Пифагоровы числа. Современные наукоемкие технологии

Изучение свойств натуральных чисел привело пифагорейцев к еще одной «вечной» проблеме теоретической арифметики (теории чисел) - проблеме, ростки которой пробивались задолго до Пифагора в Древнем Египте и Древнем Вавилоне, а общее решение не найдено и поныне. Начнем с задачи, которую в современных терминах можно сформулировать так: решить в натуральных числах неопределенное уравнение

Сегодня эта задача именуется задачей Пифагора , а ее решения - тройки натуральных чисел, удовлетворяющих уравнению (1.2.1), - называются пифагоровыми тройками . В силу очевидной связи теоремы Пифагора с задачей Пифагора последней можно дать геометрическую формулировку: найти все прямоугольные треугольники с целочисленными катетами x , y и целочисленной гипотенузой z .

Частные решения задачи Пифагора были известны в глубокой древности. В папирусе времен фараона Аменемхета I (ок. 2000 до н. э.), хранящемся в Египетском музее в Берлине, мы находим прямоугольный треугольник с отношением сторон (). По мнению крупнейшего немецкого историка математики М. Кантора (1829 - 1920), в Древнем Египте существовала особая профессия гарпедонаптов - «натягивателей веревок», которые во время торжественной церемонии закладки храмов и пирамид размечали прямые углы с помощью веревки, имеющей 12 (= 3 + 4 + 5) равноотстоящих узлов. Способ построения прямого угла гарпедонаптами очевиден из рисунка 36.

Надо сказать, что с Кантором категорически не согласен другой знаток древней математики - ван дер Варден, хотя сами пропорции древнеегипетской архитектуры свидетельствуют в пользу Кантора. Как бы то ни было, сегодня прямоугольный треугольник с отношением сторон называется египетским .

Как отмечалось на с. 76, сохранилась глиняная табличка, относящаяся к древневавилонской эпохе и содержащая 15 строк пифагоровых троек. Помимо тривиальной тройки, получаемой из египетской (3, 4, 5) умножением на 15 (45, 60, 75), здесь есть и весьма сложные пифагоровы тройки, такие, как (3367, 3456, 4825) и даже (12709, 13500, 18541)! Нет никаких сомнений, что эти числа были найдены не простым перебором, а по неким единым правилам.

И тем не менее вопрос об общем решении уравнения (1.2.1) в натуральных числах был поставлен и решен только пифагорейцами. Общая постановка какой бы то ни было математической задачи была чужда как древним египтянам, так и древним вавилонянам. Только с Пифагора начинается становление математики как дедуктивной науки, и одним из первых шагов на этом пути было решение задачи о пифагоровых тройках. Первые решения уравнения (1.2.1) античная традиция связывает с именами Пифагора и Платона. Попробуем реконструировать эти решения.


Ясно, что уравнение (1.2.1) Пифагор мыслил не в аналитической форме, а в виде квадратного числа , внутри которого нужно было отыскать квадратные числа и . Число естественно было представить в виде квадрата со стороной y на единицу меньше стороны z исходного квадрата, т. е. . Тогда, как легко видеть из рисунка 37 (именно видеть!), для оставшегося квадратного числа должно выполняться равенство . Таким образом, мы приходим к системе линейных уравнений

Складывая и вычитая эти уравнения, находим решение уравнения (1.2.1):

Легко убедиться в том, что полученное решение дает натуральные числа только при нечетных . Таким образом, окончательно имеем

И т. д. Это решение традиция связывает с именем Пифагора.

Заметим, что система (1.2.2) может быть получена и формально из уравнения (1.2.1). В самом деле,

откуда, полагая , приходим к (1.2.2).

Ясно, что решение Пифагора найдено при достаточно жестком ограничении () и содержит далеко не все пифагоровы тройки. Следующим шагом можно положить , тогда , так как только в этом случае будет квадратным числом. Так возникает система также будет пифагоровой тройкой. Теперь может быть доказана основная

Теорема. Если p и q взаимно простые числа разной четности , то все примитивные пифагоровы тройки находятся по формулам

Бескровный И.М. 1

1 OAO «Ангстрем–М»

Целью работы является разработка методов и алгоритмов вычисления пифагоровых троек вида a2+b2=c2. Процесс анализа осуществлялся в соответствии с принципами системного подхода. Наряду с математическими моделями, использованы графические модели, отображающие каждый член пифагоровой тройки в виде составных квадратов, каждый из которых состоит из совокупности единичных квадратов. Установлено, что бесконечное множество пифагоровы троек содержит бесконечное число подмножеств, различающих по признаку разности величин b–c. Предложен алгоритм формирования пифагоровых троек с любым наперёд заданным значением этой разности. Показано, что пифагоровы тройки существуют для любого значения 3≤a

Пифагоровы тройки

системный анализ

математическая модель

графическая модель

1. Аносов Д.Н. Взгляд на математику и нечто из неё. – М.: МЦНМО, 2003. – 24 с.: ил.

2. Айерланд К., Роузен М. Классическое введение в современную теорию чисел. – М.: Мир, 1987.

3. Бескровный И.М. Системный анализ и информационные технологии в организациях: Учебное пособие. – М.: РУДН, 2012. – 392 с.

4. Саймон Сингх. Великая теорема Ферма.

5. Ферма П. Исследования по теории чисел и диофантову анализу. – М.: Наука, 1992.

6. Yaptro. Ucoz, Available at: http://yaptro.ucoz.org/news/pifagorovy_trojki_chisel/2012-05-07-5.

Пифагоровы тройки представляют собой когорту из трех целых чисел, удовлетворяющих соотношению Пифагора x2 + y2 = z2. Вообще говоря, это частный случай Диофантовых уравнений, а именно, системы уравнений, в которых число неизвестных больше, чем число уравнений . Известны они давно, еще со времён Вавилона, то есть, задолго до Пифагора. А название они приобрели после того, как Пифагор на их основе доказал свою знаменитую теорему. Однако, как следует из анализа многочисленных источников, в которых вопрос о пифагоровых тройках в той или иной мере затрагивается до сих пор не раскрыт в полной мере вопрос о существующих классах этих троек и о возможных способах их формирования.

Так в книге Саймона Сингха говорится: - «Ученики и последователи Пифагора …поведали миру секрет нахождения так называемых пифагоровых трое к.». Однако, в след за этим читаем: - «Пифагорейцы мечтали найти и другие пифагорейские тройки, другие квадраты, из которых можно было бы сложить третий квадрат больших размеров. …По мере того, как числа возрастают, пифагоровы тройки встречаются все реже, и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много».

В приведенной цитате выделены слова вызывающие недоумение. Почему «Пифагорейцы мечтали найти…», если они «изобрели метод отыскания таких троек…», и почему для больших чисел «находить их становится все труднее и труднее…».

В работе известного математика Д.В. Аносова искомый ответ, вроде бы, приведен. - «Имеются такие тройки натуральных (т. е. целых положительных) чисел x, y, z, что

x2 + y2 = z2. (1)

…можно ли найти все решения уравнения x2+y2=z2 в натуральных числах? …Да. Ответ таков: каждое такое решение можно представить в виде

x=l(m2-n2), y=2lmn, z=l(m2+n2), (2),

где l, m, n - натуральные числа, причем m>n, или в аналогичном виде, в котором x и y меняются местами. Можно чуть короче сказать, что x, y, z из (2) со всевозможными натуральными l и m > n суть все возможные решения (1) с точностью до перестановки x и y. Например, тройка (3, 4, 5) получается при l=1, m=2, n=1. ... По-видимому, вавилоняне знали этот ответ, но как они к нему пришли - неизвестно».

Обычно математики известны своей требовательностью к строгости своих формулировок. Но, в данной цитате такой строгости не наблюдается. Так что именно: найти или представить? Очевидно, что это совершенно разные вещи. Вот ниже приводится строчка «свежеиспеченных» троек (получены методом, описываемым ниже):

12, 35, 37; 20, 21, 29; 44, 117, 125; 103, 5304, 5305.

Не вызывает сомнений, что каждую из этих троек можно представить в виде соотношения (2) и вычислить после этого значения l, m, n. Но, это уже после того, как все значения троек были найдены. А как быть до того?

Нельзя исключить того, что ответы на эти вопросы давно известны. Но их почему-то найти, пока не удалось. Таким образом, целью настоящей работы является системный анализ совокупности известных примеров пифагоровых троек, поиск системообразующих отношений в различных группах троек и выявление системных признаков характерных для этих групп и, затем - разработка простых эффективных алгоритмов расчёта троек с предварительно заданной конфигурацией. Под конфигурацией будем понимать отношения между величинами, входящими в состав тройки.

В качестве инструментария будет использован математический аппарат на уровне, не выходящем за рамки математики, преподаваемой в средней школе, и системный анализ на базе методов, изложенных в .

Построение модели

С позиций системного анализа любая пифагорова тройка является системой, образованной объектами, которыми являются три числа и их свойствами. Их совокупность, в которой объекты поставлены в определённые отношения и образуют систему, обладающую новыми свойствами, не присущими ни отдельным объектам, ни любой иной их совокупности, где объекты поставлены в иные отношения.

В уравнении (1), объектами системы являются натуральные числа, связанные простыми алгебраическими соотношениями: слева от знака равенство стоит сумма двух чисел, возведенных в степень 2, справа - третье число, также возведённое в степень 2. Отдельно взятые числа, слева от равенства, будучи возведены в степень 2, не накладывают никаких ограничений на операцию их суммирования - результирующая сумма может быть какой угодно. Но, знак равенства, поставленный после операции суммирования, налагает на значение этой суммы системное ограничение: сумма должна быть таким числом, чтобы результатом операции извлечения корня квадратного явилось натуральное число. А это условие выполняется не для любых чисел, подставляемых в левую часть равенства. Таким образом, знак равенства, поставленный между двумя членами уравнения и третьим, превращает тройку членов в систему. Новым свойством этой системы является введение ограничений на значения исходных чисел.

Исходя из формы записи, пифагорова тройка может рассматриваться как математическая модель геометрической системы, состоящей из трёх квадратов, связанных между собой отношениями суммирования и равенства, как это показано на рис. 1. Рис. 1 является графической моделью рассматриваемой системы, а вербальной её моделью является утверждение:

Площадь квадрата с длиной стороны c может быть разделена без остатка на два квадрата с длинами сторон a и b, таких, что сумма их площадей равна площади исходного квадрата, то есть, все три величины a, b, и c, связаны соотношением

Графическая модель разложения квадрата

В рамках канонов системного анализа известно, что если математическая модель адекватно отображает свойства некоей геометрической системы, то анализ свойств самой этой системы позволяет уточнить свойства её математической модели, глубже их познать, уточнить, и, при необходимости, усовершенствовать. Этого пути мы и будем придерживаться.

Уточним, что согласно принципам системного анализа операции сложения и вычитания могут производиться только над составными объектами, то есть, объектами, составленными из совокупности элементарных объектов. Поэтому, будем воспринимать любой квадрат, как фигуру, составленную из совокупности элементарных, или единичных квадратов. Тогда условие получения решения в натуральных числах эквивалентно принятия условия, что единичный квадрат неделим.

Единичным квадратом будем называть квадрат, у которого длина каждой из сторон равна единице. То есть, при площадь единичного квадрата определяет следующее выражение.

Количественным параметром квадрата является его площадь, определяемая количеством единичных квадратов, которые можно разместить на данной площади. Для квадрата с произвольным значением x, выражение x2 определяет величину площади квадрата, образованного отрезками длиной в x единичных отрезков. На площади этого квадрата могут быть размещены x2 единичных квадратов.

Приведенные определения могут быть восприняты как тривиальные и очевидные, но это не так. Д.Н. Аносов определяет понятие площадь по-другому: - « … площадь фигуры равна сумме площадей ее частей. Почему мы уверены, что это так? …Мы представляем себе фигуру сделанной из какого-то однородного материала, тогда ее площадь пропорциональна количеству содержащегося в ней вещества - ее массе. Далее подразумевается, что когда мы разделяем тело на несколько частей, сумма их масс равна массе исходного тела. Это понятно, потому что все состоит из атомов и молекул, и раз их число не изменилось, то не изменилась и их суммарная масса… Ведь, собственно, масса куска однородного материала пропорциональна его объему; значит, надо знать, что объем «листа», имеющего форму данной фигуры, пропорционален ее площади. Словом, …что площадь фигуры равна сумме площадей ее частей, в геометрии надо это доказывать. … В учебнике Киселева существование площади, имеющей то самое свойство, которое мы сейчас обсуждаем, честно постулировалось как некое допущение, причем говорилось, что это на самом деле верно, но мы этого доказывать не будем. Так что и теорема Пифагора, если ее доказывать с площадями, в чисто логическом отношении останется не совсем доказанной».

Нам представляется, что введенные выше определения единичного квадрата снимают указанную Д.Н. Аносовым неопределенность. Ведь если величина площади квадрата и прямоугольника определяется суммой заполняющих их единичных квадратов, то при разбиении прямоугольника на произвольные, прилегающие друг к другу части площадь прямоугольника естественно равна сумме всех его частей.

Более того, введенные определения снимают неопределенность использования понятий «разделить» и «сложить» применительно к абстрактным геометрическим фигурам. Действительно, что значит разделить прямоугольник или любую другую плоскую фигуру на части? Если это лист бумаги, то его можно разрезать ножницами. Если земельный участок - поставить забор. Комнату - поставить перегородку. А если это нарисованный квадрат? Провести разделительную линию и заявить, что квадрат разделён? Но, ведь говорил Д.И. Менделеев: «…Заявить можно всё, а ты - поди, демонстрируй!»

А при использовании предложенных определений «Разделить фигуру» означает разделить количество заполняющих эту фигуру единичных квадратов на две (или более) частей. Количество единичных квадратов в каждой из таких частей определяет её площадь. Конфигурацию этим частям можно придавать произвольную, но при этом сумма их площадей всегда будет равна площади исходной фигуры. Возможно, специалисты-математики сочтут эти рассуждения некорректными, тогда примем их за допущение. Если уж в учебнике Киселёва приемлемы такие допущения, то и нам подобным приёмом грех не воспользоваться.

Первым этапом системного анализа является выявление проблемной ситуации. В начале этого этапа было просмотрено несколько сот пифагоровых троек, найденных в различных источниках. При этом внимание привлекло то обстоятельство, что всю совокупность пифагоровых троек, упоминающихся в публикациях, можно разделить на несколько групп, различающихся по конфигурации. Признаком специфичной конфигурации будем считать разность длин сторон исходного и вычитаемого квадратов, то есть, величину c-b. Например, в публикациях довольно часто в качестве примера демонстрируются тройки, удовлетворяющие условию c-b=1 . Примем, что вся совокупность таких пифагоровых троек образует множество, которое будем называть «Класс c-1», и проведём анализ свойств этого класса.

Рассмотрим три квадрата, представленные на рисунке, где c - длина стороны уменьшаемого квадрата, b - длина стороны вычитаемого квадрата и a - длина стороны квадрата, образованного из их разности. На рис. 1 видно, что при вычитании из площади уменьшаемого квадрата площади вычитаемого квадрата в остатке остаются две полосы единичных квадратов:

Для того чтобы из этого остатка можно было образовать квадрат, необходимо выполнение условия

Эти соотношения позволяют определить значения всех членов тройки по единственному заданному числу c. Наименьшим числом c, удовлетворяющим соотношению (6), является число c = 5. Итак, были определенны длины всех трёх сторон квадратов, удовлетворяющих соотношению (1). Напомним, что значение b стороны среднего квадрата

было выбрано, когда мы решили образовать средний квадрат путем уменьшения стороны исходного квадрата на единицу. Тогда из соотношений (5), (6). (7) получаем следующее соотношение:

из которого следует, что выбранное значение c = 5 однозначно задаёт значения b = 4, a = 3.

В итоге, получены соотношения, позволяющие представить любую пифагорову тройку класса «c - 1» в таком виде, где значения все трёх членов определяются по одному задаваемому параметру - значению c:

Добавим, что число 5 в приведенном выше примере появилось как минимальное из всех возможных значений c, при которых уравнение (6) имеет решение в натуральных числах. Следующее число, обладающее таким же свойством, это 13, затем 25, далее 41, 61, 85 и т. д. Как видно, в этом ряду чисел интервалы между соседними числами интенсивно возрастают. Так, например, после допустимого значения , следующее допустимое значение , а после , следующее допустимое значение , то есть, допустимое значение отстоит от предыдущего более чем на пятьдесят миллионов!

Теперь понятно, откуда появилась эта фраза в книге : - «По мере того, как числа возрастают, пифагоровы тройки встречаются все реже, и находить их становится все труднее и труднее…». Однако это утверждение не является верным. Стоит только взглянуть на пифагоровы тройки, соответствующие приведенным выше парам соседних значений c, как сразу бросается в глаза одна особенность - в обеих парах, в которых значения c разнесены на столь большие интервалы, значения a оказываются соседними нечетными числами. Действительно, для первой пары имеем

и для второй пары

Так что «всё реже встречаются» не сами тройки, а интервалы между соседними значениями c увеличиваются. Сами же пифагоровы тройки, как это будет показано ниже, существуют для любого натурального числа.

Теперь рассмотрим, тройки следующего класса - «Класс c-2». Как видно из рис. 1, при вычитании из квадрата со стороной c квадрата со стороной (c - 2), образуется остаток в виде суммы двух единичных полос. Величина этой суммы определяется уравнением:

Из уравнения (10) получаем соотношения, определяющее любую из бесконечного множества троек класс «c-2»:

Условием существования решения уравнения (11) в натуральных числах является любое такого значения c , при котором a является натуральным числом. Минимальное значение c, при котором решение существует, составляет c = 5. Тогда «стартовая» тройка для этого класса троек определяется набором a = 4, b = 3, c = 5. То есть, вновь, образуется классическая тройка 3, 4, 5, только теперь площадь вычитаемого квадрата меньше площади остатка.

И наконец, проведём анализ троек класса «с-8». Для этого класса троек при вычитании площади квадрата из площади с2 исходного квадрата, получаем:

Тогда, из уравнения (12) следует:

Минимальное значение c, при котором решение существует: это c = 13. Пифагорова тройка при этом значении примет вид 12, 5, 13. В этом случае опять площадь вычитаемого квадрата меньше площади остатка. А переставив обозначения местами, получим тройку 5, 12, 13, которая по своей конфигурации относится к классу «c - 1». Похоже, что дальнейший анализ других возможных конфигураций ничего принципиально нового не откроет.

Вывод расчётных соотношений

В предыдущем разделе логика анализа развивалась в соответствии с требованиями системного анализа по четырём из пяти основных его этапов: анализ проблемной ситуации, формирование целей, формирование функций и формирование структуры. Теперь пора переходить к заключительному, пятому этапу - проверка реализуемости, то есть, проверка того, в какой мере поставленные цели достигнуты. .

Ниже показана табл. 1, в которой приведены значения пифагоровых троек, относящихся к классу «c - 1». Большинство троек встречаются в различных публикациях , но тройки для значений a, равных 999, 1001 в известных публикациях не встречались.

Таблица 1

Пифагоровы тройки класса «с-1»

Можно проверить, что все тройки удовлетворяют соотношению (3). Таким образом, одна из поставленных целей достигнута. Полученные в предыдущем разделе соотношения (9), (11), (13) позволяют формировать бесконечное множество троек, задавая единственный параметр c - сторону уменьшаемого квадрата. Это, конечно, более конструктивный вариант, чем соотношение (2), для использования которого следует задать произвольно три числа l, m, n, имеющих любое значение, затем искать решение, зная только, что в итоге, непременно будет получена пифагорова тройка, а какая - заранее неизвестно. В нашем случае заранее известна конфигурация формируемой тройки и нужно задавать только один параметр. Зато, увы, не для каждого значения этого параметра решение существует. И надо заранее знать его допустимые значения. Так что полученный результат хорош, но, далёк от идеала. Желательно получить такое решение, чтобы пифагоровы тройки можно было вычислять для любого произвольно заданного натурального числа. С этой целью вернемся к четвёртому этапу - формирование структуры полученных математических соотношений.

Поскольку выбор величины c в качестве базового параметра для определения остальных членов тройки оказался неудобным, следует испробовать другой вариант. Как видно из табл. 1, выбор параметра a в качестве базового представляется предпочтительным, поскольку значения этого параметра идут подряд в ряду нечётных натуральных чисел. После несложных преобразований приводим соотношения (9) к более конструктивному виду:

Соотношения (14) позволяют найти пифагорову тройку для любого наперёд заданного нечётного значения a. При этот простота выражения для b позволяет производить вычисления даже без калькулятора. Действительно, выбрав, к примеру, число 13, получаем:

А для числа 99 соответственно получаем:

Соотношения (15) позволяют получать значения всех трёх членов пифагоровой троки для любого заданного n, начиная с n=1.

Теперь рассмотрим пифагоровы тройки класса «c - 2». В табл. 2 приведены для примера десять таких троек. Причем, в известных публикациях были найдены только три пары троек - 8, 15, 23; 12, 35, 36; и 16, 63, 65. Этого оказалось достаточно, чтобы определить закономерности, по которым они формируются. Остальные семь были найдены из выведенных ранее соотношений (11). Для удобства вычисление эти соотношения были преобразованы так, чтобы все параметры выражались через величину a. Из (11) с очевидность следует, что все тройки для класса «c - 2» удовлетворяют следующим соотношениям:

Таблица 2

Пифагоровы тройки класса «с-2»

Как видно из табл. 2, всё бесконечное множество троек класса «c - 2» можно разделить на два подкласса. Для троек, у которых значение a делится на 4 без остатка, значения b и c - нечётные. Такие тройки, у которых НОД = 1, называют примитивными . Для троек, у которых значения a не делится на 4 в целых числах, все три члена тройки a, b, c - чётные.

Теперь перейдём к рассмотрению результатов анализа третьего из выделенных классов - класса «c - 8». Расчётные соотношения для этого класса, полученные из (13), имеют вид:

Соотношения (20), (21) по сути, идентичны. Различие только в выборе последовательности действий. Либо, в соответствии с (20) выбирается желательное значение a (в данном случае требуется, чтобы это значение делилось на 4), затем, определяются величины b и c. Либо, выбирается произвольное число, и затем, из соотношений (21) определяются все три члена пифагоровой тройки. В табл. 3 приведен ряд пифагоровых троек, вычисленных указанным способом. Однако, вычислять значения пифагоровых троек можно ещё проще. Если известно хоть одно значение , то все последующие значения определяются очень просто по следующим соотношениям:

Таблица 3

Справедливость соотношения (22) для всех может быть проверена как по тройкам из табл. 2, так и по другим источникам. В качестве примера, в табл. 4 курсивом выделены тройки из обширной таблицы пифагоровых троек (10000 троек), вычисленных на основе компьютерной программы по соотношению (2) и жирным шрифтом - тройки, вычисленные по соотношения (20). Эти значения в указанной таблице отсутствовали.

Таблица 4

Пифагоровы тройки класса «с-8»

Соответственно, для троек вида могут использоваться соотношения:

И для троек вида <>, имеем соотношение:

Следует подчеркнуть, что рассмотренные выше классы троек «c - 1», «с - 2», «с - 8» составляют более 90 % среди первой тысячи троек, из таблицы приведенной в . Это даёт основания воспринимать указанные классы как базовые. Добавим, что при выводе соотношений (22), (23), (24) не использовались какие либо специальные свойства чисел, изучаемые в теории чисел (простые, взаимно простые и пр.). Выявленные закономерности формирования пифагоровых троек обусловлены только системными свойствами описываемых этими тройками геометрических фигур - квадратов, состоящих из совокупности единичных квадратов.

Заключение

Теперь, как сказал Эндрю Уайлс в 1993 г.: «Думаю, мне следует на этом остановиться» . Поставленная цель полностью достигнута. Показано, что анализ свойств математических моделей, структура которых связана с геометрическими фигурами, существенно упрощается, если в процессе анализа наряду с чисто математическими выкладками учитываются и геометрические свойства изучаемых моделей. Упрощение достигается, в частности за счёт того, что исследователь «видит» искомые результаты, не проводя математических преобразований.

Например, равенство

становится очевидным без преобразований в левой его части, стоит только взглянуть на рис. 1, где приведена графическая модель этого равенства.

В итоге, на основе проведенного анализа показано, что для любого квадрата со стороной могут быть найдены квадраты со сторонами b и c, такие, что для них выполняется равенство и получены соотношения, обеспечивающие получение результатов при минимальном объеме вычислений:

для нечётных значений a,

и - для чётных значений.

Библиографическая ссылка

Бескровный И.М. СИСТЕМНЫЙ АНАЛИЗ СВОЙСТВ ПИФАГОРОВЫХ ТРОЕК // Современные наукоемкие технологии. – 2013. – № 11. – С. 135-142;
URL: http://сайт/ru/article/view?id=33537 (дата обращения: 20.03.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» Обучающая : изучить ряд пифагоровых троек, разработать алгоритм их применения в различных ситуациях, составить памятку по их использованию.
  • Воспитательная : формирование сознательного отношения к учебе, развитие познавательной активности, культуры учебного труда.
  • Развивающая : развитие геометрической, алгебраической и числовой интуиции, сообразительности, наблюдательности, памяти.
  • Ход урока

    I. Организационный момент

    II. Объяснение нового материала

    Учитель: Загадка притягательной силы пифагоровых троек давно волнует человечество. Уникальные свойства пифагоровых троек объясняют их особую роль в природе, музыке, математике. Пифагорово заклинание, теорема Пифагора, остается в мозге миллионов, если не миллиардов, людей. Это – фундаментальная теорема, заучивать которую, заставляют каждого школьника. Несмотря на то, что теорема Пифагора доступна пониманию десятилетних, она является вдохновляющим началом проблемы, при решении которой потерпели фиаско величайшие умы в истории математики, теорема Ферма. Пифагор с острова Самос (см. Приложение 1 , слайд 4 )был одной из наиболее влиятельных и тем не менее загадочных фигур в математике. Поскольку достоверных сообщений о его жизни и работе не сохранилось, его жизнь оказалась окутанной мифами и легендами, и историкам бывает трудно отделить факты от вымысла. Не подлежит сомнению, однако, что Пифагор развил идею о логике чисел и что именно ему мы обязаны первым золотым веком математики. Благодаря его гению, числа перестали использоваться только для счета и вычислений и были впервые оценены по достоинству. Пифагор изучал свойства определенных классов чисел, соотношения между ними и фигуры, которые образуют числа. Пифагор понял, что числа существуют независимо от материального мира, и поэтому на изучении чисел не сказывается неточность наших органов чувств. Это означало, что Пифагор обрел возможность открывать истины, независимые от чьего-либо мнения или предрассудка. Истины более абсолютные, чем любое предыдущее знание. На основе изученной литературы, касающейся пифагоровых троек, нас будет интересовать возможность применения пифагоровых троек при решении задач тригонометрии. Поэтому мы поставим перед собой цель: изучить ряд пифагоровых троек, разработать алгоритм их применения, составить памятку по их использованию, провести исследование по их применению в различных ситуациях.

    Треугольник (слайд 14 ), стороны которого равны пифагоровым числам, является прямоугольным. Кроме того, любой такой треугольник является героновым, т.е. таким, у которого все стороны и площадь являются целочисленными. Простейший из них – египетский треугольник со сторонами (3, 4, 5).

    Составим ряд пифагоровых троек путем домножения чисел (3, 4, 5) на 2, на 3, на 4. Получим ряд пифагоровых троек, отсортируем их по возрастанию максимального числа, выделим примитивные.

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50).

    III. Ход урока

    1. Покрутимся вокруг задач:

    1) Используя соотношения между тригонометрическими функциями одного и того же аргумента найдите, если

    известно, что .

    2) Найдите значение тригонометрических функций угла?, если известно, что:

    3) Система тренировочных задач по теме “Формулы сложения”

    зная, что sin = 8/17, cos = 4/5, и – углы первой четверти, найдите значение выражения:

    зная, что и – углы второй четверти, sin = 4/5, cos = – 15/17, найдите: .

    4) Система тренировочных задач по теме “Формулы двойного угла”

    a) Пусть sin = 5/13, – угол второй четверти. Найдите sin2, cos2, tg2, ctg2.

    b) Известно, что tg? = 3/4, – угол третьей четверти. Найдите sin2, cos2, tg2, ctg2.

    c) Известно, что , 0 < < . Найдите sin, cos, tg, ctg.

    d) Известно, что , < < 2. Найдите sin, cos, tg.

    e) Найдите tg( + ), если известно что cos = 3/5, cos = 7/25, где и – углы первой четверти.

    f) Найдите , – угол третьей четверти.

    Решаем задачу традиционным способом с использованием основных тригонометрических тождеств, а затем решаем эти же задачи более рациональным способом. Для этого используем алгоритм решения задач с использованием пифагоровых троек. Составляем памятку решения задач с использованием пифагоровых троек. Для этого вспоминаем определение синуса, косинуса, тангенса и котангенса, острого угла прямоугольного треугольника, изображаем его, в зависимости от условий задачи на сторонах прямоугольного треугольника правильно расставляем пифагоровы тройки (рис. 1 ). Записываем соотношение и расставляем знаки. Алгоритм выработан.

    Рисунок 1

    Алгоритм решения задач

    Повторить (изучить) теоретический материал.

    Знать наизусть примитивные пифагоровы тройки и при необходимости уметь конструировать новые.

    Применять теорему Пифагора для точек с рациональными координатами.

    Знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника, уметь изобразить прямоугольный треугольник и в зависимости от условия задачи правильно расставить пифагоровы тройки на сторонах треугольника.

    Знать знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Необходимые требования:

    1. знать, какие знаки синус, косинус, тангенс, котангенс имеют в каждой из четвертей координатной плоскости;
    2. знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника;
    3. знать и уметь применять теорему Пифагора;
    4. знать основные тригонометрические тождества, формулы сложения, формулы двойного угла, формулы половинного аргумента;
    5. знать формулы приведения.

    С учетом вышеизложенного заполним таблицу (таблица 1 ). Ее нужно заполнять, следуя определению синуса, косинуса, тангенса и котангенса или с использованием теоремы Пифагора для точек с рациональными координатами. При этом постоянно необходимо помнить знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Таблица 1

    Тройки чисел sin cos tg ctg
    (3, 4, 5) I ч.
    (6, 8, 10) II ч. - -
    (5, 12, 13) III ч. - -
    (8, 15, 17) IV ч. - - -
    (9, 40, 41) I ч.

    Для успешной работы можно воспользоваться памяткой применения пифагоровых троек.

    Таблица 2

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50), …

    2. Решаем вместе .

    1) Задача: найдите cos, tg и ctg, если sin = 5/13, если – угол второй четверти.

    Червяк Виталий

    Скачать:

    Предварительный просмотр:

    Конкурс научных проектов школьников

    В рамках краевой научно-практической конференции «Эврика»

    Малой академии наук учащихся Кубани

    Исследование пифагоровых чисел

    Секция математика.

    Червяк Виталий Геннадиевич, 9 класс

    МОБУ СОШ №14

    Кореновский район

    Ст. Журавская

    Научный руководитель:

    Манько Галина Васильевна

    Учитель математики

    МОБУ СОШ №14

    Кореновск 2011 г

    Червяк Виталий Геннадиевич

    Пифагоровы числа

    Аннотация.

    Тема исследования: Пифагоровы числа

    Цели исследования:

    Задачи исследования:

    • Выявление и развитие математических способностей;
    • Расширение математического представления по данной теме;
    • Формирование устойчивого интереса к предмету;
    • Развитие коммуникативных и общеучебных навыков самостоятельной работы, умение вести дискуссию, аргументировать и т.д.;
    • Формирование и развитие аналитического и логического мышления;

    Методы исследования:

    • Использование ресурсов сети Интернет;
    • Обращение к справочной литературе;
    • Проведение эксперимента;

    Вывод:

    • Эта работа может быть использована на уроке геометрии как дополнительный материал, для проведения элективных курсов или факультативов по математике, а также во внеклассной работе по математике;

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    1. Введение…………………………………………………………………3
    2. Основная часть

    2.1 Историческая страничка……………………………………………………4

    2.2 Доказательство чётности и нечётности катетов……….............................5-6

    2.3 Вывод закономерности для нахождения

    Пифагоровых чисел……………………………………………………………7

    2.4 Свойства пифагоровых чисел ……………………………………………… 8

    3. Заключение……………………………………………………………………9

    4.Список использованных источников и литературы…………………… 10

    Приложения.........................................................................................................11

    Приложение I……………………………………………………………………11

    Приложение II…………………………………………………………………..13

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    Введение

    О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа.Я поставил цель исследования : узнать больше о теореме Пифагора и «пифагоровых числах».

    Актуальность темы . Ценность теоремы Пифагора и пифагоровых троек доказана многими учёнными мира на протяжении многих веков. Проблема, о которой пойдёт речь в моей работе выглядит довольно простой потому, что в основе её лежит математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах. Теперь тройки натуральных чисел x, y, z, для которых x 2 + y 2 = z 2 , принято называть пифагоровыми тройками . Оказывается, пифагоровы тройки знали уже в Вавилоне. Постепенно нашли их и греческие математики.

    Цель данной работы

    1. Исследовать пифагоровы числа;
    2. Понять, как получаются пифагоровы числа;
    3. Выяснить, какими свойствами обладают пифагоровы числа;
    4. Опытно-экспериментальным путём построить перпендикулярные прямые на местности, используя пифагоровы числа;

    В соответствии с целью работы поставлен ряд следующих задач :

    1. Глубже изучить историю теоремы Пифагора;

    2. Анализ универсальных свойств пифагоровых троек.

    3. Анализ практического применения пифагоровых троек.

    Объект исследования : пифагоровы тройки.

    Предмет исследования : математика .

    Методы исследования : - Использование ресурсов сети Интернет; -Обращение к справочной литературе; -Проведение эксперимента;

    Теоретическая значимость: роль, которую играет открытие пифагоровых троек в науке; практическое применение открытия Пифагора в жизнедеятельности человека.

    Прикладная ценность исследования заключается в анализе литературных источников и систематизации фактов.

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    Из истории пифагоровых чисел.

    Математическая книга Чу-пей: [ 2]

    "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

    • Древний Египет: [ 2]

    Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты , или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.

    • Вавилония: [ 3 ]

    «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

    • История теоремы Пифагора: ,

    Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него.

    В вавилонских текстах она встречается за 1200 лет до Пифагора.

    По-видимому, он первым нашёл её доказательство. В связи с этим была сделана следующую запись: «… когда он открыл, что в прямоугольном треугольнике гипотенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    Исследование Пифагоровых чисел.

    • Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как

    3 2 + 4 2 = 5 2.

    • Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению
    • А 2 + в 2 = с 2.
    • Эти числа называются пифагоровыми числами

    Пифагоровы тройки известны очень давно. В архитектуре древнелесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н.э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей. [ 1 ]

    Прямоугольный треугольник, с катетами 3, 4 и гипотенузой 5 называется египетским треугольником. Площадь этого треугольника равна совершенному числу 6. Периметр равен 12 – числу, которое считалось символом счастья и достатка.

    С помощью верёвки разделенной узлами на 12 равных частей древние египтяне строили прямоугольный треугольник и прямой угол. Удобный и очень точный способ, употребляемый землемерами для проведения на местности перпендикулярных линий. Необходимо взять шнур и три колышка, шнур располагают треугольником так, чтобы одна сторона состояла из 3 частей, вторая из 4 долей и последняя из пяти таких долей. Шнур расположится треугольником, в котором есть прямой угол.

    Этот древний способ, по-видимому, применявшийся ещё тысячелетия назад строителями египетских пирамид, основан на том, что каждый треугольник, стороны которого относятся как 3:4:5, согласно теореме Пифагора, прямоугольный.

    Нахождением пифагоровых троек занимались Евклид, Пифагор, Диофант и многие другие. [ 1]

    Ясно, что если (x, y, z ) – пифагорова тройка, то для любого натурального k тройка (kx, ky, kz ) также будет пифагоровой тройкой. В частности, (6, 8, 10), (9, 12, 15) и т.д. являются пифагоровыми тройками.

    По мере того, как числа возрастают, пифагоровы тройки встречаются всё реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания

    таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много.

    Тройки, не имеющие общих делителей, больших 1, называются простейшими.

    Рассмотрим некоторые свойства пифагоровых троек. [ 1]

    Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами»,а с – « гипотенузой».
    Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р- целочисленный множитель,- пифагоровы числа.
    Верно и обратное утверждение!
    Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р).

    Покажем, что в каждой из таких троек а,в,с один из «катетов»должен быть чётным, а другой нечётным. Будем рассуждать «от противного». Если оба «катета» а и в чётны, то чётным будет число а 2 + в 2 , а значит и «гипотенуза». Но это противоречит тому, что числа а,в и с не имеют общих множителей, так как три чётных числа имеют общий множитель 2. Таким образом хоть один из « катетов» а и в нечётен.

    Остаётся ещё одна возможность: оба «катета» нечётные, а «гипотенуза» чётная. Нетрудно доказать, что этого не может быть, так как если «катеты» имеют вид 2 х + 1 и 2у+1, то сумма их квадратов равна

    4х 2 + 4х + 1 + 4у 2 + 4у +1 = 4 (х 2 + х + у 2 + у) +2, т.е. представляет собой число, которое при делении на 4 даёт в остатке 2. Между тем квадрат всякого чётного числа должен делиться на 4 без остатка.

    Значит, сумма квадратов двух нечётных чисел не может быть квадратом чётного числа; иначе говоря, наши три числа - не пифагоровы.

    ВЫВОД:

    Итак, из « катетов» а, в один чётный, а другой нечётный. Поэтому число а 2 + в 2 нечётно, а значит, нечётна и « гипотенуза» с.

    Пифагор нашёл формулы, которые в современной символике могут быть записаны так: a=2n+1, b=2n(n+1), c=2 n 2 +2n+1, где n – целое число.

    Эти числа – пифагоровы тройки.

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    Вывод закономерности для нахождения пифагоровых чисел.

    Вот следующие пифагоровы тройки:

    • 3, 4, 5; 9+16=25.
    • 5, 12, 13; 25+144=225.
    • 7, 24, 25; 49+576=625.
    • 8, 15, 17; 64+225=289.
    • 9, 40, 41; 81+1600=1681.
    • 12, 35, 37; 144+1225=1369.
    • 20, 21, 29; 400+441=881

    Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки.

    • 6, 8, 10;
    • 9,12,15.
    • 12, 16, 20;
    • 15, 20, 25;
    • 10, 24, 26;
    • 18, 24, 30;
    • 16, 30, 34;
    • 21, 28, 35;
    • 15, 36, 39;
    • 24, 32, 40;
    • 14, 48, 50;
    • 30, 40, 50 и т.д.

    Они так же являются Пифагоровыми числами/

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    Свойства пифагоровых чисел.

    • При рассмотрении пифагоровых чисел я увидел ряд свойств:
    • 1) Одно из пифагоровых чисел должно быть кратно трём;
    • 2) Другое из них должно быть кратно четырём;
    • 3) А третье из пифагоровых чисел должно быть кратно пяти;

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    Заключение.

    Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» - греческое, в переводе означает «землемерие».

    Люди очень рано столкнулись с необходимостью измерять земельные участки. Уже за 3-4 тыс. лет до н.э. каждый клочок плодородной земли в долинах Нила, Ефрата и Тигра, рек Китая имел значение для жизни людей. Это требовало определённого запаса геометрических и арифметических знаний.

    Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.

    И в Египте и в Вавилоне сооружались колоссальные храмы, строительство которых могло производиться только на основе предварительных расчётов. Также строились водопроводы. Всё это требовало чертежей и расчётов. К этому времени были хорошо известны частные случаи теоремы Пифагора, уже знали, что если взять треугольники со сторонами x, y, z, где x, y, z – такие целые числа, что x 2 + y 2 = z 2 , то эти треугольники будут прямоугольными.

    Все эти знания непосредственным образом применялись во многих сферах жизнедеятельности человека.

    Так до сих пор великое открытие учёного и философа древности Пифагора находит прямое применение в нашей жизни.

    Строительство домов, дорог, космических кораблей, автомобилей, станков, нефтепроводов, самолётов, тоннелей, метро и многое, многое другое. Пифагоровы тройки находят прямое применение в проектировании множества вещей, окружающих нас в повседневной жизни.

    А умы учёных продолжают искать новые варианты доказательств теоремы Пифагора.

    • В результате моей работы мне удалось:
    • 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев.
    • 2. Познакомится с историей теоремы Пифагора.
    • 3. Узнать о пифагоровых числах, их свойствах, научиться их находить и применять в практической деятельности.

    Червяк Виталий Геннадиевич

    Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс

    Пифагоровы числа

    Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14

    Литература.

    1. Занимательная алгебра. Я.И. Перельман (с.117-120)
    2. www.garshin.ru
    3. image.yandex.ru

    4. Аносов Д.В. Взгляд на математику и нечто из неё. – М.: МЦНМО, 2003.

    5. Детская энциклопедия. – М.: Издательство Академии Педагогических Наук РСФСР, 1959.

    6. Степанова Л.Л. Избранные главы элементарной теории чисел. – М.: Прометей, 2001.

    7. В. Серпинский Пифагоровы треугольники. - М.: Учпедгиз, 1959. С.111

    Ход исследования Историческая страничка; Теорема Пифагора; Доказать, что один из « катетов» должен быть чётным, а другой нечётным; Вывод закономерности для нахождения пифагоровых чисел; Выявить свойства пифагоровых чисел;

    Введение О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа. Я поставил цель исследования: узнать больше о теореме Пифагора и «пифагоровых числах».

    Пр ебудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век

    Из истории пифагоровых чисел. Древний Китай Математическая книга Чу-пей: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

    Пифагоровы числа у древних египтян Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или " натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.

    Теорема Пифагора в Вавилонии «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

    Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как 3 2 + 4 2 = 5 2. Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению А 2 + в 2 = с 2. Эти числа называются пифагоровыми числами

    Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами», а с – « гипотенузой». Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р - целочисленный множитель,- пифагоровы числа. Верно и обратное утверждение! Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р)

    Вывод! Итак из чисел а и в одно чётно, а другое нечётно, а значит нечётно и третье число.

    Вот следующие Пифагоровы тройки: 3, 4, 5; 9+16=25 . 5, 12, 13; 25+144=169. 7, 24, 25; 49+576=625. 8, 15, 17; 64+225=289. 9, 40, 41; 81+1600=1681. 12, 35, 37; 144+1225=1369. 20, 21, 29; 400+441=841

    Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки. 6, 8, 10; 9,12,15. 12, 16, 20; 15, 20, 25; 10, 24, 26; 18, 24, 30; 16, 30, 34; 21, 28, 35; 15, 36, 39; 24, 32, 40; 14, 48, 50; 30, 40, 50 и т.д. Они так же являются Пифагоровыми числами

    Свойства пифагоровых чисел При рассмотрении пифагоровых чисел я увидел ряд свойств: 1) Одно из пифагоровых чисел должно быть кратно трём; 2) одно из них должно быть кратно четырём; 3) А другое из пифагоровых чисел должно быть кратно пяти;

    Практическое применение пифагоровых чисел

    Вывод: В результате моей работы мне удалось 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев. 2. Познакомится с историей теоремы Пифагора. 3. Узнать о пифагоровых числах, их свойствах, научиться их находить. Опытно –экспериментальным путём откладывать прямой угол с помощью пифагоровых чисел.