Реактор большой мощности канальный. Рбмк реактор большой мощности канальный Металлоконструкция схемы «КЖ»

1. Введение

2. Система управления и защиты в реакторе РБМК-1000

3.Стержни СУЗ

4.Снижение положительного эффекта реактивности при обезвоживании КО СУЗ

5. Дифференциальная и интегральная характеристики стержня

6. Структурная схема управления реактором РБМК

Система управления и защиты в реакторе РБМК-1000

Для непрерывной работы реактора активная зона должна находиться в критическом состоянии. Следовательно, для работы реактора необходимо, чтобы активная зона имела избыточную реактивность для компенсации постепенного уменьшения количества делящегося материала в процессе выгорания, а также для компенсации изменения реактивности в связи с накоплением продуктов деления. Эту избыточную реактивность необходимо компенсировать все время, чтобы реактор находился в критическом состоянии при работе на стационарном уровне мощности. Такая задача решается с помощью органов регулирования, в которых применяются материалы, являющиеся сильными поглотителями нейтронов. Органы регулирования при этом выполняют следующие задачи:

Регулируют энерговыделение в активной зоне;

Осуществляют быструю остановку реактора;

Компенсируют быстрое и медленное изменение реактивности, обусловленное температурными колебаниями, накоплением продуктов деления и истощением делящегося материала.

В реакторостроении для изменения нейтронного потока наиболее широкое распространение получил способ, при котором регулируется количество веществ, поглощающих нейтроны. Следует отметить, что очень большое сечение поглощения приведет к быстрому истощению поглощающего материала из-за превращения его ядер в другие ядра, которые не являются сильными поглотителями нейтронов. По этой причине сильные поглотители нейтронов используются большей частью в качестве выгорающих поглотите- лей, количество которых в активной зоне должно постепенно уменьшаться для компенсации уменьшения количества делящегося материала в процессе выгорания. Для успешной работы в реакторных условиях материалы органов регулирования должны обладать такими свойствами, как механическая прочность, высокая коррозионная стойкость, химическая стабильность при рабочей температуре и облучении, относительно низкая плотность, чтобы орган регулирования мог быстро перемещаться, доступность и относительно низкая цена, хорошая обрабатываемость.



В СУЗ РБМК-1000 управление нейтронным потоком осуществляется введением в активную зону стержней-поглотителей, содержащих бор. Естественный бор состоит из двух изотопов (19 % 10В и 81 % 11В) и имеет более низкую поглощающую способность, чем 10В. Бор редко используется в чистом виде, для изготовления стержней в основном применяется карбид бора (В4С) − тугоплавкий материал, имеющий точку плавления между 2340 и 2480 °С. Для изготовления изделий из карбида бора в основном применяют методы порошковой металлургии. Основная проблема при использовании карбида бора заключается в его распухании в результате образования газообразного гелия по следующим нейтронным реакциям: 10 3 4 B H 2 He n + → +⎡ ⎤ ⎣ ⎦; 10 7 4 B Li He. n + → + Перемещение стержня-поглотителя осуществляется с помощью исполнительного механизма. Исполнительные механизмы работают в комплекте с указателями положения стержней в активной зоне, снабженными сельсинами-датчиками, и ограничителями хода стержней в крайних положениях. Точность указателей ±50 мм. Ин- формация о положении стержней выдается на сельсины-указатели, работающие в индикаторном режиме в паре с сельсин-датчиками и размещенные на мнемотабло СУЗ на БЩУ и на плато реактора в центральном зале. Стержень-поглотитель и исполнительный механизм образуют исполнительный орган.

В состав СУЗ входят исполнительные органы.

Исполнительные органыРР предназначены для ручного регулирования поля энерговыделения, УСП – для ручного регулирования поля энерговыделения в нижней половине активной зоны. Их отличительные особенности – ввод снизу активной зоны и половинная длина относительно длины стержней РР. Исполнительные органы АР, ЛАР входят в состав авторегуляторов мощности реактора, которые представлены следующими автоматическими регуляторами: АРМ – регулятор малого уровня мощности;

АР – два регулятора основного диапазона мощности, в работе может находиться только один регулятор, второй – в режиме готовности;

ЛАР – локальный автоматический регулятор мощности реактора, используется в основном диапазоне мощности; с помощью ЛАР осуществляется регулирование мощности 9−12 зон, на которые условно разбита активная зона реактора.

Исполнительные органы ЛАЗ выполняют функцию предупредительной защиты, вводятся в активную зону до момента снятия аварийного сигнала при аварийном превышении заданного уровня мощности в зонах регулирования ЛАР. Исполнительные органы ЛАЗ могут использоваться для ручного регулирования. Для возможности выполнения исполнительными органами ЛАЗ своих защитных функций логической схемой ЛАЗ накладываются ограничения на их положение в активной зоне. Исполнительные органы ЛАЗ используются также для реализации режима перекомпенсации (ПК-АЗ). Режим ПК предназначен для дополнительного ввода в автоматическом режиме отрицательной реактивности во время аварийного снижения мощности АЗ-1, АЗ-2, управляемого снижения мощности (УСМ), осуществляемого включенным авторегулятором ЛАР или 1(2)АР. Необходимость дополнительного ввода отрицательной реактивности связана с тем, что исполнительные органы авторегулятора не могут обеспечить требуемую скорость аварийного снижения мощности. Исполнительные органы БАЗ предназначены только для аварийного останова реактора. Для выполнения своих функций они должны постоянно находиться во взведенном состоянии. Система управления и защиты в реакторе РБМК − практически единственное средство оперативного управления реактивностью, в том числе заглушения реактора и обеспечения подкритичности. То есть является элементом очень важным с точки зрения обеспечения ядерной безопасности РУ. Рассмотрим более подробно некоторые элементы СУЗ.

Стержни СУЗ

В настоящее время на реакторах используются стержни СУЗ четырех типов.

Стержни РР (АР, ЛАЗ, ЛАР) Их конструкция сложилось в результате усовершенствования конструкции стержней СУЗ реакторов первых очередей при вне- дрении мероприятий по повышению безопасности. Отличительной особенностью от предыдущих конструкций является то, что длина стержней СУЗ увеличена до 6,55 м (на первых очередях они имеют длину 5,5 м, на вторых − 6,2 м) и при положении стержней на ВК поглощающая часть находится на верхнем срезе активной зоны, а низ вытеснителя − на нижнем срезе активной зоны. Это обеспечивает ввод отрицательной реактивности во всем диапазоне перемещения и исключает ввод положительной реактивности во всех ситуациях, что не исключалось при прежней конструкции. Конструкция и расположение стержня РР канале СУЗ. Недостаток стержней данной конструкции − наличие большого столба воды (~ 2,5 м) между вытеснителем и поглотителем в районе телескопического соединения. Это является причиной большого положительного эффекта обезвоживания КО СУЗ в критическом состоянии. С целью уменьшения данного недостатка при дальнейшем усовершенствовании этих стержней СУЗ разработана конструкция с утолщенным телескопом и юбочной конструкцией нижних поглотителей. Стержни данной конструкции внедрены на САЭС.

Конструкция и расположение стержня РР канале СУЗ:

1 – сервопривод; 2 – напорный трубопровод; 3 – головка канала; 4 – защитная пробка; 5 – поглощающий стержень; 6 – телескопическая штанга вытеснителя; 7 – вытеснитель; 8 – сливной трубопровод

После установки 25 стержней эффект обезвоживания КО СУЗ в критическом состоянии, измеренный на холодном реакторе, уменьшился на 0,1 β. После установки 50 стержней на 1, 2 блоках величина эффекта обезвоживания КО СУЗ уменьшается на β. Стержни данной конструкции набираются в режимы РР, ЛАЗ. Скорость ввода стержней в активную зону по сигналу от ключа управления 17−18 с, по сигналу аварийной защиты – 12 с. Стержни быстрой аварийной защиты (БАЗ) Они отличаются от предыдущих тем, что у них отсутствует вытеснитель и диаметр поглощающих элементов больше, чем у стержней РР. Кроме того, каналы для стержней БАЗ имеют пленочное охлаждение. Скорость ввода стержней БАЗ от ключа управления 6−7 с, по сигналу БАЗ – 2,5 с. Эффективность стержней БАЗ составляет ∼ 2 β. Имея такие характеристики, стержни БАЗ обеспечивают совместно с другими стержнями достаточную скорость ввода отрицательной реактивности (1 β/с) по сигналу БАЗ и гарантировано глушат реактор. Укороченные стержни поглотители УСП Стержни УСП состоят из тех же конструкционных элементов, что и стержни РР: поглотителя из четырех звеньев длиной 4088 мм и вытеснителя из шести звеньев длиной 6700 мм. Ход стержней УСП − 3500 мм. Стержни УСП, в отличие от всех других типов стержней, вводятся в активную зону снизу. Вместо телескопического несущего элемента между поглотителем и вытеснителем установлен неподвижный несущий элемент. На всем пути перемещения стержня УСП сохраняется постоянный зазор между поглотителем и вытеснителем, величина зазора составляет 150 мм. Наличие УСП а активной зоне реактора обусловлено такими конструктивными особенностями реактора РБМК-1000, как:

Наличие пара в верхней части активной зоны, приводящее к тому, что верхние части ДП полностью погруженных стержней СУЗ эффективнее нижних;

Запас реактивности на частично погруженных стержнях РР, АР реализуется в верхней части активной зоны;

Столбы воды между поглотителями и вытеснителями стержней СУЗ, находящихся на ВК, поглощают нейтроны лучше, чем вытеснители.

Все эти особенности приводят к тому, что поле энерговыделения смещается в нижнюю часть активной зоны. Для поддержания его формы, близкой к симметричной, предусмотрены УСП. У них длина поглощающей части 4 м, и они вводятся снизу. Схема расположения стержней исполнительных механизмов СУЗ по высоте активной зоны реакторов РБМК

В качестве тепловыделяющего элемента в реакторе РБМК-1000 используется закрытая с обоих концов циркониевая трубка диаметром 13,9 мм, толщиной стенки 0,9 мм и длиной около 3,5 м, заполненная таблетками топлива диаметром 11,5 мм и высотой 15 мм. Для уменьшения величины термического расширения топливного столба, таблетки имеют лунки. Начальная среда под оболочкой заполнена гелием под давлением 5кгс/см 2. Топливный столб фиксируется пружиной. Максимальная температура в центре топливной таблетки может достигать 2100ºС. Реально эта температура не выше 1600ºС, давление гелия до 17 кгс/см 2 , а температура наружней поверхности оболочки ТВЭЛ около 300°С.

Тепловыделяющие элементы (твэлы) компонуются в тепловыделяющие сборки (ТВС) по 18 штук в каждой; 6 штук по окружности диаметром 32 мм и 12 штук – диаметром 62 мм. В центре – несущий стержень (см. рис. 2.14, сечение Б-Б). ТВЭЛы в сборке скреплены через каждые полметра специальными дистанционирующими решетками.

Основным топливным блоком реактора является тепловыделяющая (или рабочая) кассета, она состоит из двух ТВС, соединенных общим несущим стержнем, штанги, наконечника и хвостовика. Таким образом, часть кассеты, располагающаяся в активной зоне, имеет длину около 7м.

Кассеты омываются водой, при этом нет прямого контакта топлива с теплоносителем при нормальном режиме работы реактора.

Для получения приемлемого коэффициента полезного действия атомной станции необходимо иметь возможно более высокую температуру и давление генерируемого реактором пара. Следовательно, должен быть предусмотрен корпус, удерживающий теплоноситель при этих параметрах. Такой корпус является основным конструктивным элементом реакторов типа ВВЭР. Для реакторов РБМК роль корпуса играет большое количество прочных трубопроводов, внутри которых и размещаются кассеты. Такой трубопровод называется технологическим каналом (ТК), в пределах активной зоны он циркониевый и имеет диаметр 88 мм при толщине стенки 4 мм, в РБМК-1000 1661 технологических канала.

Рис. 1.14. Тепловыделяющая сборка реактора РБМК

Технологический канал (см. рис. 1.13) предназначен для размещения ТВС и организации потока теплоносителя.

Корпус канала представляет собой сварную конструкцию, состоящую из средней и концевых частей. Средняя часть канала выполнена из циркониевого сплава, концевые из нержавеющей стали. Между собой они соединены переходниками сталь-цирконий. Корпус канала рассчитан на 23 года безаварийной работы, однако при необходимости на остановленном реакторе может быть извлечен дефектный корпус канала и на его место установлен новый.

Топливная кассета устанавливается внутри канала на подвеске, которая удерживает ее в активной зоне и позволяет с помощью РЗМ производить замену отработанной кассеты без останова реактора. Подвеска снабжена запорной пробкой, которая герметизирует канал.

Кроме того, в реакторе размещены каналы управления и защиты. В них располагаются стержни поглотители, датчики контроля энерговыделения. Размещение каналов управления в колоннах графитовой кладки автономно от технологических каналов.

Пространство между графитом и каналами заполнено газом, имеющим хорошую теплопроводность, малую теплоемкость и не оказывающим существенного влияния на ход цепной реакции. Лучшим с этой точки зрения газом является гелий. Однако из-за его высокой стойкости он применяется не в чистом виде, а в смеси с азотом (на номинальном уровне мощности 80% гелия и 20% азота, при меньшей мощности азота больше, при 50% номинальной может быть уже чистый азот).

Одновременно предотвращается контакт графита с кислородом, т.е. его окисление. Азотно-гелиевая смесь в графитовой кладке продувается в направлении снизу вверх, это делается для достижения третьей цели – контроля целостности технологических каналов. Действительно, при течи ТК влажность газа на выходы из кладки и его температура увеличивается.

Для улучшения теплопередачи от графита к каналу при движении газа создается своеобразный лабиринт (см. рис. 1.15). На канал и отверстия блоков поочередно надеваются разрезные графитовые кольца высотой 20 мм каждое на участке 5,35 м в центре активной зоны. Таким образом, газ движется по схеме: графит – разрез кольца – стенка канала – разрез кольца – графит.

Конструкции каналов уран-графитовых реакторов АЭС

Тепловыделяющая часть канала РБМК-1000

(рис. 2.31) состоит из двух ТВС, несущего центрального стержня, хвостовика, штанги, наконечника. ТВС собирается из 18 твэлов стержневого типа диаметром 13,5x0,9 мм, каркаса и крепежных деталей; ТВС взаимозаменяемы. Каркас состоит из центральной трубы, на которой закреплены одна концевая и десять дистанционирующих решеток. Дистанционирующие решетки служат для обеспечения требуемого
расположения твэлов в поперечном сечении ТВС и крепятся в центральной трубе. Крепление дистанционирующих решеток позволяет им смещаться вдоль оси на расстояние 3,5 м при тепловом расширении твэлов. Крайняя дистанционирующая решетка крепится на шпонке для увеличения жесткости против скручивания пучка.

Дистанционирующая решетка представляет собой сотовую конструкцию и собирается из центральной, шеста промежуточных, двенадцати периферийных ячеек и обода, соединенных между собой точечной контактной сваркой. На ободе предусмотрены дистанцио-нирующие выступы.

Рис. 2.31. ТВС РБМК-1000:
1 - подвеска; 2 - переходник; 3 - хвостовик; 4 - твэл; 5 - несущий стержень; 6 - втулка; 7 - наконечник; 8 - гайка

Центральная труба ТВС на конце имеет прямоугольный срез на половину диаметра для стыковки ТВС друг с другом в канале. При этом обеспечивается необходимая соосность твэлов двух ТВС и исключается поворот их относительно друг друга.

Твэлы жестко закреплены в концевых решетках ТВС (на верхней и нижней границах активной зоны), и при работающем реакторе зазор в центре активной зоны выбирается за счет термического расширения. Сокращение расстояния между твэлами в центре активной зоны уменьшает всплеск тепловыделения и снижает температуру топлива и конструкционного материала в зоне заглушек твэлов. Использование двух ТВС по высоте активной зоны позволяет каждой сборке работать в зоне как максимума, так и минимума энерговыделения по высоте.

Все детали ТВС кроме штанги и дистанционирующих решеток изготовляются из циркониевого сплава. Штанга, служащая для соединения сборки с подвеской, и дистанционирующие решетки выполнены из нержавеющей стали Х18Н10Т.

Анализ теплогидравлических и прочностных характеристик реактора РБМК-ЮОО выявил имеющиеся резервы по увеличению мощности установки. Увеличение критической мощности технологического канала, т. е. мощности, при которой на поверхности твэлов наступает кризис теплообмена, сопровождающийся недопустимым повышением температуры циркониевой оболочки, было достигнуто введением в тепловыделяющую сборку интенсификаторов теплообмена. Применение решеток-интенсификаторов с осевой закруткой потока теплоносителя позволило увеличить мощность технологического канала РБМК-1000 в 1,5 раза. Конструкция ТВС РБМК-1500 отличается от конструкции ТВС РБМК-1000 тем, что в верхней ТВС используются дистанционирующие рещетки-интенси-фикаторы, в остальном конструкция ТВС не имеет принципиальных отличий. Сохранение сопротивления контура циркуляции достигается снижением расхода теплоносителя.

Увеличение мощности ТВС вызывает соответствующее увеличение линейной мощности твэлов до 550 Вт/см. Отечественный и зарубежный опыт показывает, что такой уровень линейной мощности не является предельным. На ряде станций США максимальные линейные мощности составляют 570-610 вт/см.

Для монтажа и замены корпуса технологического канала в процессе эксплуатации, а также для организации надежного теплоотвода для графитовой кладки к каналу на средней части его находятся кольца «твердого контакта» (рис. 2.32). Разрезные кольца высотой 20 мм размещаются по высоте канала вплотную друг к другу таким образом, что каждое соседнее кольцо имеет надежный контакт по цилиндрической поверхности либо с трубой канала, либо с внутренней поверхностью графитового блока кладки, а также по торцу между собой. Минимально допустимые зазоры канал- кольцо и кольцо - блок определяются из условия недопустимости заклинивания канала в кладке в результате радиационной усадки графита и увеличения диаметра канала в результате

ползучести материала трубы. Незначительное увеличение зазоров приведет к ухудшению теплоотвода от графита кладки. На верхней части корпуса канала приварено несколько втулок, предназначенных для улучшения теплоотвода от металлоконструкций реактора для обеспечения радиационной безопасности и создания технологических баз при изготовлении корпуса канала.

Рис. 2.32. Установка технологического канала в графитовой кладке:
1- труба (сплав Zr+2,5 % Nb); 2 - наружное графитовое кольцо; 3 - внутреннее графитовое кольцо; 4 - графитовая кладка

Как уже отмечалось, циркониевые сплавы применяются в основном для изготовления элементов активной зоны реактора, в которых в полной мере используются их специфические свойства: нейтронная

«прозрачность», жаропрочность, коррозионная и радиационная стойкость и т. п. Для изготовления других частей реактора применяют более дешевый материал - нержавеющую сталь. Сочетание этих материалов определяется требованиями, предъявлямыми к конструкции, а также экономическими соображениями в отношении материалов и технологии. Различие физических, механических и технологических свойств циркониевых сплавов и сталей вызывает проблему их соединения.

В промышленных реакторах известны соединения стали с циркониевыми сплавами механическим способом, например в канадских реакторах «Пикеринг-2, -3 и -4» соединение канальных труб из циркониевого сплава с концевыми фиттингами из отпущенной нержавеющей стали (рис. 2.33) производилось с помощью вальцовки. Однако такие соединения удовлетворительно работают при температуре 200-250 °С. За рубежом исследовались соединения стали с цирконием сваркой плавления (аргонно-дуговой) и сваркой в твердой фазе. Аргонно-дуговая сварка проводится при более высоких температурах, чем сварка в твердой фазе, что приводит к образованию в зоне соединения прослоек хрупких интерметаллидов, отрицательно влияющих на механические и коррозионные свойства шва. Среди исследуемых методов соединения сплавов циркония со сталью в твердой фазе являются сварка взрывом, совместная ковка, штамповка, сварка давлением, совместное прессование, контактно-реактивная пайка, сварка трением и др.

Однако все эти соединения неприменимы для труб технологического канала реактора РБМК, так как все они предназначаются

для работы при других параметрах, и они не могут обеспечить необходимую плотность и прочность.

Средняя циркониевая часть канала РБМК, находящаяся в активной зоне реактора, соединяется с концевыми сборками из нержавеющей стали при помощи специальных переходников сталь- цирконий. Переходники сталь - цирконий получены методом диффузионной сварки.

Сварка осуществляется в вакуумной камере в результате сильного прижатия друг к другу нагретых до высокой температуры деталей из циркониевого сплава и нержавеющей стали. После механической обработки получается переходник, один конец которого- циркониевый сплав, другой - нержавеющая сталь. Для уменьшения напряжений, возникающих в соединении с большой разницей в коэффициентах линейных расширений циркониевого сплава (а = 5,6*10 -6 1/°С) и стали 0Х18Н10Т (а=17,2*10 -6 1/°С), применяется бандаж из биметаллических горячепрессованных труб (сталь марки 0Х18Н10Т + сталь марки 1Х17Н2) (а=11*10 -6 1/°С).

Соединение переходника с циркониевой трубой наружным диаметром 88 и толщиной стенки 4 мм осуществляется электронно-лучевой сваркой. К сварным швам предъявляются те же требования по прочности и коррозионным свойствам, что и к основной трубе. Разработанные режимы электронно-лучевой сварки, способы и режимы механической и термической обработки сварных швов и околошовных зон позволили получить надежные вакуумно-плотные сварные соединения сталь-цирконий.

Министерство образования и науки Российской Федерации Национальный исследовательский ядерный университет «МИФИ» Обнинский институт атомной энергетики

А.С. Шелегов, С.Т. Лескин, В.И. Слободчук

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ И КОНСТРУКЦИЯ РЕАКТОРА РБМК-1000

для студентов высших учебных заведений

Москва 2011

УДК 621.039.5(075) ББК 31.46я7 Ш 42

Шелегов А.С., Лескин С.Т., Слободчук В.И. Физические особенности и конструкция реактора РБМК-1000: Учебное пособие. М.: НИЯУ МИФИ, 2011, – 64 с.

Рассмотрены принципы физического проектирования, критерии обеспечения безопасности и особенности конструкции ядерного энергетического реактора типового проекта РБМК-1000. Описаны конструкция тепловыделяющих сборок и топливных каналов активной зоны, принципы и средства управления реакторной установкой.

Изложены основные особенности физики и теплогидравлики реактора РБМК-1000.

Пособие содержит основные технические характеристики реакторной установки, системы управления и защиты реактора, а также тепловыделяющих элементов и их сборок.

Представленная информация может быть использована только для обучения и предназначена для студентов специальности 140404 «Атомные электростанции и установки» при освоении дисциплины «Ядерные энергетические реакторы».

Подготовлено в рамках Программы создания и развития НИЯУ МИФИ.

Рецензент д-р физ.-мат. наук, проф. Н.В. Щукин

Введение

Создание атомных электростанций с канальными уранграфитовыми реакторами РБМК − национальная особенность развития отечественной энергетики. Основные характеристики энергоустановок выбирались таким образом, чтобы в максимальной степени использовать опыт разработки и сооружения промышленных реакторов, а также возможности машиностроительной промышленности и строительной индустрии. Использование одноконтурной схемы реакторной установки с кипящим теплоносителем позволяло применить освоенное тепломеханическое оборудование при относительно умеренных теплофизических параметрах.

Первый советский промышленный уран-графитовый реактор введен в эксплуатацию в 1948 г., а в 1954-м в Обнинске начал функционировать демонстрационный уран-графитовый водоохлаждаемый реактор первой в мире АЭС электрической мощностью 5 МВт.

Работы над проектом нового реактора РБМК были развернуты в ИАЭ (ныне РНЦ КИ) и НИИ-8 (ныне НИКИЭТ им. Н.А. Доллежа-

ля) в 1964 г.

Идея создания канального кипящего энергетического реактора большой мощности была организационно оформлена в 1965 г. Было принято решение о разработке технического проекта канального кипящего энергетического реактора мощностью 1000 МВт (эл.) по техническому заданию Института атомной энергии им. И.В. Курчатова (заявка на способ выработки электроэнергии и реактор РБМК-1000 с приоритетом от 6 октября 1967 г. была подана сотрудниками ИАЭ). Проект первоначально получил название Б-19), а его конструирование сначала было поручено конструкторскому бюро завода «Большевик».

В 1966 г. по рекомендации НТС министерства работа над техническим проектом реактора большой мощности канального кипящего РБМК-1000 была поручена НИКИЭТ. Постановлением Совета Министров СССР № 800-252 от 29 сентября 1966 г. было принято решение о строительстве Ленинградской АЭС в поселке Сосновый Бор Ленинградской области. В этом постановлении были определены основные разработчики проекта станции и реактора:

кАЭ − научный руководитель проекта; ГСПИ-11 (ВНИПИЭТ) − генеральный проектировщик ЛАЭС; НИИ-8 (НИКИЭТ) − главный конструктор реакторной установки.

На IV Женевской конференции ООН в 1971 г. Советский Союз объявил о решении построить серию реакторов РБМК электрической мощностью 1000 МВт каждый. Первые энергоблоки были введены в эксплуатацию в 1973 и 1975 гг.

ГЛАВА 1. Некоторые аспекты концепции безопасности реакторов РБМК

1.1. Основные принципы физического проектирования

Концепция развития канальных уран-графитовых реакторов, охлаждаемых кипящей водой, основывалась на конструкторских решениях, проверенных практикой эксплуатации промышленных реакторов, и предполагала реализацию особенностей физики РБМК, которые в совокупности должны были обеспечить создание безопасных энергоблоков большой единичной мощности с высоким коэффициентом использования установленной мощности и экономичным топливным циклом.

В числе аргументов в пользу РБМК выдвигались преимущества, обусловленные лучшими физическими характеристиками активной зоны, в первую очередь лучший баланс нейтронов, обусловленный слабым поглощением графита, и возможность достичь глубокого выгорания урана благодаря непрерывным перегрузкам топлива. Расход природного урана на единицу выработанной энергии, в то время считавшийся одним из главных критериев экономичности, оказывался примерно на 25 % ниже, чем в ВВЭР.

От первоначального представления, что физические проблемы РБМК не требуют существенной корректировки развитых методов физических исследований промышленных реакторов, а связаны лишь с использованием в качестве основного конструкционного материала активной зоны циркония вместо алюминия, почти сразу пришлось отказаться. Уже первые оценки нейтронно-физических (и теплофизических) характеристик показали необходимость решения большого круга задач по оптимизации физических параметров реактора и разработки методического и программного обеспечения:

Основными проблемами при определении оптимальных физических характеристик РБМК являются безопасность и экономичность топливного цикла. Ядерная безопасность реактора обеспечивается возможностями контроля и управления реактивностью во всех режимах эксплуатации, что требует определения безопасных диапазонов изменения эффектов и коэффициентов реактивности. Особенно важны физические характеристики, которые обусловливают пассивную безопасность реакторной установки, как в

условиях нормальной эксплуатации, так и в аварийных и переходных режимах. Не менее важны характеристики, обеспечивающие ядерную безопасность, – это эффективность и быстродействие рабочих органов СУЗ, которые обеспечивают заглушение и удержание его в подкритическом состоянии.

Технико-экономические показатели работы реакторной установки также в значительной мере определяются такими физическими характеристиками, как выгорание и нуклидный состав выгружаемого топлива, удельные расходы природного и обогащенного урана и ТВС на единицу выработанной электроэнергии и компоненты баланса нейтронов в активной зоне.

1.2. Основные принципы и критерии обеспечения безопасности

Основным принципом обеспечения безопасности, положенным в основу проекта реакторной установки РБМК-1000, является не превышение установленных доз по внутреннему и внешнему облучению обслуживающего персонала и населения, а также нормативов по содержанию радиоактивных продуктов в окружающей среде при нормальной эксплуатации и рассматриваемых в проекте авариях.

Комплекс технических средств обеспечения безопасности реакторной установки РБМК-1000 осуществляет выполнение функций:

надежного контроля и управления энергораспределением по объему активной зоны;

диагностики состояния активной зоны для своевременной замены потерявших работоспособность конструктивных элементов;

автоматического снижения мощности и останова реактора в аварийных ситуациях;

надежного охлаждения активной зоны при выходе из строя различного оборудования;

аварийного охлаждения активной зоны при разрывах трубопроводов циркуляционного контура, паропроводов и питательных трубопроводов.

обеспечения сохранности конструкций реактора при любых исходных событиях;

оснащения реактора защитными, локализующими, управляющими системами безопасности и отвода выбросов теплоносителя при разгерметизации трубопроводов из реакторных помещений в систему локализации;

обеспечения ремонтопригодности оборудования в процессе эксплуатации реакторной установки и при ликвидации последствий проектных аварий.

В процессе проектирования первых реакторных установок РБМК-1000 был сформирован перечень исходных аварийных событий и проанализированы наиболее неблагоприятные пути их развития. На основе опыта эксплуатации РУ на энергоблоках Ленинградской, Курской и Чернобыльской АЭС и по мере ужесточения требований к безопасности АЭС, которое имеет место

в мировой энергетике вообще, первоначальный перечень исходных событий значительно расширен.

Перечень исходных событий применительно к реакторным установкам РБМК-1000 последних модификаций включает более 30 аварийных ситуаций, которые могут быть разделены на четыре основных принципа:

1) ситуации с изменением реактивности;

2) аварии в системе охлаждения активной зоны;

3) аварии, вызванные разрывом трубопроводов;

4) ситуации с отключением или отказом оборудования.

В проект реакторной установки РБМК-1000 при анализе аварийных ситуаций и разработке средств обеспечения безопасности заложены в соответствии с ОПБ-82 следующие критерии безопасности:

1) в качестве максимальной проектной аварии рассматривается разрыв трубопровода максимального диаметра с беспрепятственным двухсторонним истечением теплоносителя при работе реактора на номинальной мощности;

2) первый проектный предел повреждения твэлов для условий нормальной эксплуатации составляет: 1 % твэлов с дефектами типа газовой неплотности и 0,1 % твэлов с прямым контактом теплоносителя и топлива;

3) второй проектный предел повреждения твэлов при разрывах трубопроводов циркуляционного контура и включении системы аварийного охлаждения устанавливает:

температуру оболочек твэлов − не более 1200 °С;

локальную глубину окисления оболочек твэлов − не более 18 % первоначальной толщины стенки;

долю прореагировавшего циркония − не более 1 % массы оболочек твэлов каналов одного раздаточного коллектора;

4) должна быть обеспечена возможность выгрузки активной зоны и извлекаемость технологического канала из реактора после МПА.

1.3. Достоинства и недостатки канальных уран-графитовых энергетических реакторов

К основным достоинствам канальных энергетических реакторов, подтвержденным более чем 55-летним опытом разработки и эксплуатации их в нашей стране, можно отнести следующие.

Дезинтегрированность конструкции:

отсутствие проблем, связанных с изготовлением, транспортировкой и эксплуатацией корпуса реактора и парогенераторов;

более легкое, по сравнению с корпусными реакторами, протекание аварий при разрывах трубопроводов контура циркуляции теплоносителя;

большой объем теплоносителя в контуре циркуляции.

Непрерывная перегрузка топлива:

малый запас реактивности;

уменьшение продуктов деления, одновременно находящихся

в активной зоне;

возможность раннего обнаружения и выгрузки из реактора ТВС с негерметичными твэлами;

возможность поддержания низкого уровня активности теплоносителя.

Аккумулирование тепла в активной зоне (графитовая кладка):

возможность перетока тепла от каналов обезвоженной петли к каналам, сохранившим охлаждение, при организации «шахматного» расположения каналов различных петель;

уменьшение скорости роста температуры при авариях с обезвоживанием.

Высокий уровень естественной циркуляции теплоносителя, позволяющий длительное время расхолаживать реактор при обесточивании энергоблока.

Возможность получения требуемых нейтронно-физических характеристик активной зоны.

Гибкость топливного цикла:

малое обогащение топлива;

возможность дожигать после регенерации отработанное топливо из реакторов ВВЭР;

возможность наработки широкого спектра изотопов. Недостатки канальных водографитовых реакторов:

сложность организации контроля и управления из-за больших размеров активной зоны;

наличие в активной зоне конструкционных материалов, ухудшающих баланс нейтронов;

сборка реактора на монтаже из отдельных транспортабельных узлов, что приводит к увеличению объема работ в условиях стройплощадки;

разветвленность циркуляционного контура реактора, увеличивающая объем эксплуатационного контроля основного металла и сварных швов и дозозатраты при ремонте и обслуживании;

образование за счет материала графитовой кладки дополнительных отходов при снятии реактора с эксплуатации.

ГЛАВА 2. Конструкция реактора РБМК-1000

2.1. Общее описание конструкции реактора

Реактор РБМК-1000 (рис. 2.1) тепловой мощностью 3200 МВт представляет собой систему, в которой в качестве теплоносителя используется легкая вода, а в качестве топлива − двуокись урана.

Реактор РБМК-1000 − гетерогенный, уран-графитовый, кипящего типа, на тепловых нейтронах предназначен для выработки насыщенного пара давлением 70 кг/см2 . Теплоноситель − кипящая вода. Основные технические характеристики реактора приведены в табл. 2.1.

Рис. 2.1. Разрез блока с реактором РБМК-1000

Комплекс оборудования, включающий в себя ядерный реактор, технические средства, обеспечивающие его работу, устройства вывода из реактора тепловой энергии и преобразования ее в другой вид энергии, как правило, называют ядерной энергетической установкой. Приблизительно 95 % энергии, выделяющейся в результате реакции деления, прямо передается теплоносителю. Около 5 % мощности реактора выделяется в графите от замедления нейтронов и поглощения гамма-квантов.

Реактор состоит из набора вертикальных каналов, вставленных в цилиндрические отверстия графитовых колонн, а также верхней и нижней защитных плит. Легкий цилиндрический корпус (кожух) замыкает полость графитовой кладки.

Кладка состоит из собранных в колонны графитовых блоков квадратного сечения с цилиндрическими отверстиями по оси. Кладка опирается на нижнюю плиту, которая передает вес реактора на бетонную шахту. Топливные каналы и каналы регулирующих стержней проходят через нижние и верхние металлоконструкции.



Общее устройство реактора РБМК-1000

"Сердце" атомной электростанции - реактор, в активной зоне которого поддерживается цепная реакция деления ядер урана. РБМК - канальный водографитовый реактор на медленных (тепловых) нейтронах. Основным теплоносителем в нем является вода, а замедлителем нейтронов - графитовая кладка реактора. Кладка набрана из 2488 вертикальных графитовых колонн, с основанием 250x250 мм и внутренним отверстием диаметром 114 мм. 1661 колонны предназначены для установки в них топливных каналов, 211 - для каналов СУЗ (системы управления и защиты) реактора, а остальные являются боковым отражателем.
Реактор одноконтурный, с кипением теплоносителя в каналах и прямой подачей насыщенного пара в турбины.

Активная зона, ТВЭЛы и топливные кассеты

Топливом в РБМК является двуокись урана-235 U0 2 , степень обогащения топлива по U-235 - 2.0 - 2.4%. Конструктивно топливо находится в тепловыделяющих элементах (ТВЭЛах), представляющих собой стержни из циркониевого сплава, наполненные таблетками спеченной двуокиси урана. Высота ТВЭЛа - примерно 3.5 м, диаметр 13.5 мм. ТВЭЛы упаковываются в тепловыделяюие сборки (ТВС), содержащие по 18 ТВЭЛов каждая. Две соединенные последовательно тепловыделяющие сборки образуют топливную кассету, высота которой составляет 7 м.
Вода подается в каналы снизу, омывает ТВЭЛы и нагревается, причем часть ее при этом превращается в пар. Образующаяся пароводяная смесь отводится из верхней части канала. Для регулирования расхода воды на входе в каждый канал предусмотрены запорно-регулирующие клапаны.
Итого, диаметр активной зоны ~12 м, высота ~7 м. В ней находиться около 200 тонн урана-235.

СУЗ

Стержни СУЗ предназначены для регулирования радиального поля энерговыделения (PC), автоматического регулирования мощности (АР), быстрой остановки реактора (A3) и регулирования высотного поля энерговыделения (УСП), причем стержни УСП длиной 3050 мм выводятся из активной зоны вниз, а все остальные длиной 5120 мм, вверх.
Для контроля за энергораспределением по высоте активной зоны предусмотрено 12 каналов с семисекционными детекторами, которые установлены равномерно в центральной части реактора вне сетки топливных каналов и каналов СУЗ. Контроль за энергораспределением по радиусу активной зоны производится с помощью детекторов, устанавливаемых в центральные трубки ТВС в 117 топливных каналах. На стыках графитовых колонн кладки реактора предусмотрено 20 вертикальных отверстий диаметром 45 мм, в которых устанавливаются трехзонные термометры для контроля за температурой графита.
Управление реактором осуществляется равномерно распределенными по реактору стержнями, содержащими поглощающий нейтроны элемент - бор. Стержни перемещаются индивидуальными сервоприводами в специальных каналах, конструкция которых аналогична технологическим. Стержни имеют собственный водяной контур охлаждения с температурой 40-70°С. Использование стержней различной конструкции обеспечивает возможность регулирования энерговыделения по всему объему реактора и его быстрое заглушение при необходимости.
На стержни АЗ - аварийной зашиты - в РБМК приходится 24 штуки. Стержней автоматического регулирования - 12 штук. Стержней локального автоматического регулирования - 12 штук, стержней ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП).


1. Активная зона 2. Пароводяные трубопроводы 3. Барабан-сепаратор 4. Главные циркуляционные насосы 5. Раздаточные групповые коллекторы 6. Водные трубопроводы 7. Верхняя биологическая защита 8. Разгрузочно-загрузочная машина 9. Нижняя биологическая защита.

Контур многократной принудительной циркуляции

Это контур отвода тепла из активной зоны реактора. Основное движение воды в нем обеспечивается главными циркуляционными насосами (ГЦН). Всего в контуре имеется 8 ГЦН, разделенных на 2 группы. Один насос из каждой группы - резервный. Производительность главного циркуляционного насоса - 8000 м 3 /ч, напор - 200 м водного столба, мощность двигателя - 5,5 МВт, тип насоса - центробежный, подводимое напряжение - 6000 В.


Кроме ГЦН имеются питательные, конденсатные насосы и насосы систем безопасности.

Турбина

В турбине рабочее тело - насыщенный пар расширяясь, совершает работу. Реактор РБМК-1000 питает паром 2 турбины по 500 МВт каждая. В свою очередь, каждая турбина состоит из одного цилиндра высокого давления и четырех цилиндров низкого давления.
На входе в турбину давление около 60 атмосфер - на выходе из турбины пар находится при давлении меньше атмосферного. Расширение пара ведет к тому, что проходное сечения канала, должно увеличиваться для этого высота лопаток по ходу движения пара в турбине возрастает от ступени к ступени. Так как, пар поступает в турбину насыщенным то, расширяясь в турбине, он быстро увлажняется. Предельно допустимая влажность пара обычно не должна превышать 8-12% во избежание интенсивного эрозионного износа лопаточного аппарата каплями воды и снижения КПД.
При достижении предельной влажности весь пар выводится из цилиндра высокого давления и пропускается через сепаратор – пароподогреватель (СПП), где он осушается и нагревается. Для подогрева основного пара до температуры насыщения используется пар первого отбора турбины, для перегрева используется острый пар (пар из барабан-сепаратора), дренаж греющего пара сливается в деаэратор.
После сепаратора – пароподогревателя пар поступает в цилиндр низкого давления. Здесь пар в процессе расширения снова увлажняется до предельно допустимой влажности и поступает в конденсатор (К). Стремление получить от каждого килограмма пара возможно большую работу и тем самым повысить КПД заставляет поддерживать в конденсаторе возможно более глубокий вакуум. В связи с этим конденсатор и большая часть цилиндра низкого давления турбины находятся под разрежением.
Турбина имеет семь отборов пара, первый применяется в сепараторе-пароперегревателе для подогрева основного пара до температуры насыщения, второй отбор используется для подогрева воды в деаэраторе, а отборы 3 – 7 используются для подогрева основного потока конденсата в, соответственно, ПНД-5 - ПНД-1 (подогреватели низкого давления).

Топливные кассеты

К твэлам и ТВС предъявляются высокие требования по надежности в течение всего срока службы. Сложность реализации их усугубляется тем, что длина канала составляет 7000 мм при относительно небольшом его диаметре, и при этом должна быть обеспечена машинная перегрузка кассет как на остановленном, так и на работающем реакторе.
Параметр Размерность Величина
Мощность максимально напряженного канала кВт (тепловых) 3000-3200
Расход теплоносителя через канал при максимальной мощности т/ч 29,5-30,5
Максимальное массовое паросодержание на выходе из кассет % 19,6
Параметры теплоносителя на входе в кассету
Давление кгс/см 2 79,6
Температура °С 265
Параметры теплоносителя на выходе из кассеты:
Давление кгс/см 2 75,3
Температура °С 289,3
Максимальная скорость м/с 18,5
Максимальная температура:
Наружной поверхности оболочки, °С 295
Внутренней поверхности оболочки °С 323

Разгрузочно-загрузочная машина (РЗМ)

Отличительной особенностью РБМК является возможность перезагрузки топливных кассет без остановки реактора при номинальной мощности. Фактически, это штатная операция и производится она практически ежедневно.
Установка машины над соответствующим каналом производится по координатам, а точное наведение на канал с помощью оптико-телевизионной системы, через которую можно наблюдать головку пробки канала, или с помощью контактной системы, в которой возникает сигнал при касании детектора с боковой поверхностью верха стояка канала.
В РЗМ имеется окруженный биологической защитой (контейнером) герметичный пенал-скафандр, снабженный поворотным магазином с четырьмя гнездами для ТВС и других устройств. Скафандр оборудован специальными механизмами для выполнения работ по перегрузке.
При перегрузке топлива скафандр уплотняется по наружной поверхности стояка канала, и в нем создается давление воды, равное давлению теплоносителя в каналах. В таком состоянии разуплотняется запорная пробка, извлекается отработавшая ТВС с подвеской, устанавливается новая ТВС и уплотняется пробка. Во время всех этих операций вода из РЗМ поступает в верхнюю часть канала и, смешиваясь с основным теплоносителем, выводится из канала по отводящему трубопроводу. Таким образом, при перегрузке топлива обеспечивается непрерывная циркуляция теплоносителя через перегружаемый канал, при этом вода из канала не попадает в РЗМ.