Какие шины входят в состав системной шины. Основные шины компьютера

Служит для обмена командами и данными между компонентами ЭВМ, расположенными на мат. плате. ПУ подключается к шине через контроллеры (открытая архитектура). передача информации по сист. шине осущ-ся по тактам.

Сист. шина включает в себя:

Кодовую шину данных для //-ой передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно (64 разряда)

Кодовую шину адреса ячейки ОЗУ (32 разряда)

Кодовую шину инструкций (команд и управляющих сигналов, импульсов) во все блоки ЭВМ (32 разряда)

Шину питания для подключения блоков ЭВМ к системе энергопитания

Сист. шина обеспечивает 3 направления передачи информации: -между МП и ОЗУ; -между МП и контроллером устройств; -между ОЗУ и Внеш Устр-вами (ВЗУ и ПУ, в режиме прямого доступа к памяти)

Все устройства подключаются к сист. шине через контроллеры -- устр-ва, обеспечивающие взаимодействие ВУ и сист. шины.

Для освобождения МП от управления обменом информацией между ОЗУ и ВУ предусмотрен режим Прямого доступа в память (DMA - direct memory access).

Характеристики сист. шины: кол-во обслуживаемых ею устройств и пропускная способность, т.е. макс. возможная скорость передачи информации.

Пропускная способность шины зависит от:

Разрядности шины (или ширины) - кол-во бит, кот. м.б. передано по шине одновременно (сущ-ют 8,16,32, и 64-рязрядные шины);

Тактовой частоты шины - частоты, с кот. передаются биты информации по шине.

Основные характеристики шин:

PCI (Peripheral Component Interconnect) – самая распространенная системная шина. Быстродействие шины не зависит от количества подсоединенных устройств. Поддерживает следующие режимы:

- Plug and Play (PnP ) – автоматическое определение и настройка подключенного к шине устройства;

- Bus Mastering – режим единоличного управления шиной любым устройством, подключенным к шине, что позволяет быстро передать данные по шине и освободить ее.

AGP (Accelerated Graphics Port) – магистраль между видеокартой и ОЗУ. Разработана, так как параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Шина работает на большей частоте, что позволяет ускорить работу графической подсистемы ЭВМ.

Основные характеристики шин

Лекция 5

18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ в ЭВМ состоят из последовательности ячеек, каждая из которых содержит значение 1-ого байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде (0,1).

ЗУ характеризуется 2-мя параметрами:

Объем памяти - размер в байтах, доступных для хранения информации

Время Доступа к ячейкам памяти - средний временной интервал в течении кот. находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается. (В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Т.е число адресов 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт. время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOS – Basic Input-Output System).

Внешние ЗУ. ВЗУ для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с сист. шиной через контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и сист. шины в режиме прямого доступа к памяти, т.е. без участия МП. ИНТЕРФЕЙС -- это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные ВЗУ состоят из носителя, подключ-ого к порту вв/вывода (обычно ЮСБ), (флеш-память) или носителя и привода (накопители на ГМД, приводы СиДи и ДВД). В стационарных ВЗУ носитель и привод объединены в единое устройство (НЖМД). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь - записать на носитель служебную информацию.

Основные Технические Характеристики ВЗУ

Информационная емкость определяет наибольшее кол-во ед. данных, кот может одновременно хранить в ВЗУ (зависит от площади объема носителя и плотности записи.)

Плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), и поперечную плотность.//

Время доступа - интервал времени от момента запроса (чтения или записи) до момента выдачи блока (включая время поиска инфции на носителе и время чтения или записи.)

Скорость передачи данных определяет кол-во данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и тп.

Ядро процессора определяется следующими характеристиками:

  • технологический процесс;
  • объем внутреннего кэша L1 и L2;
  • напряжение;
  • теплоотдача.

Перед покупкой центрального процессора, необходимо удостовериться, что выбранная вами материнская плата сможет с ним работать.

Примечательно, что одна линейка процессоров может содержать в себе ЦП, оснащенные разными ядрами. К примеру, в линейке Intel Core i5 имеются процессоры с ядрами Lynnfield, Clarkdale, Arrandale и Sandy Bridge.

Что такое частота шины данных?

Показатель частоты шины данных также обозначается как Front Side Bus (или сокращенно FSB ) .

Шина данных - это набор сигнальных линий, предназначенных для передачи данных в и из процессора.

Частота шины - это тактовая частота, с которой осуществляется обмен данными между процессором и системной шиной.

Следует отметить, что процессоры применяют технологию Quad Pumping. Она дает возможность осуществлять передачу 4 блоков данных за один такт. Эффективная частота шины, при этом, возрастает вчетверо. Следует помнить, что для выше-обозначенных процессоров, в графе "частота шины" указывается увеличенный в 4 раза показатель.

Процессоры компании AMD Athlon 64 и Opteron применяют технологию HyperTransport, которая дает возможность процессору и ОЗУ осуществлять эффективное взаимодействие. Данная система существенно повышает общую производительность.

Что такое тактовая частота процессора?

Тактовая частота процессора - это число операций процессора в секунду. Под операциями, в данном случае, подразумеваются такты. Показатель тактовой частоты пропорционален частоте шины (FSB).

Обычно, чем выше тактовая частота, тем выше производительность. Однако, это правило работает только для моделей процессоров, принадлежащих одной линейке. Почему? В них, на производительность процессора, помимо частоты, оказывают влияние также такие параметры, как:

  • размер кэша второго уровня (L2);
  • присутствие и частота кэша третьего уровня (L3);
  • присутствие специальных инструкций и прочее...

Диапазон тактовой частоты процессора: от 900 до 4200 МГц.

Что такое техпроцесс?

Техпроцесс - это масштаб технологии, определяющей габариты полупроводниковых элементов, составляющих базу внутренних цепей процессора. Цепи образуют соединенные между собой транзисторы.

Пропорциональное сокращение габаритов транзисторов, по мере развития современных технологий, приводит к улучшению характеристик процессоров. К примеру, ядро Willamette, выполненное согласно техпроцессу 0.18 мкм, обладает 42 млн. транзисторов; ядро Prescott с техпроцессом 0.09 мкм, имеет уже 125 млн. транзисторов.

Что такое величина тепловыделения процессора?

Тепловыделение - это показатель отведенной системой охлаждения мощности для обеспечения нормального функционирования процессора. Чем выше значение данного параметра, тем сильнее греется процессор в ходе своей работы.

Данный показатель крайне важно учитывать в случае завышения частоты центрального процессора. Процессор, обладающий низким тепловыделением, охлаждается быстрее, и, соответственно, разогнать его можно сильнее.

Следует также учитывать, что производители процессоров измеряют показатель тепловыделения по-разному. Поэтому сравнение по этой характеристике уместно только в рамках одной компании-производителя.

Диапазон тепловыделения процессора: от 10 до 165 Вт.

Поддержка технологии Virtualization Technology

Virtualization Technology - технология, позволяющая единовременную работу нескольких операционных систем на одном ПК.

Так, благодаря технологии виртуализации, одна компьютерная система может функционировать в виде нескольких виртуальных.

Поддержка технологии SSE4

SSE4 - технология, включающая в себя пакет, состоящий из 54 новых команд, направленных на улучшение показателей производительности процессора в ходе выполнения им различных ресурсоемких задач.

Поддержка технологии SSE3

SSE3 - технология, включающая в себя пакет, состоящий из 13 новых команд. Их введение в новую генерацию направлено на улучшение показателей производительности процессора в части операций потоковой обработки данных.

Поддержка технологии SSE2

SSE2 - технология, включающая в себя пакет команд, дополняющий технологии своих "предшественников": SSE и MMX . Является разработкой корпорации Intel. Включенные в набор команды позволяют добиться существенного прироста производительности в приложениях, оптимизированных под SSE2. Данную технологию поддерживают практически все современные модели процессоров.

Поддержка технологии NX Bit

NX Bit - технология, способная предотвращать внедрение и исполнение вредоносного кода некоторых вирусов.

Поддерживается операционной системой Windows XP SP2, а также всеми 64-битными ОС.

Поддержка технологии HT (Hyper-Threading)

Hyper-Threading - технология, дающая возможность процессору обрабатывать два потока команд параллельно, что существенно повышает эффективность выполнения определенных ресурсоемких приложений, связанных с многозадачностью (редактирование аудио и видео, 3D-моделирование и прочее). Впрочем, в некоторых приложениях применение данной технологии может произвести обратный эффект. Так, технология Hyper-Threading имеет опциональный характер, и в случае необходимости, пользователь может в любое время отключить ее. Автором разработки является компания Intel.

Поддержка технологии AMD64/EM64T

Процессоры, построенные на 64-битной архитектуре, могут работать как с 32-битными приложениями, так и с 64-битными, причем, с абсолютно одинаковой эффективностью.

Примеры линеек x-64 процессоров: AMD Athlon 64, AMD Opteron, Core 2 Duo, Intel Xeon 64 и другие.

Минимальный объем оперативной памяти для процессоров, поддерживающих 64-битную адресацию, составляет 4 Гб . Такие параметры недоступны для традиционных 32-битных процессоров. Чтобы активировать работу 64-битных процессоров, необходимо, чтобы операционная система была под них адаптирована, то есть, тоже имела x64-архитектуру.

Названия реализации 64-битных расширений в процессорах:

  • Intel - EM64T .
Поддержка технологии 3DNow!

3DNow! - технология, вмещающая в себя пакет, состоящий из 21 дополнительной команды для обработки мультимедиа. Главной целью данной технологии является улучшение процесса обработки мультимедийных приложений.

Технология 3DNow! реализована исключительно в процессорах компании AMD.

Что такое объем кэша L3?

Под объемом кэша L3 подразумевается кэш-память третьего уровня.

Оснащаясь быстродействующей системной шиной, кэш-память L3 образует высокоскоростной канал для обмена данными с системной памятью.

Обычно, кэш-памятью L3 комплектуются лишь топовые процессоры и серверные системы. К примеру, такие линейки процессоров, как AMD Opteron, AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon.

Диапазон объема кэша L3: от 0 до 30720 Кб.

Что такое объем кэша L2?

Под объемом кэша L2 подразумевается кэш-память второго уровня.

Кэш-память второго уровня представляет собой блок высокоскоростной памяти, выполняющий аналогичные кэшу L1 функции. Данный блок обладает более низкой скоростью, а также отличается бóльшим объемом.

Если пользователю необходим процессор для выполнения ресурсоемких задач, то следует выбирать модель с большим объемом кэша L2.

В моделях процессоров, обладающих несколькими ядрами, указывается общий объем кэш-памяти второго уровня.

Диапазон объема кэша L2: от 128 до 16384 Кб.

Что такое объем кэша L1?

Под объемом кэша L1 подразумевается кэш-память первого уровня.

Кэш-память первого уровня представляет собой блок высокоскоростной памяти, находящийся непосредственно на ядре процессора. В этот блок производится копирование извлеченных из оперативной памяти данных. Обработка данных из кэша осуществляется в разы быстрее, чем обработка данных из оперативной памяти.

Кэш память дает возможность повысить производительность процессора за счет более высокой скорости обработки данных. Кэш-память первого уровня исчисляется килобайтами, она довольно небольшая. Как правило, "старшие" модели процессоров оснащены кэш-памятью L1 большего объема.

В моделях процессоров, обладающих несколькими ядрами, объем кэш-памяти первого уровня указывается всегда для одного ядра.

Диапазон объемов кэша L1: от 8 до 128 Кб.

Номинальное напряжение питания ядра процессора

Данный параметр обозначает напряжение, необходимое процессору для его работы. Им характеризуется энергопотребление процессора. Этот параметр особенно важно учитывать при выборе процессора для мобильной и нестационарной системы.

Единица измерения - Вольты.

Диапазон напряжения ядра: от 0.45 до 1.75 В.

Максимальная рабочая температура

Это показатель максимально допустимой температуры поверхности процессора, при которой возможна его работа. Температура поверхности зависит от загруженности процессора, а также от качества теплоотвода.

  • При нормальном охлаждении, температура процессора находится в диапазоне 25-40°C (холостой режим);
  • При большой загруженности температура может достигать 60-70 °C.

Процессоры с высокой рабочей температурой требуют установки мощных систем охлаждения.

Диапазон максимальной рабочей температуры процессора: от 54.8 до 105.0 °C.

Что такое линейка процессора?

Каждый процессор относится к определенному модельному ряду или линейке. В рамках одной линейки, процессоры могут серьезно отличаться друг от друга по целому ряду характеристик. Каждый производитель имеет линейку недорогих процессоров. Скажем, у Intel это Celeron и Core Solo; у AMD - Sempron .

Процессоры бюджетных линеек, в отличие от более дорогих "собратьев", не имеют некоторых функций, а их параметры - обладают меньшими значениями. Так, в недорогих процессорах может быть существенно уменьшенная кэш-память, более того, она может и вовсе отсутствовать.

Бюджетные линейки процессоров подходят для офисных компьютеров, не предполагающих работы с большими нагрузками и масштабными задачами. Более ресурсоемкие задачи (обработка видео /аудио) требуют установки "старших" линеек. К примеру, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7, Phenom X3, Phenom X4, Phenom II X4, Phenom II X6 и т.д.

Серверные материнские платы, обычно, используют специализированные линейки процессоров: Opteron , Xeon и им подобные.

Что такое коэффициент умножения процессора?

На основании коэффициента умножения процессора осуществляется подсчет итоговой тактовой частоты его работы.

Тактовая частота процессора = частота шины (FSB) * коэффициент умножения.

К примеру, частота шины (FSB) составляет 533 Mhz, а коэффициент умножения - 4.5. Так, 533*4.5= 2398,5 Mгц. Получаем тактовую частоту работы процессора.

В большинстве современных процессоров этот параметр заблокирован на уровне ядра, он не подлежит изменению.

Следует также отметить, что процессоры типа Intel Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Core и Core 2 применяют технологию Quad Pumping (передача 4-х блоков данных за один такт). В данном случае, эффективная частота шины возрастает, соответственно, в 4 раза. В поле "Частота шины", в случае с выше-приведенными процессорами, указывается увеличенная в четыре раза частота шины. Чтобы получить показатель физической частоты шины, необходимо эффективную частоту разделить на 4.

Диапазон коэффициента умножения: от 6.0 до 37.0.

Число ядер в процессоре

Современные технологии производства процессоров позволяют размещать несколько ядер в одном корпусе. Чем больше ядер имеет процессор, тем выше его производительность. К примеру, в серии Core 2 Duo применяются 2-ядерные процессоры, а в линейке Core 2 Quad - 4-ядерные.

Диапазон количества ядер в процессоре: от 1 до 16.

Что такое Socket (сокет)?

Каждая материнская плата оснащена разъемом определенного типа, предназначенным для установки процессора. Этот разъем и называется сокетом. Обычно, тип сокета определяется числом ножек, а также компанией-производителем процессора. Различные сокеты соответствуют различным типам процессоров.

В настоящее время, производители процессоров применяют следующие типы сокетов:

Intel

  • LGA1155;
  • LGA2011.

AMD

  • AM3+;
  • FM1.
Температура процессора постепенно растет со временем.Какие меры наиболее эффективны для снижения температуры процессора?

В зависимости от условий эксплуатации техники, часто возникает ситуация что радиаторы и забиваются пылью, грязью, термоинтерфейс изменяет свои свойства теплопроводности, крепления радиатора слабеют, иногда не равномерно.

В этом случае, необходимо, при подозрении на перегрев, снять систему охлаждения, отчистить радиаторы, поправить крепления, заменить термопасту.Также снизить температуру в корпусе, сменить вентилятор процессорного кулера на более мощный или, если конструкция позволяет, сменить кулер, добавить корпусный кулер на вдув и\или на выдув.

Как определить, что термозащита в действии?

Существует два способа. Первый - программный. Запускаем TAT (Intel Thermal Analysis Tool) для процессоров семейства Core, RMClock для всех остальных и следите за сообщениями в TAT и за графиком во второй. Как только сработает термозащита, TAT выдаст предупреждение, а в мониторинге RMClock появится график CPU Throttle.

Второй способ - опосредованный. Основан на том, что включение термозащиты, особенно
троттлинга, обязательно сопровождается сильным падением производительности процессора.

Температура первого ядра в Х-ядерном процессоре выше на несколько °C, по сравнению со вторым. Чем это объяснить?

Это нормально. Ядро, использующееся в первую очередь, загружено типично больше, поэтому
и нагревается соответственно больше.

Служит для обмена командами и данными между компонентами ЭВМ, расположенными на мат. плате. ПУ подключается к шине через контроллеры (открытая архитектура). передача информации по сист. шине осущ-ся по тактам.

Сист. шина включает в себя:

Кодовую шину данных для //-ой передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно (64 разряда)

Кодовую шину адреса ячейки ОЗУ (32 разряда)

Кодовую шину инструкций (команд и управляющих сигналов, импульсов) во все блоки ЭВМ (32 разряда)

Шину питания для подключения блоков ЭВМ к системе энергопитания

Сист. шина обеспечивает 3 направления передачи информации: -между МП и ОЗУ; -между МП и контроллером устройств; -между ОЗУ и Внеш Устр-вами (ВЗУ и ПУ, в режиме прямого доступа к памяти)

Все устройства подключаются к сист. шине через контроллеры -- устр-ва, обеспечивающие взаимодействие ВУ и сист. шины.

Для освобождения МП от управления обменом информацией между ОЗУ и ВУ предусмотрен режим Прямого доступа в память (DMA - direct memory access).

Характеристики сист. шины: кол-во обслуживаемых ею устройств и пропускная способность, т.е. макс. возможная скорость передачи информации.

Пропускная способность шины зависит от:

Разрядности шины (или ширины) - кол-во бит, кот. м.б. передано по шине одновременно (сущ-ют 8,16,32, и 64-рязрядные шины);

Тактовой частоты шины - частоты, с кот. передаются биты информации по шине.

Основные характеристики шин:

PCI (Peripheral Component Interconnect) – самая распространенная системная шина. Быстродействие шины не зависит от количества подсоединенных устройств. Поддерживает следующие режимы:

- Plug and Play (PnP ) – автоматическое определение и настройка подключенного к шине устройства;

- Bus Mastering – режим единоличного управления шиной любым устройством, подключенным к шине, что позволяет быстро передать данные по шине и освободить ее.

AGP (Accelerated Graphics Port) – магистраль между видеокартой и ОЗУ. Разработана, так как параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Шина работает на большей частоте, что позволяет ускорить работу графической подсистемы ЭВМ.

Основные характеристики шин

Лекция 5

18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ в ЭВМ состоят из последовательности ячеек, каждая из которых содержит значение 1-ого байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде (0,1).

ЗУ характеризуется 2-мя параметрами:

Объем памяти - размер в байтах, доступных для хранения информации

Время Доступа к ячейкам памяти - средний временной интервал в течении кот. находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается. (В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Т.е число адресов 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт. время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOS – Basic Input-Output System).

Внешние ЗУ. ВЗУ для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с сист. шиной через контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и сист. шины в режиме прямого доступа к памяти, т.е. без участия МП. ИНТЕРФЕЙС -- это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные ВЗУ состоят из носителя, подключ-ого к порту вв/вывода (обычно ЮСБ), (флеш-память) или носителя и привода (накопители на ГМД, приводы СиДи и ДВД). В стационарных ВЗУ носитель и привод объединены в единое устройство (НЖМД). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь - записать на носитель служебную информацию.

Основные Технические Характеристики ВЗУ

Информационная емкость определяет наибольшее кол-во ед. данных, кот может одновременно хранить в ВЗУ (зависит от площади объема носителя и плотности записи.)

Плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), и поперечную плотность.//

Время доступа - интервал времени от момента запроса (чтения или записи) до момента выдачи блока (включая время поиска инфции на носителе и время чтения или записи.)

Скорость передачи данных определяет кол-во данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и тп.

Системная шина - это основная интерфейсная система ПК, обеспечивающая сопряжение и связь всех его устройств между собой.

Основной функцией системной шины является передача информации между процессором и остальными устройствами ЭВМ . Все блоки, а точнее их порты ввода-вывода, через соответствующие разъемы подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры).

Управление системной шиной осуществляется непосредственно, либо, чаще через контроллер шины . Обмен информацией между ВУ и системной шиной выполняется с использованием ASCII-кодов. Системная шина состоит из трех шин: шины управления, шины данных и адресной шины. По этим шинам циркулируют управляющие сигналы, данные (числа, символы), адреса ячеек памяти и номера устройств ввода-вывода. Важнейшими функциональными характеристиками системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимально возможная скорость передачи информации. Пропускная способность шины зависит от ее разрядности (есть шины 8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой шина работает.

· Адресная шина.У процессоров Intel Pentium (а именно они наиболее распростра­нены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комби­нация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

· Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе про­цессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

· Шина команд . Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, из тех областей, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укла­дываются в один байт, однако, есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (напри­мер, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Процессор.

Процессор (ЦП) выполняет логические и арифметические операции, определяет порядок выполнения операций, указывает источники данных и приемники результатов. Работа процессора происходит под управлением программы.

Процессор - основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки опе­ративной памяти, но в этих ячейках данные могут не только храниться, но и изме­няться. Внутренние ячейки процессора называют регистрами. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имею­щих стандартную длину 1 байт и более низкое быстродействие);

При первом знакомстве с ЭВМ считают, что процессор состоит из пяти устройств: арифметико-логического устройства (АЛУ), устройства управления (УУ), регистров общего назначения (РОН), кэш-памяти и генератора тактовых частот.

устройство управления (УУ)- формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импуль­сы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ, т.е. отвечает за порядок выполнения команд, из которых состоит программа.

арифметико-логическое устройство (АЛУ)- предназначено для вы­полнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор), Промежуточные результаты сохраняются в РОН .

местная память (МПП) - служит для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах общего назначения (РОН) и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

· Кэш- память служит для повышения быстродействия процессора, путем уменьшения времени его непроизводительного простоя. Она применяется для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. Кэш- память строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память.

Нередко кэш-память распределяют по нескольким уровням кеш L1 (level1-первого уровня) и L2 (level2 – второго уровня). Кэш первого уровня выполняется в том же кристалле, что и сам процессор, имеет объем порядка десят­ков Кбайт и обычно работает на частоте, согласованной с частотой ядра процессора. Кэш второго уровня находится либо в кристалле процессора, либо она размещена на материнской плате вблизи процессора, тогда ее объемы могут достигать нескольких Мбайт, но работает она на частоте материнской платы.

· генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая опера­ция в машине выполняется за определенное количество тактов:

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти. Часть данных он интерпретирует непосред­ственно как данные, часть данных - как адресные данные, а часть - как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относя­щиеся к одному семейству, имеют одинаковые или близкие системы команд. Про­цессоры, относящиеся к разным семействам, различаются по системе команд и не взаимозаменяемы.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процес­сором. Процессоры, имеющие разные системы команд, как правило, несовмести­мы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86.

Основные параметры процессоров. Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты (множитель) и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенно! понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В, а в настоящее время оно составляет менее 3 В. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 был 16-разрядными. Начиная с процессора 80386, они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяете не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник, а в персональном компью­тере тактовые импульсы задает одна из микросхем, входящая в микропроцессор­ный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в еди­ницу времени, тем выше его производительность.

По чисто физическим причинам, так как она представляет собой не кристалл кремния, а большой набор проводни­ков и микросхем, материнская плата не может рабо­тать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внут­реннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более, т.о. если частота системной шины 133 Мгц, а коэффициент (множитель ядра) равен 8, то рабочая тактовая частота составит 1Ггц.

Вся история IBM PC связана с процессорами фирмы Intel, которая выпускает эти микросхемы с 1970г, начиная с четырехразрядного 4004. Дадим неформальную характеристику основных параметров этих процессоров.

Микропроцессор Начало выпуска Разрядность Тактовая частота, Мгц. Быстродействие Примечание
8июня 1978г. 16 бит 0,33 MIPS 0,66 MIPS 0,75 MIPS
февраль1982г 16 бит 0,9 MIPS 1,5 MIPS 2,66 MIPS
80386DX 17.10.1985г. 32 бита 5-6 MIPS 6-7 MIPS 8,5 MIPS
11,4 MIPS 16 Kb кеш–памяти второго уровня (впервые)
80386SX 16июня1988г 16 бит 2,5 MIPS 2,5 MIPS 2,7 MIPS 2,9 MIPS
80386SL 15октября1989 16 бит 4,2 MIPS 5,3 MIPS Первый процессор специально предназначенный для персональных компьютеров
80486DX 10апреля1989г 32 бит 20 MIPS 7,4 MFLOPS 27 MIPS 22,4 MFLOPS 41 MIPS 14,5 MFLOPS Производительность возросла в 50 раз по сравнению с 8086
80486SX 22апреля1991г 32 бита 13 MIPS 20 MIPS 27 MIPS Аналог 80486 но без сопроцессора.
Pentium 22марта 1993г 32 бита 100 MIPS 55,1 MFLOPS 112 MIPS 63,6 MFLOPS 126,5 MIPS 2,02 GFLOPS 203 MIPS 2,81 GFLOPS 3,92GFLOPS
Pentium PRO 1ноября1995г
Pentium с технологией MMX 2июня 1997г. 32 бита 5,21 GFLOPS Технология MMX обеспечивает увеличение производительности процессора при работе с мультимедийными и трехмерными приложениями.
Pentium II 7 мая 1997г
Celeron 12апреля1998г Удешевленная версия Pentium II за счет изъятия кэш 2-го уровня
Xeon
PentiumIII Расширенный PentiumII за счет 70 дополнительных команд, позволяющих ускорить расчеты, применяемые в трехмерной графике. Благодаря этому выполняет до 4 операций над числами с плавающей точкой одновременно.
PentiumIV

FSB - наверняка, многие пользователи не раз слышали о таком компьютерном термине. Это название носит один из важнейших компонентов материнской платы – системная шина.

Как известно, сердцем любого персонального компьютера является центральный процессор. Но не только процессор определяет архитектуру ПК. Она также во многом зависит и от используемого на материнской плате набора вспомогательных микросхем (чипсета). Кроме того, процессор не может функционировать и без внутренних шин, представляющих собой набор сигнальных проводников на системной плате. В функции шин входит передача информации между различными устройствами компьютера и центральным процессором. Характеристики внутренних шин, в частности, их пропускная способность и частота во многом определяют и характеристики самого компьютера.

Пожалуй, наиболее важной из шин, от которой больше всего зависит производительность компьютера, является шина FSB. Аббревиатура FSB расшифровывается как Front Side Bus, что можно перевести как «передняя» шина. В основные функции шины входит передача данных между процессором и чипсетом. Точнее говоря, FSB располагается между процессором и микросхемой «северного моста» материнской платы, где находится контроллер оперативной памяти.

Связь же между северным мостом и другой важной микросхемой чипсета, называемой «южным мостом» и содержащей контроллеры устройств ввода-вывода, в современных компьютерах обычно осуществляется при помощи другой шины, которая носит наименование Direct Media Interface.

Как правило, процессор и шина имеют одну и ту же базовую частоту, которая называется опорной или реальной. В случае процессора его конечная частота определяется произведением опорной частоты на определенный множитель. Вообще говоря, реальная частота FSB обычно является основной частотой материнской платы, при помощи которой определяются рабочие частоты всех остальных устройств.

В большинстве старых компьютеров реальная частота системной шины определяла и частоту оперативной памяти, однако сейчас память часто может иметь и другую частоту – в том случае, если контроллер памяти располагается в самом процессоре. Кроме того, следует иметь в виду, что реальная частота шины не эквивалентна ее эффективной частоте, которая определяется количеством передаваемых бит информации в секунду.

В настоящее время данная шина считается устаревшей и постепенно заменяется более новыми – QuickPath и HyperTransport. Системная шина QuickPath является разработкой фирмы Intel, а HyperTransport – компании AMD.

Front Side Bus в традиционной архитектуре чипсета

QuickPath

Шина QuickPath Interconnect (QPI) была разработана Intel в 2008 г. для замены традиционной шины FSB. Первоначально QPI использовалась в компьютерах на основе процессоров Xeon и Itanium. Разработка QPI была призвана бросить вызов уже использовавшейся в течение некоторого времени в чипсетах AMD шине Hypertransport.

Хотя QPI принято называть шиной, тем не менее, ее свойства существенно отличаются от свойств традиционной системной шины, и по своему устройству она представляет собой проводное соединение типа interconnect. QPI является неотъемлемой частью технологии, которую Intel называет архитектурой QuickPath. Всего QPI имеет в своем составе 20 линий данных, а общее количество проводников шины QPI равно 84. Как и Hypertransport, технология QuickPath подразумевает, что контроллер памяти встроен в сам центральный процессор, поэтому она используется лишь для связи процессора с контроллером ввода-вывода. Шина QuickPath может работать на частотах в 2.4, 2.93, 3.2, 4.0 или 4.8 ГГц.

Схема расположения QuickPath Interconnect

Hypertransport

Шина Hypertransport является разработкой AMD. Hypertransport имеет рабочие характеристики, сближающие ее с шиной QuickPath, но при этом она была создана на несколько лет раньше последней. Шину отличают оригинальные архитектура и топология, совершенно непохожие на архитектуру и топологию FSB. В основе шины Hypertransport лежат такие составные элементы, как тоннели, мосты, линки и цепи. Архитектура шины призвана исключить узкие места в схеме соединений между отдельными устройствами материнской платы и передавать информацию с высокой скоростью и небольшим количеством задержек.

Существует несколько версий Hypertransport, работающих на разной тактовой частоте – от 200 МГц до 3,2 ГГц. Максимальная пропускная способность шины для версии 3.1 составляет более 51 ГБ/с (в обоих направлениях). Шина используется как для замены шины FSB в однопроцессорных системах, так и в качестве основной шины в многопроцессорных компьютерах.

Схема расположения шины Hypertransport

Direct Media Interface

Пару слов стоит сказать и о такой разновидности системной шины, как Direct Media Interface (DMI). DMI предназначена для соединения между двумя основными микросхемами чипсета – северным и южным мостами. Впервые шина типа DMI была использована в чипсетах Intel в 2004 г.

Шина DMI имеет свойства архитектуры, объединяющие ее с такой шиной для подключения периферийных устройств, как PCI Express. В частности, DMI использует линии с последовательной передачей данных, а также имеет отдельные проводники для передачи и приема данных.

Место DMI (обозначена красным) в архитектуре компьютера.

Оригинальная реализация DMI обеспечивала передачу данных до 10 ГБит/c в каждом направлении. Современная же версия шины, DMI 2.0, может поддерживать скорость в 20 ГБ/c в обоих направлениях. Многие мобильные версии DMI имеют вдвое меньшее количество сигнальных линий по сравнению с версиями DMI для настольных систем.

Заключение

Системная шина является своеобразной кровеносной «артерией» любого компьютера, обеспечивающей передачу данных от «сердца» материнской платы – процессора к остальным микросхемам материнской платы и, прежде всего, к северному мосту, управляющем работой оперативной памяти. В настоящее время в различных архитектурах материнских плат можно встретить как традиционную шину FSB, так и имеющие сложные топологии высокоэффективные шины Hypertransport и QPI. Характеристики, производительность и архитектура системной шины являются важными факторами, которые определяют потенциальные возможности компьютера.