрей можете просто скатать шарик из фольги.

Зарядить его можно даже расческой, ручкой и т.д. только это малоэффективно лучше если нет электрофорной машины, зарядить от экрана телевизора (подходят только те которые с электронно-лучевой трубкой).

И напоследок хотелось бы напомнить о технике собственно безопасности ведь это главное. Не повторяйте мою ошибку будьте бдительны. Конечно, от накопленного заряда небольшой лейденской банки Вы не умрете (зависит от многих факторов в том числе и от состояния Вашего здоровья), а вот если сделаете его большим и или подключите к электрофорной машине, то вполне возможно. Именно благодаря лейденским банкам электрофорная машина развивает свою мощь и испускает такие длинные устрашающие (некоторых) искры, так как в банках накапливается собранный электрический заряд...

Многие наши современники настолько привыкли к проявлениям окружающей действительности, что в какой-то степени перестали их замечать. Люди живут в ожидании чего-то необъяснимого, хотя самые настоящие чудеса окружают нас повсюду. Что может быть проще, чем щелкнуть клавишей выключателя, чтобы электрическая лампочка разогнала тьму в комнате!? Или подняться на этаж, просто нажав кнопку в лифте. Разве не чудо?

Хотя продолжительность практического использования человечеством электрической энергии насчитывает всего несколько сотен лет, что для истории всего лишь миг, за это время было сделано немало открытий. Некоторые известны и сейчас (чего стоит знаменитый закон Ома!), а о других же вспоминают лишь историки и, изредка, преподаватели в учебных заведениях. К примеру, какие ассоциации возникнут у среднестатистического человека при словах «лейденские банки»? Финансовые учреждения, медицинские приборы, а может «хитрые» емкости для консервации овощей? Впрочем, это вполне закономерно, ведь даже далеко не каждый электромонтер догадается, что лейденская банка - это прообраз современных электрических конденсаторов. Хотя конструкция крайне проста, теоретически, при должной доработке, такие устройства могут вполне успешно работать в составе электрических цепей.

Каждому школьнику известно, что если потереть пластмассовую ручку о волосы, то при ее приближении к другим предметам в воздушном промежутке возникнет искра. Похожий принцип используется в благодаря которой появилась лейденская банка. В 18 веке немец Герике продемонстрировал светскому обществу установку, в основе которой был крупный шар из стекла с вмонтированной осью. Простейшая заставляла его вращаться. Прикоснувшись куском кожи, можно было вызвать появление электрических искр и невидимых В предметах, находящихся в зоне действия линий генерировались и накапливались (конденсировались) токи.

1745 год является той датой, когда была открыта лейденская банка. Физик Мушенбрук из Лейдена догадался налить в банку воды, поместить туда кусок проволоки, аккуратно взять емкость руками и поднести к работающему электрофору. При прикосновении к выступающей части проволоки ученый получил электрическим током. Это теперь понятно, что руки человека и вода в банке послужили тем, что сейчас называют обкладками конденсатора, а стеклянная стенка сосуда - изолирующим слоем. Лейденская банка могла накапливать так много электричества, что его хватало для прохождения по цепи из 700 человек. Было очевидно, что потенциал у этого открытия огромный. Именно в г. Лейден было налажено производство таких «конденсаторов», что и дало название устройству.

Через 2 года с момента открытия в целях эксперимента обернул внешние стенки банки фольгой из олова, тем самым увеличив емкость. Было понятно, что многое еще предстояло открыть. Фактически, это был путь «проб и ошибок», а теоретическое обоснование уже выводилось на основании результатов экспериментов. Впоследствии Франклин заменил банку плоским стеклом с фольгой на противоположных сторонах, получив знакомый всем нам конденсатор.

Лейденская банка своими руками может быть изготовлена очень быстро. Понадобится пластмассовая банка, пластина из жести с припаянным изолированным проводом, уголь активированный, прочная металлическая (или пластиковая с токопроводящей вставкой) крышка с выводом-контактом и соленая вода. Опускаем пластину на дно пластмассовой емкости, свободный конец провода выводим вверх. Сверху закрываем бумагой, насыпаем слой угля, наливаем соленой воды и размещаем крышку с выводом. Получается, что из банки выходят два покрытых изоляцией провода: с нижней и верхней обкладок. Теперь, если к ним подвести внешнее напряжение, то часть его будет конденсироваться. После этого останется лишь подключить нагрузку. При работе с «банкой» нужно соблюдать осторожность.