Первичная и вторичная цепи силового трансформатора. Электрические машины

Во время рассмотрения открытия электромагнитной индукции мы обращались к опытам Фарадея. На один сердечник были намотаны две катушки: одна сверху другой, при этом внутренняя катушка оказывалась в магнитном поле внешней катушки (рис. 1.). Это и был первый шаг на пути создания трансформатора.

Схема трансформатора впервые появилась в работах Фарадея и Джозефа Генри. Однако ни один учёный не отмечал в возможностях изменение напряжений и тока - трансформирование переменного тока.

30 ноября 1876 г. считается датой рождения первого трансформатора. В этот день П. Н. Яблочков (рис. 2) получил патент на изобретение данного устройства. После этого возник научный интерес к изучению переменного тока. И, как следствие, возник интерес к изучению металлических, неметаллических, магнитных материалов и созданию о них теорий.

Рассмотрим некоторые основы теории трансформаторов. - это техническое устройство, предназначенное для преобразования переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз. Любой трансформатор (рис. 3) состоит из системы катушек и сердечника.

Рис. 4. Схема трансформатора ()

Базовый принцип действия трансформатора (рис. 4) состоит в том, что в основе его работы лежит явление электромагнитной индукции. Одну из катушек - первичную - подключают к источнику переменного тока. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток, пронизывающий сердечник - магнитопровод. Изменяющийся в сердечнике магнитный поток создаёт ЭДС индукции во второй катушке. Эта ЭДС индукции создаёт во вторичной обмотке переменный ток.

На рис. 5 приведена принципиальная схема трансформатора. Так трансформатор обозначается следующим образом: центральная широкая линия соответствует сердечнику, первичная обмотка, обычно слева, и вторичная обмотка - справа, число полуокружностей в очень грубом приближении символизирует число витков в обмотке.

Существует два режима работы трансформатора. Рассмотрим ситуацию, при которой вторичная обмотка не замкнута на нагрузку потребителя. Такой режим работы называется холостой ход . При пропускании переменного тока через первичную обмотку в сердечнике возникает переменный магнитный поток. Сердечник устроен таким образом, чтобы магнитный поток полностью оставался внутри этого сердечника. Мгновенное значение ЭДС индукции в любом витке будет равно первой производной магнитного потока со знаком минус.

Если поток меняется по гармоническому закону, то и ЭДС индукции будет меняться по гармоническому закону, но со сдвигом фазы 90°.

(2)

(3)

В первичной обмотке с числом витков N 1 полная ЭДС индукции будет равна произведению мгновенного значения ЭДС на число витков в этой обмотке.

Во вторичной обмотке суммарное значение ЭДС также будет равно произведению мгновенного значения ЭДС на число витков во вторичной обмотке.

Отношение ЭДС в первичной обмотке к ЭДС в вторичной обмотке равно отношению числа витков в первичной и вторичной обмотках.

Поскольку обычно электрическое сопротивление обмоток трансформатора - достаточно малая величина, которой можно пренебречь, то модуль напряжения на зажимах первичной катушки приблизительно равен ЭДС индукции первичной катушки.

При холостом ходе вторичная обмотка не замкнута - ток в ней не протекает, следовательно, напряжение между зажимами вторичной обмотки равно ЭДС индукции в этой обмотке.

Мгновенные значения ЭДС в обеих обмотках изменяются синфазно: одновременно достигают максимума, минимума и проходят через ноль. Следовательно, отношение ЭДС в обеих обмотках можно заменить на отношение двух действующих напряжений в них. Так, для двух катушек трансформатора отношение числа витков - величина постоянная - коэффициент трансформации (K ) .

Если K > 1, напряжение на зажимах вторичной катушки меньше, чем напряжение на зажимах первичной, а трансформатор с таким коэффициентом - понижающий . Если K < 1, напряжение на зажимах вторичной обмотки больше, чем напряжение на зажимах первичной обмотки, и трансформатор - повышающий .

В режиме холостого хода, когда вторичная обмотка не подключена к нагрузке, ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение, подаваемое от источника, и при этом ток в первичной обмотке крайне маленький. В режиме холостого хода ток в первичной обмотке характеризует величину потерь в сердечнике. При этом мощность потерь можно вычислить путём умножения тока холостого хода на напряжение, подаваемое от источника.

Рассмотрим теперь второй режим работы трансформатора - режим с нагрузкой . В этом режиме вторичная обмотка подведена к нагрузке потребителя. При подключении нагрузки во вторичной обмотке возникает электрический ток, который своим магнитным полем препятствует изменению магнитного потока в первичной обмотке. В результате, в первичной обмотке нарушается равенство ЭДС индукции и ЭДС источника. Как следствие, в первичной обмотке начинает возрастать электрический ток. Возрастает он до тех пор, пока магнитный поток не достигнет практически прежнего значения. Увеличение тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии - потери энергии в катушке, присоединённой ко вторичной обмотке, компенсируются потреблением от источника питания точно такой же энергии. Мощность первичной цепи при нагрузке трансформатора приблизительно равна мощности во вторичной цепи.

Получим, что отношение напряжений на катушках трансформатора приблизительно равно обратному отношению токов в этих катушках:

Таким образом, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем ток.

Известно, что для создания трансформаторов необходимо хорошо знать свойства материалов. На сегодня потери в некоторых трансформаторах составляют 2-3% от мощности источника. В крупных силовых трансформаторах эти потери могут иметь большие значения, и для их работы используют мощные системы охлаждения.

Итоги

1. Трансформаторы - это технические устройства, работающие на явлении электромагнитной индукции и состоящие из нескольких катушек, намотанных на общий сердечник. Трансформаторы предназначены для повышения или понижения напряжения, подаваемого на первичную обмотку.

2. В режиме холостого хода отношение действующих на зажимах катушек напряжений равно отношению числа витков в первичной и вторичной обмотках. Это отношение является числом, постоянным для данного трансформатора, и называется коэффициентом трансформации.

3. В режиме работы с нагрузкой мощности токов в обеих катушках приблизительно равны, и отношение действующих напряжений на зажимах катушек равно обратному отношению токов в этих катушках.

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
  1. Фестиваль педагогических наук ().
  2. Классная физика ().
  3. Radio-hoby.org ().
  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл., §35, ст. 130, в.1-5.
  2. В первичной обмотке трансформатора - 200 витков, а во вторичной - 25 витков. Повышает или понижает напряжение этот трансформатор? Во сколько раз?
  3. Сила тока в первичной обмотке понижающего трансформатора с коэффициентом трансформации 5,5 равна 5 А, а напряжение - 220 В. Найдите силу тока и напряжение во вторичной обмотке.
  4. * На первичную обмотку понижающего трансформатора с коэффициентом трансформации 20 подано напряжение 220 В. Во вторичной обмотке, сопротивление которой 1,5 Ом, сила тока равна 2 А. Каково напряжение на выходе трансформатора, если потерями в первичной обмотке можно пренебречь?

Трансформатор – статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный токдругого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Устройство и принцип работы

Схема однофазного двухобмоточного трансформатора представлена ниже.

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i 1 -ток, u 1 -напряжение, n 1 -число витков,Ф 1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины - вторичными.

Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e 1 = -n 1 dФ/dt, e 2 = -n 2 dФ/dt. При синусоидальном изменении магнитного потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока. Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

При любом изменении магнитного потока, сцепленного с каким-либо витком, в этом витке индуктируется э. д. с., равная по величине и обратная по знаку изменению магнитного потока во времени. Обмотки трансформатора имеют обычно большое число витков. В каждом витке первичной и вторичной обмоток индуктируется одинаковая э. д. с., так как все витки этих обмоток сцеплены с одним и тем же магнитным потоком. Таким образом, э. д. с. каждой обмотки равна сумме э, д. с. всех ее витков, т. е. Произведению числа витков на э. д. с., индуктированную в одном витке.

Если w1 - число витков первичной, а w2 - число витков вторичной обмотки трансформатора, то действующие значения э. д. с. этих обмоток равны:

В этих формулах магнитный поток выражен в максвеллах (мкс).

При работе трансформаторов падения напряжения в сопротивлениях их обмоток обычно очень малы, и можно считать, что напряжение первичной обмотки U1 равно её эдс Е1, а напряжение вторичной обмотки U2, равно её эдс E2, т. е.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода. В этом случае i 2 = 0, а u 2 =E 2 , ток i 1 мал и мало падение напряжения в первичной обмотке, поэтому u 1 ≈E 1 и отношение ЭДС можно заменить отношением напряжений u 1 /u 2 = n 1 /n 2 = E 1 /E 2 = k. Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P 2 /P 1 .

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0,5 или 0,35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым.

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением. Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду. При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками. Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.

Добавить сайт в закладки

В первом приближении воздействие вторичного тока i2 на первичную цепь трансформатора можно описать следующим образом.

Ток i2, проходя по вторичной обмотке, стремится создать в сердечнике трансформатора магнитный поток, определяемый намагничивающей силой (НС) i2w2. Согласно принципу Ленца, этот поток должен иметь направление, обратное направлению главного потока. Иначе можно сказать, что вторичный ток стре­мится ослабить индуктирующий его магнитный поток. Однако такое уменьшение главного магнитного потока Ф т нарушило бы электрическое равновесие:

u 1 = (-е 1) + i1r1,

так как e1 пропорционально магнитному потоку.

Создается пре­обладание первичного напряжения U1, поэтому одновременно с появлением вторичного тока увеличивается первичный ток, при­том настолько, чтобы компенсировать размагничивающее дей­ствие вторичного тока и, таким образом, сохранить электрическое равновесие. Следовательно, всякое изменение вторичного тока должно вызвать соответствующее изменение первичного тока, при этом ток вторичной обмотки, благодаря относительно малому значению составляющей i1r1, почти не влияет на амплитуду и характер изменений во времени главного магнитно­го потока трансформатора. Поэтому амплитуду этого по­тока Ф т можно считать практически постоянной. Такое постоян­ство Фт характерно для режима трансформатора, у которого поддерживается неизменным напряжение U1, приложенное к зажимам первичной обмотки.

4.1 Устройство и принцип действия трансформатора

Трансформаторами называют устройства, предназначенные для преобразования напряжения или тока (рис.28). Ценность такого устройства определяется чрезвычайно широким диапазоном ситуаций, в которых оно используется. Благодаря трансформаторам электрическая энергия приобретает такие формы, параметры и свойства, которые наиболее востребованы и удобны для конкретных приложений. Следует, однако, помнить, что трансформаторы могут работать только в цепях переменного тока и их включение в цепи постоянного тока даже небольшого напряжения может вывести их из строя.

Простейший (по демонстрации принципа действия, но не по конструкции) трансформатор состоит из трех элементов или узлов: 1) первичная обмотка; 2) магнитопровод; 3) вторичная обмотка (рис.29)


Электрически обе обмотки трансформатора изолированы как друг от друга, так и от магнитопровода. Последний представляет себой массивный ферромагнитный сердечник, создающий между обмотками м а г н и т н у ю связь. Электрическая энергия, поступающая в первичную обмотку, преобразуется ею в магнитную, которая по магнитопроводу передается во вторичную обмотку с последующим преобразованием снова в электрическую энергию, но уже вторичной обмотки. Часть энергии в процессе преобразования теряется в трансформаторе, вызывая его нагрев. Отношении доли переданной энергии к взятой от первичного источника определяет КПД трансформатора и вычисляется по формуле , где W 1 - энергия, поступившая на первичную обмотку; W 2 - энергия, поступившая потребителю со вторичной обмотки.

КПД современных трансформаторов достигает 99%, что свидетельствует о чрезвычайной эффективности этих устройств в качестве передатчиков электроэнергии.

Принцип действия трансформатора основан на законе электромагнитной индукции (ЭМИ). Напомним, что по физическому смыслу он представляет собой явление порождения переменным магнитным полем вихревого электрического поля. Математически, этот закон дается известной формулой для ЭДС вихревого электрического поля:

где ΔФ – изменение магнитного потока за время Δt. Следовательно, по модулю, ЭДС равна скорости изменения магнитного потока. Это, в свою очередь, означает наличие сдвига фаз между Ф и е на 90 0 (этот факт справедлив для любой величины и ее скорости). Знак минус означает, что ЭДС о т с т а е т по фазе от магнитного потока. Сама ЭДС, физически, возникает на любом витке обхватывающем изменяющееся магнитное поле (на рис.30 - на 3-х витках), а ее направление зависит от нарастания или убывания магнитного поля.

Рассмотрим, как же работает трансформатор .


При подаче переменного напряжения на первичную обмотку в ней возникает переменный ток. В свою очередь, переменный ток создает вокруг себя переменное магнитное поле. Поскольку, технологически, первичная обмотка представляет собой катушку, то ее магнитное поле сконцентрировано внутри нее (за ее пределами магнитные поля разли-чных участков витков вычитаются). Сла-

бое магнитное поле первичной обмотки, попадая в проходящий через нее магнитопровод многократно (в сотни и тысячи раз) усиливается его собственным магнитным полем и замыкается через его контур. В результате по магнитопроводу начинает циркулировать значительный переменный магнитный поток Ф. В соответствии с законом ЭМИ в любом сечении магнитопровода возникает вихревая ЭДС. Эта ЭДС возникает всюду в окружающем пространстве и попадает как в первичную обмотку, во вторичную, так и в магнитопровод.

В первичной обмотке она оказывается полностью противофазной сетевому напряжению, поскольку, как уже говорилось в предыдущих разделах, ток в обмотке отстает от напряжения на 90 0 , а ЭДС вихревого поля, в свою очередь отстает от тока (или что то же самое - от магнитного потока) еще на 90 0 . В результате в первичной обмотке встечаются д в а электрических поля, направленные встречно друг другу. Итогом этого противостояния является малая величина входного тока (при холостом режиме) и большое индуктивное сопротивление обмотки. Кроме того, все катушки и обмотки делаются, как правило, из меди, обладающей очень малым омическим сопротивлением. Отсюда следует важный количественный факт - падение напряжения(u ) на каждом витке происходит только за счет вихревой ЭДС и, стало быть, оно численно равно этой ЭДС:

Здесь учтено, что напряжение на первичной обмотке равномерно распределено на ее витках, вследствие равномерности магнитного потока вдоль магнитопровода.

В магнитопроводе ЭДС вихревого электрического поля создает по всему его сечению вихревые токи (токи Фуко ), которые, если не принять никаких мер, сильно понижают КПД трансформатора и вызвают значительный разогрев и даже перегрев магнитопровода. Для создания сопротивления таким токам, его собирают из тонких пластин, покрытых изоляционным лаком. Это позволяет резко снизить тепловое рассеяние электромагнитной энергии и повысить КПД. Наконец, во вторичной обмотке, вихревое электрическое поле наводит в каждом витке свою ЭДС , которая, складываясь на всех витках, выходит на ее клеммы в виде напряжения , где N 2 – число ее витков.

Поскольку саму ЭДС вихревого поля мы выразили через падение сетевого напряжения на первичной обмотке , то сделав в последней формуле соответствующую замену, приходим к о с н о в н о й ф о р м у л е трансформатора:

Из нее следует, что при изменении соотношения между количеством витков на вторичной и первичной обмотках, мы можем менять соотношение между их напряжениями. А именно: если N 2 < N 1 , то U 2 < U 1 - напряжение на вторичной обмотке оказывается пониженным; если N 2 > N 1 , то U 2 > U 1 - то повышенным. В первом случае мы получаем понижающий трансформатор, во втором - повышающий

Для определения степени трансформации напряжения вводится к о э ф ф и ц и е н т т р а н с ф о р м а ц и и k:

Коэффицент трансформации, наряду со значениями напряжений обмоток, номинальной мощностью и КПД является важным технологическим параметром трансформатора.

4.2 Режимы работы трансформатора

Так как в рассмотренной классической конструкции трансформатора имеются две обмотки, одна из которых замкнута на первичный источник, а вторая свободна, то возможны два режима его работы: а) вторичная обмотка разомкнута - режим холостого хода ; б) вторичная обмотка замкнута на потребителя - рабочий режим . Эти режимы имеют существенное различие, так как во втором случае в магнитопроводе возникает дополнительное магнитное поле от вторичной обмотки, которое влияет на все электрические параметры трансформатора. Поэтому эти режимы работы рассматриваются по отдельности.

Здесь необходимо отметить следующее: поскольку на электрические процессы в трансформаторе влияют многие факторы, их точный учет на причино-следственном уровне с помощью качественного описания оказывается затруднительным. Поэтому проще понять процессы, происходящие в трансформаторе, через абстрактные понятия. В частности, - через векторные диаграммы.

На схеме внизу(рис.31) дана векторная диаграмма всех параметров тран-сформаторов в режиме холостого хода. Как и всякая сложная диаграмма, для ее построения необходимы математические уравнения, связывающие между собой все изображенные параметры. Для трансформатора в режиме холостого хода они получаются из законавторого закона Кирхгофа:

1) для первичной обмотки

2) для вторичной обмотки

Рассмотрим ход построения такой диаграм-мы для режима холостого хода - с одно-временным выяснением физического смысла всех отраженных на ней параметров.

Порядок построениия следующий:

1) откладываем горизонтально вектора тока холостого хода I 1Х и магнитного потока Ф m в магнитопроводе - параллельно друг другу. В вакууме они в с е г д а колеблются в одной фазе; в магнитопроводе, вследствие явления гистерезиса (рассогласования магнитного поля тока и железа) возможна небольшая расфазировка, которой в данном случае пренебрежем)

2) откладываем с отставанием на 90 градусов (вниз) два вектора ЭДС вихревого эл.поля ЭМИ - Е 1 и Е 2 . Е 1 представляет собой ЭДС в первичной обмотке, Е 2 - во вторичной. Очевидно, что вследствие различия числа витков в обмотках, эти ЭДС не совпадают по величине и откладываются разными по длине.

3) откладываем вектор - Е 1 в сторону, противоположную Е 1 . Его необходимость следует из уравнения для напряжения первичной обмотки. Действительно, из закона Ома следует, что напряжению сети противостоит ЭДС ЭМИ Е 1 (отсюда знак «минус»), омическое сопротивление первичной обмотки R 1 (создает падение напряжения I 1 X R 1) и индуктивное сопротивление, х 1 , той части магнитного поля, которое замыкается на себя минуя магнитопровод(по воздуху).

4) откладываем от конца вектора (- Е 1) вектор I 1 X R 1 - он должен быть параллелен току, так как напряжение на резисторе всегда совпадает по фазе с током.

5) откладываем от конца вектора I 1 X r 1 вектор I 1 X х 1 - он должен быть перпендикулярен току, так как напряжение на индуктивном сопротивлении всегда опережает по фазе токе на 90 0

6) соединяем начало вектора - Е 1 с концом вектора I 1 X X 1 - полученный вектор будет представлять сумму векторов , т.е. вектор U 1 .

Из построенной диаграммы видно, что в точном представлении, сетевое напряжение превышает противоэдс ЭМИ. Однако в реальных трансформаторах эта разница составляет не более 2-5% из-за малости омического и индуктивного сопротивлений первичной обмотки. Напряжение же на разомкнутой вторичной обмотке в точности равно Е 2 . Поэтому с достаточной степенью точности можно написать:

Для построения векторной диаграммы в рабочем режиме также необходимо составить соответствующие уравнения. Они будут отличаются от уравнений в холостом режиме видом уравнения для вторичной обмотки. Последнее также получается из второго законаКирхгофа и имеет вид . Видно, что напряжение на вторичной обмотке (U 2 ) уменьшается, по сравнению с напряжением U 2 при холостом ходе, на величину падения напряжения в ее активном и индуктивном сопротивлениях.

Таким образом для построения диаграммы используются следующие уравнения:

Данные уравнения усложняют процесс построения диаграмм и, чтобы упростить его, пренебрежем внутренними сопротивлениями обмоток. Тогда уравнения примут совсем простой вид:

Из такого вида уравнений сразу следует, что никаких выводов о поведении токов в первичной и вторичной обмотках сделать невозможно.

В действительности эти токи оказываются тесно связанными по следующим причинам. Во-первых, из первого уравнения следует, что как и при холостом ходе, ЭДС вихревого поля должна быть равна и противоположна по фазе сетевому напряжению. Так как напряжение сети (первичного исто-чника) является заданным и не зависит от режима работы трансформатора, то магнитный поток в магнитопроводе трансформаторав рабочем режиме должен равняться магнитному потоку при холостом режиме . Между тем, в рабочем режиме, в магнитопроводе циркулируют уже не одно а д в а магнитных поля - рабочий ток вторичной обмотки создает свое магнитное поле.

Во-вторых, согласно правилу Ленца ток вторичной обмотки должен «..иметь такое направление, что созданное им магнитное поле стремится скомпенсировать изменение внешнего магнитного поля». Другими словами, магнитное поле вторичной обмотки должно быть направлено встречно магнитному полю первичной обмотки . Это позволяет записать общее урав-нение для магнитных потоков в магнитопроводе – как векторов(!) - в виде:

а с учетом противофазного характера (в модульном виде) как:

Здесь Ф 0 - магнитный поток в трансформаторе, создаваемый первичной обмоткой при холостом режиме; Ф 1 - магнитный поток первичной обмотки в рабочем режиме; Ф 2 - магнитный поток вторичной обмотки.

Смысл последнего уравнения можно пояснить следующим примером. Предположим в режиме холостого хода магнитный поток магнитопровода составлял 20 условных единиц (Ф 0 = 20). Тогда если рабочий ток вторичной обмотки создаст магнитный поток в 40 у.е. (Ф 2 = 40), то магнитный поток первичной обмотки должен увеличиться до Ф 1 = Ф 0 + Ф 2 = 40 + 20 = 60 и уменьшить общий магнитный поток снова до 20. Это означает, что между токами первичной и вторичной обмоток возникает магнитная связь, причем такая, что рост тока во вторично обмотке влечет рост тока в первичной обмотке.

Математическую связь между токами можно установить на основе фундаментального закона теории магнетизма - закона полного тока. Согласно этому закону « .. циркуляция напряженности магнитного поля вдоль замкнутого контура равна алгебраической сумме токов, пересекающих данный контур. В адаптированном варианте для магнитных цепей с магнитопроводами, его формулируют в виде у р а в н е н и я м а г н и т н о й ц е п и:

Здесь R М - магнитное сопротивление магнитопровода трансформатора; N – число витков с током, обхватывающих магнитопровод; I – сила тока в каждом витке; Ф – магнитный поток в магнитопроводе. ИЗ формулы следует, что:

или, подставляя его в уравнение для магнитных потоков , получим:

или сокращая на R М и деля все на N 1:

Последнее уравнение устанавливает искомую связь между рабочими токами в первичной и вторичной обмотке и позволяет построить векторну диаграмму рабочего режима в упрощенном виде. Предварительно перепишем его в виде:

и заметим попутно, что в силу малости тока холостого хода, вторым членом в правой части уравнения можно пренебречь; тогда связь между токами в первичной и вторичной обмотками станет особенно отчетливой, т.к. для модулей справедливо равенство , т.е. чем больше ток во вторичной обмотке, тем больше ток в первичной.

Диаграмму строим в следующем порядке:

1) откладываем ток (I 10 ) и магнитный поток (Ф 0 ) режима холостого хода;

2) откладываем вниз ЭДС первичной (Е 1 ) и вторичной обмотки(Е 2 ); их величины оп-ределяются по величине Ф 0 , N 1 , N 2 ; т.к. ЭДС первичной обмотки меньше, чем вто-ричной, то k <1 и трансформатор повышаю-щий;

3) откладываем ток вторичной обмотки (I 2 ) - в произвольном направлении (его направ-ление зависит от характера нагрузки);

4) в соответствии с уравнением токов в конец вектора тока холостого хода (I 10 ) откладываем вектор (-I 2 /k ) и строим сум-марный векторI 1 ; вектор(-I 2 /k ) будет больше вектора токаI 2 ;

5) откладываем вектор U 1 =- E 1 противоположно вектору E 1 .