Что характеризует кпд электродвигателя. Кпд электродвигателей и что влияет на его значение

В электродвигателе при преобразовании электрической энергии в механическую часть энергии теряется в виде тепла, которое сразу рассеивается в различных частях мотора и частично – в окружающей среде. Все потери делятся на три вида: механические, обмоточные и потери в стали. Причем существуют еще и добавочные потери.

Расчет потерь в электрическом двигателе

  • Для расчета потерь в электродвигателе используют специальные формулы. На диаграммах можно заметить, что часть мощности, которая подается к статору из электросети, передается на ротор через зазор. Рэм – это электромагнитная мощность.
  • Потери мощности непосредственно в статоре – это слагаемое потерь на вихревые токи и на частичное перемагничивание сердечника самого статора. Если рассматривать потери в стали, они настолько незначительные, что редко принимаются во внимание. Объяснить такое можно достаточно просто. Скорость вращения самого статора электродвигателя значительно выше скорости, создаваемой магнитным потоком. Так происходит только в том случае, если скорость вращения ротора полностью соответствует техническим характеристикам электромотора, заявленным производителем.
  • Механическая мощность на валу ротора, как правило, меньше мощности Рэм ровно на количество потерь в обмотке. Механические потери в основном приходятся на определенное трение в подшипниках, а также на трение щеток, что характерно для электродвигателей с фазными роторами и на трение вращающихся частей, встречающих воздушную преграду.
  • Добавочные потери в асинхронных электродвигателях обусловлены наличием зубчатости статора и ротора, вихревых потоков в разных узлах электродвигателя и иными потерями. При расчете такие потери уменьшают КПД электродвигателя на половину процента от номинальной мощности.

КПД электродвигателя в расчетах

Коэффициент полезного действия асинхронного электродвигателя уменьшается на суммарность потерь мощности, которые рассчитываются по формуле. Общая же сумма потерь напрямую зависит от нагрузки электродвигателя. Чем выше нагрузка, тем больше потерь и меньше КПД.

Конструирование асинхронного электродвигателя производится с учетом всех потерь при максимальной нагрузке. Поэтому данный диапазон может быть достаточно широким. Большинство асинхронных электромоторов имеет коэффициент полезного действия 80-90%. Мощные моторы выпускают с КПД от 90 до 96%.

Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.

Магнитные потери мощности

При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.

Механические и электрические потери

Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта. Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.

Добавочные потери

Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.

КПД и его зависимость от нагрузки

Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности. Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности.

КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности. Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.

Разработан электродвигатель нового типа , обладающий значительно более высокой эффективностью, чем выпускающиеся сейчас. С возбуждением, от электромагнитов , или от постоянных магнитов . Вариантов конструктивного исполнения может быть много.

Все находится в полном соответствии с известными законами физики и законами сохранения энергии. Дело в том, что в известных электродвигателях только очень малая часть потребляемой мощности используется для создания работы, а основная часть тратится на преодоление так называемой обратной(или генераторной) ЭДС, возникающей согласно закону Ленца во вращающемся роторе. Во всех руководствах по электротехнике утверждается, что КПД электродвигателя может достигать 80-98%, но проведя необходимые исследования, я убедился, что это не так, а истинный КПД электродвигателя не превышает 5-10%, поэтому имеются огромные резервы для его увеличения, и соответственно улучшения экономичности электродвигателя во много раз.

С тех пор, как в 1821 году Эрстед продемонстрировал возникновение магнитного поля вокруг проводника с током, электротехника начала стремительно развиваться.

Уже через несколько лет были установлены основные законы электротехники, созданы мощные электромагниты , а также первые электродвигатели. Но удивительное дело: электромагниты , создающие большую статическую силу магнитного взаимодействия и потребляющие при этом небольшую мощность, при работе электродвигателя , когда ротор начинал вращаться, теряли свою силу и требовали увеличения напряжения, а следовательно и мощности для того, чтобы электродвигатель мог совершать механическую работу.

Правильное объяснение этому явлению дал русский физик Ленц. Сейчас это явление можно кратко назвать противоЭДС.

Суть этого явления в том, что при движении относительно друг друга проводников с током или магнита и проводника с током, в проводнике возникает напряжение, которое всегда направлено встречно питающему обмотку двигателя , поэтому и приходится, для поддержания мощности двигателя , увеличивать напряжение его питания. Получается странная картина: с одной стороны - мощное магнитное поле и огромная сила взаимодействия катушек с ферромагнитными сердечниками друг с другом, при малой потребляемой мощности, а с другой, при относительно медленном движении катушек относительно друг друга уже требуется значительно увеличивать напряжения питания для поддержания силы магнитного взаимодействия. Поэтому возникла мысль, что если удастся найти способ нейтрализовать влияние закона Ленца в электродвигателе, то можно получить огромный выигрыш в получаемой механической мощности, относительно затраченной электрической. В результате проведенных исследований были теоретически найдены и подтверждены опытным путем несколько частных случаев, когда закон Ленца не оказывает своего влияния на процессы, происходящие в электродвигателе, или значительно ослабляется. Это дает возможность создавать электродвигатели, которые способны на единицу затраченной электрической мощности, произвести от двух до десяти и больше единиц механической работы. При этом все остается в полном соответствии с любыми известными законами физики! Я не могу открыто говорить о конструктивных особенностях подобных двигателей, скажу только, что основные варианты мало отличаются от уже известных конструкций. Другие варианты совершенно не похожи на любые известные электродвигатели. Я даже не ожидал, что задача имеет такое множество решений! А взяться за решение подобной задачи меня побудила заметка, что около 50-и лет назад, в СССР, один умелец ездил на автомобиле "Москвич" с электромотором целый день, на энергии обычного автомобильного аккумулятора. Я сразу подумал о том, что его электромотор потреблял значительно меньшую мощность, чем развиваемая механическая и принял за аксиому, что раз было возможно тогда, то возможно и сейчас.

Сравнение электродвигателя без противоЭДС с обычным, по мощности потребления

Для простоты анализа возьмем любой коллекторный или вентильный двигатель . Он состоит из ротора и статора. Обмотки возбуждения могут быть как на роторе со статором, так и только на одном роторе или статоре (если используются постоянные магниты возбуждения). При подаче напряжения на двигатель , ротор и статор начинают двигаться относительно друг друга, при этом в обмотках якоря или статора (если ротор возбуждается постоянными магнитами ), индуцируется ЭДС, направленная всегда против напряжения внешнего источника питания. По мере увеличения числа оборотов ротора (действительной или кажущейся линейной скорости движения проводника относительно магнитного поля возбуждения) ток в обмотках под действием этой ЭДС уменьшается, соответственно уменьшается, и вращающий момент. Для его увеличения приходится повышать напряжение (мощность) питания электродвигателя . В современных электродвигателях практически вся мощность, подводимая для питания, расходуется на преодоление противодействующей ЭДС.

Например, серийный электродвигатель постоянного тока типа 4ПН 200S имеет следующие характеристики: мощность 60 кВт; напряжение 440 В; ток 149 А; частота вращения 3150/3500 об/мин; кпд 90,5%; длина статора 377 мм; диаметр ротора 250 мм, напряжение потерь 41,8 В; напряжение на преодоление индуцированной ЭДС 398,2 В; мощность на преодоление потерь 6228 Вт; вращающий момент (3500 об/мин) 164,6 Нм.

Получается, что если мы избавимся от противоЭДС, то для питания двигателя нужен источник напряжения не 440 вольт, а только 42 вольта, при том же токе 150А. Поэтому потребляемая мощность при полной нагрузке составит 6300 ватт при механической выходной мощности 60 кВт. Регулировка выходной мощности двигателя без противоЭДС может осуществляться изменением напряжения питания или импульсным регулированием.

В результате сравнительного анализа мы видим, что использование электродвигателя без противоЭДС способно в корне изменить всю экономику человечества. Это один из способов навсегда отказаться от использования органического топлива для энергетических и транспортных потребностей человечества. В самом деле, подобные электродвигатели, возможно, соединить на одном валу с генераторами небольшой мощности и получить самопитаемую систему! Только для запуска требуется аккумулятор. А ведь есть еще и разработки безтопливных генераторов, которые могут использоваться совместно с электродвигателями данного типа. При этом возникает большая экономия, так как требуется генератор гораздо меньшей мощности. Совместное использование БТГ и описанных электродвигателей позволит в ближайшем будущем выпускать абсолютно автономные электромобили, способные двигаться без всякого топлива до тех пор, пока не износятся механически. На таком принципе можно строить большинство известных сегодня транспортных средств. В том числе и самолеты, и даже космические аппараты, ведь есть варианты и электрических полевых устройств, создающих тягу без отбрасывания массы. Это совершенно новая эра в истории человечества и трудно даже предположить последствия применения подобных конструкций.

Двигатель прост по конструкции и недорог.

Отличие от существующих двигателей небольшое. Но при этом, предлагаемый двигатель будет потреблять в несколько раз меньшую мощность, чем равный ему по характеристикам промышленный.

КПД двигателя не превысит 100% , это невозможно. Просто он гораздо эффективнее преобразует электрическую энергию в механическую. Обычные электродвигатели , имеют самый высокий КПД только в узком диапазоне нагрузок, но и при этом он очень далек от указываемого производителем.

Проведенные практические опыты показали, что на единицу израсходованной электрической энергии, новый двигатель , сможет выработать в несколько раз большую механическую мощность. Испытание макета двигателя полностью подтвердило теорию. Выходная, механическая мощность, в три раза превысила, потребляемую электрическую. Для эксперимента был изготовлен один из самых простых и неэффективных вариантов двигателя . Данный двигатель разместили на одной раме с автомобильным генератором от автомобиля «Жигули», соединив клиноременной передачей их шкивы. Двигатель питался от сети 220 вольт. Для управления двигателем был использован механический коммутатор, а не электронный, что также значительно снизило эффективность его работы. В качестве нагрузки генератора использовались автомобильные лампы. При этом потребляемая двигателем мощность (по постоянному току) составила 140 ватт. Измерив мощность на выходе генератора на лампочках(тоже по постоянному току), получили 160 ватт электрической мощности. Известно, что автомобильные генераторы имеют КПД, не превышающий 60%, поэтому механическая мощность на валу двигателя была значительно выше, чем электрическая на выходе генератора. К сожалению, не было возможности достать на 220 вольт необходимой мощности и проверить устройство в режиме самозапитки. А от того генератора, что использовался, это было невозможно. Но и в этом виде, испытания показали, что возможно получение большей механической мощности, чем затрачено электрической. Используя электронный Блок Управления двигателем , можно значительно улучшить параметры. Исследования на другом макете(электромагнитных взаимодействий) показало, что реально достичь отношения входная электрическая/выходная механическая мощность 1/20, а немного усложнив конструкцию, показатели можно улучшить в несколько раз.

Инструкция

Определение КПД двигателя внутреннего сгоранияНайдите в технической документации мощность данного двигателя внутреннего сгорания . Залейте в него топливо, это может быть бензин или дизельное топливо, и заставьте проработать на максимальных оборотах некоторое время, которое замеряйте с помощью секундомера, в секундах . Слейте остатки и определите объем сгоревшего топлива, отняв от первоначального объема конечный. Найдите его массу, умножив объем, переведенный в м³, на его плотность в кг/ м³.

Для определения КПД мощность двигателя умножьте на время и поделите на произведение массы затраченного топлива на его удельную теплоту сгорания КПД =P t/(q m). Чтобы получить результат в процентах , получившееся число умножьте на 100.

Если нужно измерить КПД двигателя автомобиля, а мощность его неизвестна, но известна масса, для определения полезной работы разгонитесь на нем из состояния покоя до скорости 30 м/с (если это возможно), измерив массу затраченного топлива. Затем массу автомобиля умножьте на квадрат его скорости, и поделите на удвоенное произведение массы затраченного топлива на удельную теплоту его сгорания КПД =М v²/(2 q m).

Определение КПД электродвигателя Если известна мощность электродвигателя , то подключите его к источнику тока с известным напряжением, добейтесь максимальных оборотов и тестером , измерьте ток в цепи. Затем мощность поделите на произведение силы тока и напряжения КПД =P/(I U).

Если мощность двигателя неизвестна, прикрепите к его валу шкив, и поднимите на известную высоту, груз известной массы. Измерьте тестером напряжение и силу тока на двигателе , а так же время подъема груза. Затем произведение массы груза на высоту подъема и число 9,81 поделите на произведение напряжения, силы тока и времени подъема в секундах КПД =m g h/(I U t).

Обратите внимание

Во всех случаях КПД должен быть меньше 1 в дольных величинах или 100 %.

Чтобы найти коэффициент полезного действия любого двигателя , нужно полезную работу поделить на затраченную и умножить на 100 процентов. Для теплового двигателя найдите данную величину по отношению мощности, умноженной на длительность работы, к теплу, выделившемуся при сгорании топлива. Теоретически КПД теплового двигателя определяется по соотношению температур холодильника и нагревателя. Для электрических двигателей найдите отношение его мощности к мощности потребляемого тока.

Вам понадобится

  • паспорт двигателя внутреннего сгорания (ДВС), термометр, тестер

Инструкция

Определение КПД ДВС Найдите в технической документации данного конкретного двигателя его мощность. Залейте в его бак некоторое количество топлива и запустите двигатель, чтобы он проработал некоторое время на полных оборотах, развивая максимальную мощность, указанную в паспорте. С помощью секундомера засеките время работы двигателя , выразив его в секундах. Через некоторое время остановите двигатель, и слейте остатки топлива. Отняв от начального объема залитого топлива конечный объем, найдите объем израсходованного топлива. Используя таблицу , найдите его плотность и умножьте на объем, получив массу израсходованного топлива m=ρ V. Массу выразите в килограммах. В зависимости от вида топлива (бензин или дизельное топливо), определите по таблице его удельную теплоту сгорания. Для определения КПД максимальную мощность умножьте на время работы двигателя и на 100%, а результат последовательно поделите на его массу и удельную теплоту сгорания КПД =P t 100%/(q m).

Для идеальной тепловой машины , можно применить формулу Карно. Для этого узнайте температуру сгорания топлива и измерьте температуру холодильника (выхлопных газов) специальным термометром. Переведите температуру, измеренную в градусах Цельсия в абсолютную шкалу, для чего к значению прибавьте число 273. Для определения КПД от числа 1 отнимите отношение температур холодильника и нагревателя (температуру сгорания топлива) КПД =(1-Тхол/Тнаг) 100%. Данный вариант расчета КПД не учитывает механическое трение и теплообмен с внешней средой.

Определение КПД электродвигателя Узнайте номинальную мощность электродвигателя , по технической документации. Подключите его к источнику тока, добившись максимальных оборотов вала, и с помощью тестера измерьте значение напряжения на нем и силу тока в цепи. Для определения КПД заявленную в документации мощность, поделите на произведение силы тока на напряжение, результат умножьте на 100% КПД =P 100%/(I U).

Видео по теме

Обратите внимание

Во всех расчетах КПД должен быть меньше 100%.

Некоторым автомобилистам со временем надоедает ездить на стоковом автомобиле. Поэтому они начинают тюнинговать своего железного, то есть вносить те или иные иные изменения в техническую конструкцию, чтобы таким образом увеличить возможности автомобиля. Однако после модернизации нужно знать, сколько мощности прибавилось. Как же измерить мощность двигателя?



Вам понадобится

Инструкция

Есть несколько способов, как измерить мощность двигателя. Сразу же стоит отметить, что все являются неточными, то есть имеют некую погрешность. Можно установить специальное электронное оборудование, которое будет следить за параметрами работы вашего двигателя в режиме онлайн . Такое оборудование имеет среднюю погрешность. Однако у него есть минус - его большая стоимость. Также ноутбук . Загрузите программу. Необходим будет проехать несколько раз на разной скорости. Программа запомнит показатели, а потом автоматически вычислит мощность силового агрегата и укажет погрешность вычислений.

Самый точный способ измерить мощность двигателя - загнать автомобиль на динамометрический стенд. Для этого необходимо найти сервис, в котором имеется такая установка. Загоните ваш автомобиль на стенд передом к вентилятору. Колеса должны быть ровно между двух барабанов. Закрепите специальные ремни за несущую конструкцию авто. Подключите аппаратуру к машине через диагностический разъем. На выхлопную трубу наденьте гофрированный каркас, который будет выводить газы из бокса. Включите вентилятор, который будет имитировать сопротивление встречного воздуха. Теперь нужно максимально разогнать автомобиль. Параллельно следите за состоянием соединяющих ремней. Сделайте несколько попыток, чтобы исключить вероятность ошибки . После каждой попытки компьютер выдаст вам распечатку, где будет указана максимальная скорость и мощность.

Видео по теме