Инвертор сварочный на постоянном и переменном токе. Автономный инвертор напряжения. Принцип действия

прошлом основным видом соединения листового и профильного металла являлась клепка. Сварка как процесс существовала в виде кузнечной сварки давлением. Подобный способ сварки применялся еще в Петровские времена на флоте при ковке якорей. Лапы якоря с веретеном сваривались с помощью ручного кузнечного молота. В настоящее время многие желающие имеют в своей домашней или гаражной мастерской современное сварочное устройство. в частном доме снимает массу мелких проблем. С появлением «чуда» сварочного оборудования, преобразователя инверторного типа, научиться варить конструкционные стали, и низколегированные сплавы стало доступным широкому кругу желающих.

Инверторное устройство для сварки постоянным током представляет собой идеальный компактный сварочный аппарат. Высокое качество горения дуги и ее устойчивость обеспечиваются высочайшими показателями качества сварочного тока на выходе инвертора. Многократное преобразование тока в инверторе (переменный ток в постоянны и снова в переменный, плюс изменение частоты) выдает на выходе ток с минимальными пульсирующими характеристиками. Удобное управление, автоматическое отключение при залипании электрода создают большие удобства в работе, особенно для начинающих сварщиков. Хотя и профессионалы отдают предпочтение именно этому типу сварочных аппаратов.

Инвертор сварочный постоянного тока, созданный на принципе преобразования токов высокой частоты, не является сугубо бытовым прибором. На основе мощных устройств конструируются промышленные агрегаты для механизированных способов сварки. Инверторные полуавтоматы для сварки в среде защитных газов способны варить по технологии плавящимся и неплавящимся электродом. Сварка неплавящимся электродом (вольфрамовый наконечник) в среде аргона широко используется для соединения деталей и конструкций из алюминия и высоколегированных сталей (нержавейка).

Сварочные преобразователи инверторного типа можно назвать устройствами нового поколения. Используя в основе работы инверторный принцип многократного преобразования тока, и импульсно резонансный принцип работы с токами высокой частоты, они на несколько шагов опередили устройства, основанные на обычном, силовом преобразовании и диодном выпрямлении переменного тока.

Начав прогресс от кузнечного молота и горнового нагревания детали, устройства для соединения металлических деталей превратились в элегантные электронные сварочные аппараты.

Инверторы представляют собой преобразователи постоянного напряжения в переменное. Основными элементами инверторов (и конверторов тоже) являются коммутационные приборы, которые периодически прерывают ток или меняют его направление. Инверторы классифицируют по типу коммутирующего прибора (транзисторные или тиристорные), по роду преобразуемой величины (инверторы тока или напряжения), по принципу коммутации (автономные или ведомые сетью). Транзисторные инверторы используются при малых мощностях, не превышающих сотни Вт, тиристорные - при больших мощностях и токах, доходящих до сотен ампер.

В преобразовательных установках инверторный режим может чередоваться с выпрямительным режимом, особенно в электроприводах постоянного тока. В двигательном режиме преобразователь работает как выпрямитель, передавая мощность двигателю постоянного тока. При переходе электродвигателя в генераторный режим (спуск груза, движение под уклон и т.п.) преобразователь работает как инвертор, отдавая энергию постоянного тока, генерируемого электрической машиной, в сеть переменного тока. При инвертировании источник постоянного напряжения работает как генератор энергии, характеризующийся тем, что направление этого ЭДС и тока совпадают, а нагрузка переменного тока - как потребитель, у которого ЭДС и ток встречны.

Инверторы, ведомые сетью. На рис.3.41 показана схема однофазного двухполупериодного инвертора с нулевым выводом. Тиристоры отпираются поочередно схемой управления через каждую половину периода a = p, а запирание их происходит вторичным напряжением U 2 трансформатора, создаваемым сетью. Поэтому инвертор называется ведомым. По отношению к E тиристоры включены в прямом направлении. Напряжения U 2-1 , U 2-2 на вторичных обмотках периодически меняют знак, в одну половину периода складываясь с E , а в другую - вычитаясь из него. Энергия передается от инвертора в сеть переменного тока тогда, когда направление тока i 2 и переменного напряжения U 2 противоположны, т.е. когда и U 2 и Е встречны.

Процесс инвертирования возможен только тогда, когда U 2 > Е . В режиме инвертирования U 2 (U 1) и I 2 (I 1) противофазны, что и является показателем передачи энергии в сеть.

При a = 0 (в общем случае при 0 < a < p/2) инвертор может работать как выпрямитель.

Для перевода схемы из режима выпрямления в режим инвертирования необходимо:

1) подключить источник постоянного тока полярностью, обратной режиму выпрямления;

2) обеспечить открывание тиристоров при отрицательной полярности напряжения на полуобмотках U 2-1 , U 2-2 .

Но если очередной тиристор отпирать точно при угле управления a = p, то другой тиристор еще не успеет закрыться, т.к. для закрывания необходимо время, равное t выкл тиристора. Тогда на время t выкл образуется цепь короткого замыкания по цепи: вторичная обмотка - запирающийся тиристор - источник Е . Указанное явление называют срывом инвертирования или опрокидыванием инвертора. Чтобы избежать этого нежелательного процесса необходимо угол регулирования a сделать меньше p на некоторый угол b , называемый углом опережения отпирания - рис.3.42 .

Угол опережения должен быть достаточным для того, чтобы могла совершиться коммутация токов тиристоров (период коммутации γ) и для того, чтобы после коммутации закрывающийся тиристор успел восстановить свои запирающие свойства.

Мощность, отдаваемая в сеть инвертором, может регулироваться 3-мя способами: изменением угла опережения при постоянном Е ; изменением напряжения источника питания Е при постоянном опережении b изменением напряжения переменного тока U 2 .


Автономный инвертор тока показан на рис. 3.43. Источник питания Е работает в режиме источника тока, из-за наличия дросселя L o большой индуктивности. Тиристоры T 1 , T 2 открываются попеременно запускающими импульсами U вх.1 , U вх.2 , поступающими из системы управления.

Открывшись, тиристор T 1 подключает левую на чертеже полуобмотку w 1-1 к источнику питания Е и в ней возникает ток i т1 . Этот ток наводит ЭДС во второй (правой) полуобмотке w 1-2 и во вторичной обмотке w. Конденсатор С к, заряжается до удвоенного значения напряжения питания Е. После поступления входного управляющего импульса U вх.2 тиристор T 2 открывается и напряжение на конденсаторе запирает первый тиристор T 1 . Конденсатор С к, разряжается через первичную обмотку и некоторое время (t выкл) - через оба открытых тиристора. Как только тиристор T 2 закроется, разряд С к, прекращается и начинается его перезарядка до 2Е другой полярностью.

В режиме холостого хода при переключении тиристоров могут возникнуть большие перенапряжения, неблагоприятно сказывающиеся на тиристорах и конденсаторе. Чтобы этого не произошло, применяют усовершенствованную схему с отсекающими диодами.


Широкое применение сварки в промышленности выразилось в бурном развитии конструирования сварочных аппаратов на новых принципах работы. А ведь еще в недалеком


прошлом основным видом соединения листового и профильного металла являлась клепка. Сварка как процесс существовала в виде кузнечной сварки давлением. Подобный способ сварки применялся еще в Петровские времена на флоте при ковке якорей. Лапы якоря с веретеном сваривались с помощью ручного кузнечного молота. В настоящее время многие желающие имеют в своей домашней или гаражной мастерской современное сварочное устройство. в частном доме снимает массу мелких проблем. С появлением «чуда» сварочного оборудования, преобразователя инверторного типа, научиться варить конструкционные стали, и низколегированные сплавы стало доступным широкому кругу желающих.

Инверторное устройство для сварки постоянным током представляет собой идеальный компактный сварочный аппарат. Высокое качество горения дуги и ее устойчивость обеспечиваются высочайшими показателями качества сварочного тока на выходе инвертора. Многократное преобразование тока в инверторе (переменный ток в постоянны и снова в переменный, плюс изменение частоты) выдает на выходе ток с минимальными пульсирующими характеристиками. Удобное управление, автоматическое отключение при залипании электрода создают большие удобства в работе, особенно для начинающих сварщиков. Хотя и профессионалы отдают предпочтение именно этому типу сварочных аппаратов.

Инвертор сварочный постоянного тока, созданный на принципе преобразования токов высокой частоты, не является сугубо бытовым прибором. На основе мощных устройств конструируются промышленные агрегаты для механизированных способов сварки. Инверторные полуавтоматы для сварки в среде защитных газов способны варить по технологии плавящимся и неплавящимся электродом. Сварка неплавящимся электродом (вольфрамовый наконечник) в среде аргона широко используется для соединения деталей и конструкций из алюминия и высоколегированных сталей (нержавейка).

Сварочные преобразователи инверторного типа можно назвать устройствами нового поколения. Используя в основе работы инверторный принцип многократного преобразования тока, и импульсно резонансный принцип работы с токами высокой частоты, они на несколько шагов опередили устройства, основанные на обычном, силовом преобразовании и диодном выпрямлении переменного тока.

Начав прогресс от кузнечного молота и горнового нагревания детали, устройства для соединения металлических деталей превратились в элегантные электронные сварочные аппараты.

Для преобразования постоянного тока в переменный применяют специальные электронные силовые устройства, называемые инверторами. Чаще всего инвертор преобразует постоянное напряжение одной величины в переменное напряжение другой величины.

Таким образом, инвертор - это генератор периодически изменяющегося напряжения, при этом форма напряжения может быть синусоидальной, приближенной к синусоидальной или импульсной . Инверторы применяют как в качестве самостоятельных устройств, так и в составе систем бесперебойного электроснабжения (UPS).

В составе источников бесперебойного питания (ИБП), инверторы позволяют, например, получить непрерывное электроснабжение компьютерных систем, и если в сети напряжение внезапно пропадет, то инвертор мгновенно начнет питать компьютер энергией, получаемой от резервного аккумулятора. По крайней мере, пользователь успеет корректно завершить работу и выключить компьютер.

В более крупных устройствах бесперебойного электроснабжения применяются более мощные инверторы с аккумуляторами значительной емкости, способные автономно питать потребители часами, независимо от сети, а когда сеть снова вернется в нормальное состояние, ИБП автоматически переключит потребители напрямую к сети, а аккумуляторы начнут заряжаться.



Техническая сторона

В современных технологиях преобразования электроэнергии инвертор может выступать лишь промежуточным звеном, где его функция - преобразовать напряжение путем трансформации на высокой частоте (десятки и сотни килогерц). Благо, на сегодняшний день решить такую задачу можно легко, ведь для разработки и конструирования инверторов доступны как полупроводниковые ключи, способные выдерживать токи в сотни ампер, так и магнитопроводы необходимых параметров, и специально разработанные для инверторов электронные микроконтроллеры (включая резонансные).

Требования к инверторам, как и к другим силовым устройствам, включают: высокий КПД, надежность, как можно меньшие габаритные размеры и вес. Также необходимо чтобы инвертор выдерживал допустимый уровень высших гармоник во входном напряжении, и не создавал неприемлемо сильных импульсных помех для потребителей.

В системах с «зелеными» источниками электроэнергии (солнечные батареи, ветряки) для подачи электроэнергии напрямую в общую сеть, применяют Grid-tie – инверторы, способные работать синхронно с промышленной сетью.

В процессе работы инвертора напряжения, источник постоянного напряжения периодически подключается к цепи нагрузки с чередованием полярности, при этом частота подключений и их продолжительность формируется управляющим сигналом, который поступает от контроллера.

Контроллер в инверторе обычно выполняет несколько функций: регулировка выходного напряжения, синхронизация работы полупроводниковых ключей, защита схемы от перегрузки. Принципиально инверторы делятся на: автономные инверторы (инверторы тока и инверторы напряжения) и зависимые инверторы (ведомые сетью, Grid-tie и т.д.)

Схемотехника инверторов

Полупроводниковые ключи инвертора управляются контроллером, имеют обратные шунтирующие диоды. Напряжение на выходе инвертора, в зависимости от текущей мощности нагрузки, регулируется автоматическим изменением ширины импульса в блоке высокочастотного преобразователя, в простейшем случае это .

Полуволны выходного низкочастотного напряжения должны быть симметричными, чтобы цепи нагрузки ни в коем случае не получили значительной постоянной составляющей (для трансформаторов это особенно опасно), для этого ширина импульса НЧ-блока (в простейшем случае) делается постоянной.

В управлении выходными ключами инвертора, применяется алгоритм, обеспечивающий последовательную смену структур силовой цепи: прямая, короткозамкнутая, инверсная.

Так или иначе, величина мгновенной мощности нагрузки на выходе инвертора имеет характер пульсаций с удвоенной частотой, поэтому первичный источник должен допускать такой режим работы, когда через него текут пульсирующие токи, и выдерживать соответствующий уровень помех (на входе инвертора).

Если первые инверторы были исключительно механическими, то сегодня есть множество вариантов схем инверторов на полупроводниковой базе, а типовых схем всего три: мостовая без трансформатора, двухтактная с нулевым выводом трансформатора, мостовая с трансформатором.

Мостовая схема без трансформатора встречается в устройствах бесперебойного питания мощностью от 500 ВА и в автомобильных инверторах. Двухтактная схема с нулевым выводом трансформатора используется в маломощных ИБП (для компьютеров) мощностью до 500 ВА, где напряжение на резервном аккумуляторе составляет 12 или 24 вольта. Мостовая схема с трансформатором применяется в мощных источниках бесперебойного питания (на единицы и десятки кВА).

В инверторах напряжения с прямоугольной формой на выходе, группа ключей с обратными диодами коммутируется так, чтобы получить на нагрузке переменное напряжение и обеспечить контролируемый режим циркуляции в цепи .

За пропорциональность выходного напряжения отвечают: относительная длительность управляющих импульсов либо сдвиг фаз между сигналами управления группами ключей. В неконтролируемом режиме циркуляции реактивной энергии, потребитель влияет на форму и величину напряжения на выходе инвертора.



В инверторах напряжения со ступенчатой формой на выходе, предварительный высокочастотный преобразователь формирует однополярную ступенчатую кривую напряжения, грубо приближенную по своей форме к синусоиде, период которой равен половине периода выходного напряжения. Затем мостовая НЧ-схема превращает однополярную ступенчатую кривую в две половинки разнополярной кривой, грубо напоминающей по форме синусоиду.

В инверторах напряжения с синусоидальной (или почти синусоидальной) формой на выходе, предварительный высокочастотный преобразователь генерирует постоянное напряжение близкое по величине к амплитуде будущей синусоиды на выходе.

После этого мостовая схема формирует из постоянного напряжения переменное низкой частоты, путем многократной ШИМ, когда каждая пара транзисторов на каждом полупериоде формирования выходной синусоиды открывается несколько раз на время, изменяющееся по гармоническому закону. Затем НЧ-фильтр выделяет из полученной формы синус.



Простейшие схемы предварительного высокочастотного преобразования в инверторах являются автогенераторными. Они довольно просты в плане технической реализации и достаточно эффективны на малых мощностях (до 10-20 Вт) для питания нагрузок не критичных к процессу подачи энергии. Частота автогенераторов не более 10 кГц.

Положительная обратная связь в таких устройствах получается от насыщения магнитопровода трансформатора. Но для мощных инверторов такие схемы не приемлемы, поскольку потери в ключах возрастают, и КПД получается в итоге низким. Тем более, любое КЗ на выходе срывает автоколебания.

Более качественные схемы предварительных высокочастотных преобразователей - это обратноходовые (до 150 Вт), двухтактные (до 500 Вт), полумостовые и мостовые (более 500 Вт) на ШИМ контроллерах, где частота преобразования достигает сотен килогерц.

Типы инверторов, режимы работы

Однофазные инверторы напряжения подразделяются на две группы: с чистым синусом на выходе и с модифицированной синусоидой. Большинство современных приборов допускают упрощенную форму сетевого сигнала (модифицированную синусоиду).

Чистая же синусоида важна для приборов, у которых на входе есть электродвигатель или трансформатор, либо если это специальное устройство, работающее только с чистой синусоидой на входе.

Трёхфазные инверторы обычно используются для создания трёхфазного тока для электродвигателей, например, для питания . При этом обмотки двигателя непосредственно подключаются к выходу инвертора. По мощности инвертор выбирают исходя из пикового значения оной для потребителя.

Вообще, существует три рабочих режима инвертора: пусковой, длительный и режим перегрузки. В пусковом режиме (заряд емкости, пуск холодильника) мощность может на долю секунды двукратно превысить номинал инвертора, это допустимо для большинства моделей. Длительный режим - соответствующий номиналу инвертора. Режим перегрузки - когда мощность потребителя в 1,3 раза превышает номинал - в таком режиме средний инвертор может работать примерно полчаса.