Виды и типы электрических схем. Типы электрических схем

Электрический привод в общем случае состоит из ряда элементов. Основными из них являются какой-либо механизм, например станок, механические передачи для связи двигателя с этим механизмом, двигатель, пускорегулирующая аппаратура, аппаратура защиты, сигнализации, автоматики.

По ГОСТ 2.701-68 схемы по видам делятся на электрические, гидравлические, пневматические, кинематические и комбинированные. Чтобы выполнить электрооборудование приводов, пользуются в основном электрическими схемами. Однако в зависимости от характера электрической установки (различные приводы, линии) в дополнение к электрическим схемам иногда составляют схемы других видов, например кинематические. Если они служат для лучшего понимания электрической схемы, то допускается схемы обоих видов изображать на одном чертеже.

Схемы подразделяют на семь типов: структурные, функциональные, принципиальные, соединений (монтажные), подключений (схемы внешних соединений), общие и расположения. Ниже будут рассмотрены схемы принципиальные, соединений и подключений как получившие наиболее широкое применение в электрооборудовании промышленных предприятий.

Принципиальные схемы в практике делятся на два типа. Один из них отображает первичные (силовые) сети.и, как правило, выполняется в однолинейном изображении.

В зависимости от назначения схемы на чертеже изображают:

а) только цепи питающей сети (источники питания и отходящие от них линии

б) только цепи распределительной сети (электроприемники, линии, их питающие);

в) для небольших объектов на принципиальной схеме совмещают изображения цепей питающей и распределительной сетей.

Другой тип принципиальных схем отражает управление приводом, линией, защиту, блокировки, сигнализацию. До введения ЕСКД такие схемы назывались элементными или развернутыми. Принципиальные схемы этого типа выполняют каждую на отдельном чертеже или некоторые из них показывают на одном чертеже, если это помогает прочесть схему и незначительно увеличивает размеры чертежа. Например, на одном чертеже совмещают схемы управления и общей автоматики или защиты, измерения и управления и т. п. Полная принципиальная схема содержит те элементы и электрические связи между ними, которые дают полное представление о принципе работы электроустановки, что позволяет прочитать ее схему.

В отличие от полной принципиальной схемы выполняют принципиальные схемы отдельных изделий. Принципиальная схема изделия, как правило, является частью полной принципиальной схемы, так называемой выкопировкой из нее. Например, схема принципиальная блока управления изображает лишь те элементы, которые устанавливаются в блоке управления. Из этой схемы, естественно, нельзя получить представление о работе электроустановки в целом, и в этом смысле принципиальные схемы изделий прочтению не поддаются. Однако из принципиальной схемы изделия совершенно ясно, что установлено в изделии и какие соединения необходимо выполнить в его пределах, т. е. ясно именно то, что необходимо изготовителю изделия.


Схемы соединений (монтажные) предназначены для выполнения по ним электрических связей в пределах комплектных устройств, электроконструкций, т. е. соединений аппаратов между собой, аппаратов с наборными рейками и т. п. К схемам соединений относятся также схемы, по которым выполняют соединения в пределах определенной электроустановки, т. е. соединяют ее части. Примером такой схемы может служить схема соединений электропривода задвижки.

Схемы подключения (схемы внешних соединений) служат для соединений электрооборудования между собой проводами, кабелями, а иногда и шинами. При этом предполагается, что это электрическое оборудование территориально «разбросано». Схему подключений выполняют, например, для соединений между разными комплектными устройствами, для соединений между комплектными устройствами с отдельно стоящими электроприемниками и аппаратами, для соединений отдельно стоящих аппаратов между собой и т. п.

К схемам подключений относят также соединения между разными монтажными блоками, входящими в состав одного комплектного устройства, например соединения в пределах щита управления, превышающего по длине размер 4 м

Выбор числа и мощности трансформаторов на подстанциях определяется величиной и характером электрических нагрузок (требуемой надежностью электроснабжения и характером потребления электроэнергии), территориальным размещением нагрузок, их перспективным изменением и при необходимости обосновывается техникоэкономическими расчетами.

Как правило, в системах электроснабжения применяются одно и двухтрансформаторныеподстанции.Применение трехтрансформаторных подстанций вызывает дополнительные капитальные затраты и повышает годовые эксплуатационные расходы. Трехтрансформаторные подстанции используются редко, как вынужденное решение при реконструкции, расширении подстанции, при системе раздельного питания силовой и осветительной нагрузок, при питании резкопеременных нагрузок.

На крупных подстанциях (ГПП) применяются в основном два трансформатора (два независимых источника питания), так как через такие подстанции должны обеспечиваться электроэнергией электроприемники I, II и III категорий надежности электроснабжения.

При нескольких пунктах приема электроэнергии на предприятии на ГПП, а также при питании предприятия по схеме глубокого ввода на ПГВ допускается применять по одному трансформатору при обеспечении послеаварийного питания нагрузок по связям вторичного напряжения с соседними подстанциями (ПГВ, ГПП), с ТЭЦ или другими ИП. При магистральном питании однотрансформаторных ПГВ по линиям 35-220 кВ ближайшие подстанции рекомендуется присоединять к разным линиям или цепям с последующим использованием в послеаварийных режимах связей на вторичном напряжении.

Однотрансформаторные ТП 6-10/0,4-0,23 кВ применяются при питании нагрузок, допускающих перерыв электроснабжения на время не более одних суток, необходимых для ремонта или замены поврежденного элемента (питание электроприемников III категории), а также для питания электроприемников II категории, при условии резервирования мощности по перемычкам на вторичном напряжении или при наличии складского резерва трансформаторов.

Однотрансформаторные ТП выгодны еще и потому, что если работа предприятия сопровождается периодами малых нагрузок, то за счет наличия перемычек между ТП на вторичном напряжении можно отключать часть трансформаторов, создавая этим экономически целесообразный режим работы. Под экономичным понимается такой режим работы, который обеспечивает минимальные потери мощности в трансформаторах. В данном случае решается задача выбора оптимального количества работающих трансформаторов.

Такие ТП могут быть экономичны и в плане максимального приближения напряжения 6-10 кВ к электроприемникам, поскольку за счет децентрализации трансформирования электрической энергии уменьшается протяженность сетей до 1 кВ. В этом случае вопрос решается в пользу применения двух однотрансформаторных по сравнению с одной двухтрансформаторной подстанцией.

Двухтрансформаторные ТП применяются при преобладании электроприемников I и II категорий. При этом мощность трансформаторов выбирается такой, чтобы при выходе из работы одного Другой трансформатор с учетом допустимой перегрузки принял бы на себя нагрузку всех потребителей (в этой ситуации можно временно отключить электроприемники III категории). Такие подстанции желательны и независимо от категории потребителей, но при наличии неравномерного суточного или годового графика нагрузки. В этих случаях выгодно менять присоединенную мощность трансформаторов, например, при наличии сезонных нагрузок, одно или двухсменной работы со значительными изменениями загрузки смен.

Электроснабжение населенного пункта, микрорайона города, цеха, группы цехов или всего предприятия может быть обеспечено от одной или нескольких ТП. Целесообразность сооружения одно или двухтрансформаторных подстанций определяется в результате техникоэкономического сравнения нескольких вариантов системы электроснабжения. Критерием выбора варианта является минимум приведенных затрат на сооружение системы электроснабжения. Сравниваемые варианты должны обеспечивать требуемый уровень надежности электроснабжения.

В системах электроснабжения промышленных предприятий наиболее распространены следующие единичные мощности трансформаторов: 630, 1000,1600 кВА, в электрических сетях городов - 400, 630 кВА. Практика проектирования и эксплуатации показала необходимость применения однотипных трансформаторов одинаковой мощности, так как разнообразие их создает неудобства в обслуживании и вызывает дополнительные затраты на ремонт.

В общем случае выбор мощности трансформаторов производится на основании следующих основных исходных данных: расчетной нагрузки объекта электроснабжения, продолжительности максимума нагрузки, темпов роста нагрузок, стоимости электроэнергии, нагрузочной способности трансформаторов и их экономичной загрузки.

Основным критерием при выборе единичной мощности так же, как и количества трансформаторов, является минимум приведенных затрат, полученный на основе техникоэкономического сравнения вариантов.

Ориентировочно выбор единичной мощности трансформаторов может выполняться по удельной плотности расчетной нагрузки (кВА/м2) и полной расчетной нагрузки объекта (кВА). При удельной плотности нагрузки до 0,2 ВА/м2 и суммарной нагрузке до 3000 кВА целесообразно применять трансформаторы 400; 630; 1000 кВА - с вторичным напряжением 0,4/0,23 кВ. При удельной плотности и суммарной нагрузке выше указанных значений более экономичны трансформаторы мощностью 1600 и 2500 кВА.

В проектной практике трансформаторы ТП часто выбирают по расчетной нагрузке объекта и рекомендуемым коэффициентам

Важное значение при выборе мощности трансформаторов является правильный учет их нагрузочной способности. Под нагрузочной способностью трансформатора понимается совокупность допустимых нагрузок, систематических и аварийных перегрузок из расчета теплового износа изоляции трансформатора. Если не учитывать нагрузочную способность трансформаторов, то можно необоснованно завысить при выборе их номинальную мощность, что экономически нецелесообразно.

На значительном большинстве подстанций нагруЗКа трансформаторов изменяется и в течение продолжительного времени остается ниже номинальной. Значительная часть трансформаторов выбирается с учетом послеаварийного режима и поэтому нормально они остаются длительное время недогруженными. Кроме того, силовые трансформаторы рассчитываются на работу при допустимой температуре окружающей среды, равной +40 °С. В действительности они работают в обычных условиях при температуре среды до 20... 30 °С. Следовательно, силовой трансформатор в определенное время может быть перегружен с учетом рассмотренных выше обстоятельств без всякого ущерба для установленного ему срока службы (20.. .25 лет).

На основании исследований различных режимов работы трансформаторов разработан ГОСТ 1420985, регламентирующий допустимые систематические нагрузки и аварийные перегрузки силовых масляных трансформаторов общего назначения мощностью до 100 мВА включительно с видами охлаждения М, Д, ДЦ и Ц с учетом температуры охлаждения среды.

Температура охлаждающей среды для определения допустимых систематических нагрузок принимается как эквивалентное значение для данной местности, вычисленное в соответствии с . Для областных городов России, эквивалентная температура находится в пределах: 9,4...11 °С - годовая,3,4...6,7 °С - зимняя и 15,1...17,9 °С - летняя. При определении допустимых аварийных перегрузок температура охлаждающей среды принимается во время возникновения аварийной перегрузки.

Для определения систематических нагрузок и аварийных перегрузок в соответствии с необходимо также знать начальную нагрузку, предшествующую перегрузке, и продолжительность перегрузки. Эти данные определяются по реальному исходному графику нагрузки (полной мощности или току), преобразованному в эквивалентный в тепловом отношении прямоугольный двух или многоступенчатый график.

В связи с необходимостью иметь реальный исходный график нагрузки расчет допустимых нагрузок и перегрузок в соответствии с может быть выполнен для действующих подстанций.

На стадии проектирования подстанций можно использовать типовые графики нагрузок или в соответствии с рекомендациями, также предлагаемыми в , выбирать мощность трансформаторов по условиям аварийных перегрузок согласно табл. 3.3.

Тогда для подстанций, на которых возможна аварийная перегрузка трансформаторов (двухтрансформаторные, однотрансформаторные с резервными связями по вторичной стороне), если известна расчетная нагрузка объекта Sp и коэффициент допустимой аварийной перегрузки Кзав (табл. 3.3), номинальная мощность трансформатора определяется какСледует также отметить, что нагрузка трансформатора свыше его номинальной мощности допускается только при исправной и полностью включенной системе охлаждения трансформатора.

Что касается типовых графиков, то на сегодняшний день они разработаны для ограниченного количества узлов нагрузок.

Частично типовые графики отдельных видов потребителей (коммунальнобытовых и сельскохозяйственных) обработаны и для практического удобства сведены в табл. 3.4, 3.5 .

В этих таблицах в сокращенном виде соответственно указаны интервалы допустимых нагрузок и аварийных перегрузок трансформаторов с естественным масляным охлаждением, напряжением 10/0,4 кВ, мощностью до 630 кВА для некоторых видов потребителей с учетом климатических условий России.


По табл. 3.4 для необходимого вида нагрузки находится интервал минимальной и максимальной границы допустимой систематической нагрузки трансформатора (Samm...Samg), в котором находится величина расчетной нагрузки трансформатора Sp (для трансформаторов, определяет номинальную мощность трансформатора по допустимой нагрузке для нормального режима работы подстанции.


По табл. 3.5 для соответствующего вида нагрузки устанавливается номинальная мощность трансформатора по допустимой аварийной нагрузке исходя из условия:


В зависимости от возможных режимов работы трансформатора выбор мощности его осуществляется по табл. 3.4 или по табл. 3.4, 3.5.

Поскольку выбор количества и мощности трансформаторов, в особенности потребительских подстанций 6-10/0,4-0,23 кВ, определяется чаще всего экономическим фактором, то существенным при этом является учет компенсации реактивной мощности в электрических сетях потребителя. Компенсируя реактивную мощность в сетях до 1 кВ, можно уменьшить количество ТП 10/0,4, их номинальную мощность. Особенно это существенно для промышленных потребителей, в сетях до 1 кВ которых приходится компенсировать значительные величины реактивных нагрузок. Существующая методика по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий предполагает выбор мощности компенсирующих устройств и одновременно - количества трансформаторов подстанций и их мощности.

Таким образом, с учетом вышеизложенного, а также сложностей непосредственных экономических расчетов, быстроменяющихся стоимостных показателей строительства подстанций и стоимости электроэнергии выбор мощности силовых трансформаторов при проектировании новых и реконструкции действующих потребительских подстанций 6-10/0,4-0,23 кВ может быть осуществлен следующим образом: в сетях промышленных предприятий

а)единичная мощность трансформаторов выбирается в соответствии с рекомендациями удельной плотности расчетной нагрузки и полной расчетной нагрузки объекта;

б)количество трансформаторов подстанции и их номинальную мощность определяют согласно указаниям по проектированию

компенсации реактивной мощности в электрических сетях промышленных предприятий (см. также раздел 4.3);

в)выбор мощности трансформаторов должен осуществляться с учетом рекомендуемых коэффициентов загрузки (табл. 3.2) и

допустимых аварийных перегрузок трансформаторов (табл. 3.3);

г)при наличии типовых графиков нагрузки выбор следует вести в соответствии с ГОСТ 1420985 и с учетом компенсации реактивной мощности в сетях до 1 кВ;

В городских электрических сетях

а)располагая типовыми графиками нагрузки подстанции, выбор мощности трансформаторов следует выполнять в соответствии с ГОСТ 1420985 ;

б)зная вид нагрузки подстанции, при отсутствии типовых графиков ее целесообразно руководствоваться методическими указаниями института "Росэнергосетьпроект" , т.е. использовать данные табл. 3.4,3.5.

Электрический привод в общем случае состоит из ряда элементов. Основными из них являются какой-либо механизм, например станок, механические передачи для связи двигателя с этим механизмом, двигатель, пускорегулирующая аппаратура, аппаратура защиты, сигнализации, автоматики.

По ГОСТ 2.701-68 схемы по видам делятся на электрические, гидравлические, пневматические, кинематические и комбинированные. Чтобы выполнить электрооборудование приводов, пользуются в основном электрическими схемами. Однако в зависимости от характера электрической установки (различные приводы, линии) в дополнение к электрическим схемам иногда составляют схемы других видов, например кинематические. Если они служат для лучшего понимания электрической схемы, то допускается схемы обоих видов изображать на одном чертеже.

Схемы подразделяют на семь типов: структурные, функциональные, принципиальные, соединений (монтажные), подключений (схемы внешних соединений), общие и расположения. Ниже будут рассмотрены схемы принципиальные, соединений и подключений как получившие наиболее широкое применение в электрооборудовании промышленных предприятий.

Принципиальные схемы в практике делятся на два типа. Один из них отображает первичные (силовые) сети.и, как правило, выполняется в однолинейном изображении.

В зависимости от назначения схемы на чертеже изображают:

а) только цепи питающей сети (источники питания и отходящие от них линии

б) только цепи распределительной сети (электроприемники, линии, их питающие);

в) для небольших объектов на принципиальной схеме совмещают изображения цепей питающей и распределительной сетей.

Другой тип принципиальных схем отражает управление приводом, линией, защиту, блокировки, сигнализацию. До введения ЕСКД такие схемы назывались элементными или развернутыми. Принципиальные схемы этого типа выполняют каждую на отдельном чертеже или некоторые из них показывают на одном чертеже, если это помогает прочесть схему и незначительно увеличивает размеры чертежа. Например, на одном чертеже совмещают схемы управления и общей автоматики или защиты, измерения и управления и т. п. Полная принципиальная схема содержит те элементы и электрические связи между ними, которые дают полное представление о принципе работы электроустановки, что позволяет прочитать ее схему.

В отличие от полной принципиальной схемы выполняют принципиальные схемы отдельных изделий. Принципиальная схема изделия, как правило, является частью полной принципиальной схемы, так называемой выкопировкой из нее. Например, схема принципиальная блока управления изображает лишь те элементы, которые устанавливаются в блоке управления. Из этой схемы, естественно, нельзя получить представление о работе электроустановки в целом, и в этом смысле принципиальные схемы изделий прочтению не поддаются. Однако из принципиальной схемы изделия совершенно ясно, что установлено в изделии и какие соединения необходимо выполнить в его пределах, т. е. ясно именно то, что необходимо изготовителю изделия.

Схемы соединений (монтажные) предназначены для выполнения по ним электрических связей в пределах комплектных устройств, электроконструкций, т. е. соединений аппаратов между собой, аппаратов с наборными рейками и т. п. К схемам соединений относятся также схемы, по которым выполняют соединения в пределах определенной электроустановки, т. е. соединяют ее части. Примером такой схемы может служить схема соединений электропривода задвижки.

Схемы подключения (схемы внешних соединений) служат для соединений электрооборудования между собой проводами, кабелями, а иногда и шинами. При этом предполагается, что это электрическое оборудование территориально «разбросано». Схему подключений выполняют, например, для соединений между разными комплектными устройствами, для соединений между комплектными устройствами с отдельно стоящими электроприемниками и аппаратами, для соединений отдельно стоящих аппаратов между собой и т. п.

К схемам подключений относят также соединения между разными монтажными блоками, входящими в состав одного комплектного устройства, например соединения в пределах щита управления, превышающего по длине размер 4 м (максимальный размер монтажного блока, в пределах которого предприятие-изготовитель выполняет сам все соединения, составляет 4 м).

При разработке силовых, осветительных сетей и автоматических систем управления применяют различные виды и типы электрооборудования, проводок, приборов и средств автоматизации, соединяемые с объектом управления и между собой по определённым схемам. В зависимости от используемого оборудования. приборов и средств автоматизации (электрических, пневматических, гидравлических и т.п.) разрабатываются различные схемы их соединений..

В соответствии с ГОСТ 2.701-76 схемы разделяются на следующие виды и типы:

Виды схем:

    Электрические – Э;

    Гидравлические – Г;

    Пневматические – П;

    Кинематические – К;

    Комбинированные – С.

Типы схем:

    Структурные – 1;

    Функциональные – 2;

    Принципиальные – 3;

    Соединений – 4;

    Подключений – 5;

    Общие – 6;

    Расположения – 7.

Электрической схемой называют упрощённое наглядное изображение связей между отдельными элементами электрической цепи, выполненное с помощью условных графических обозначений и позволяющие понять принцип действия электрической установки.

Структурные – отражают укрупнённую структуру системы управления и взаимосвязи между пунктами контроля и управления объектов. Основные элементы изображаются в виде прямоугольников, связи между элементами показывают стрелками, направленными от воздействующего элемента на воздействуемый.

Функциональная схема – отражает функционально-блочную структуру отдельных узлов автоматического контроля, сигнализации, управления и регулирования технологического процесса и определяющие оснащение объекта управления приборами и средствами автоматизации.

Принципиальные схемы – отражают с достаточной полнотой состав элементов, вспомогательной аппаратуры и связей между ними, входящих в отдельный узел автоматизации и дающих детальное представление о принципе его работы. На основание принципиальных схем разрабатывают схемы внешних и внутренних соединений.

Схемы соединений – показывает сведения о внутренних соединениях изделия.

Схема подключения – содержит сведения о соединениях между отдельными элементами электроустановок и рабочих механизмов.

Схемы общие – содержат общие и специальные сведения по проекту.

Схема расположения – поясняет расположение аппаратов в пространстве, содержит сведения о путях и способах прокладки электропроводки.

Из 7 типов электрических схем основными являются принципиальные схемы , отражающие с достаточной полнотой и наглядностью взаимные связи между отдельными элементами, входящими в состав установки и дающие исчерпывающие сведения о принципе ее работы.

Принципиальные схемы служат основанием для разработки схем соединений и подключений, составления спецификации и заявок на оборудование, приборы и аппараты на стадии подготовки к монтажу. На стадии монтажа, наладки и эксплуатации установки принципиальная схема является основным руководящим техническим документом.

По назначению принципиальные схемы разделяют на схемы силовых цепей (цепи главного тока), схемы вспомогательных цепей (цепи управления, контроля, сигнализации), совмещенные схемы. При совмещенном начертании схем цепи главного тока выделяют более жирными линиями.

Принципиальные схемы могут выполняться совмещенным и разнесенным способами. Совмещенные изображения (рис.2.3,а) применяют в схемах, при этом все части каждого прибора располагают в непосредственной близости и заключают обычно в прямоугольный и круглый контур, выполненный тонкой линией. Чаще всего принципиальные схемы выполняют разнесенным способом (рис.2.3,б), при котором условные графические обозначения составных частей приборов располагают в различных местах, но таким образом, чтобы отдельные цепи были изображены наиболее наглядно. Принадлежность различных частей к одному и тому же аппарату устанавливается позиционным обозначением. Отдельные элементы оборудования (рубильники, предохранители, электромагнитные пускатели, реле, резисторы, конденсаторы и т.п.) соединяют между собой проводами и кабелями, пользуясь схемами соединений , представляющими собой документ, прилагаемый заводом изготовителем электроустановки или аппарата, содержащий сведения о внутренних соединениях изделия. На схемах соединений приборы и аппараты изображают упрощенно в виде прямоугольников, над которыми изображена окружность, разделенная горизонтальной чертой. Цифры в числителе указывают порядковый номер изделия, в знаменателе проставляется буквенно-цифровое обозначение элемента по ГОСТ 2.710-81 (см.рис.2.4).

Рисунок 2.3. Принципиальные электрические схемы управления электропроводами: а) совмещенные; б) разнесенные.


Рисунок2.4. Электрическая схема соединений.

Электрическое, как и технологическое оборудование, устанавливают на опорные основания (например, в цехах), пользуясь схемами, изображенными на планах зданий и сооружений и чертежами,- называемыми в этом случае схемами расположения . Схема расположения поясняют расположение аппаратов в пространстве и содержат сведения о путях и способах прокладки проводов (рис.2.5)


Рисунок 2.5. Схема расположения.

Сведения о соединениях между собой отдельных устройств (шкафов, пультов, панелей управления, клемм элементов электроустановки) и особенностях выполнения таких соединений содержат схемы подключения (рис.2.6).


Рисунок 2.6. Схема подключений.

Коммутирующие аппараты на схемах изображают в отключенном состоянии (т.е. при отсутствии тока в обмотках реле, контакторов, электромагнитных пускателей и т.п. и внешних принудительных сил, воздействующих на отдельные аппараты).

Для опознавания участков цепи и составления схем соединений, цепи в принципиальных схемах маркируют. Силовые цепи переменного тока маркируются буквами, обозначающими фазы, и последовательными числами. Так, цепи трехфазного переменного тока маркируют буквами А, В, С, N, цепи двухфазного тока - А, В; В, С; С, А - и однофазного тока - А,N; В,N; С,N.

В схемах постоянного тока участкам цепей с положительной по­лярностью присваивают нечетные числа, а с отрицательной - четные. Входные и выходные участки цепи маркируют с указанием полярности: плюс (+) и минус (-), а средний проводник - буквой Nили М. Цепи постоянного тока могут маркироваться последовательными числами.

Цепи управления, защиты, сигнализации, автоматики, измерения маркируются последовательными числами в пределах изделия.

На схемах маркировку проставляют у концов или в середине участка цепи, слева от изображения вертикальной цепи и над изображением горизонтальной цепи.

Схемы соединения могут иметь либо графический метод начертания, когда провода, жгуты и кабели, соединяющие зажимы аппаратов показывают на схеме отдельными линиями (аналогично тому, как вы­полняется принципиальная схема совмещенным способом (см.рис.2.3,а), линии одного направления допускается изображать одной утолщенной, которая у мест присоединения ответвляется на отдель­ные линии, либо, в случае затруднения их чтения, адресный метод , при котором линии, изображающие провода, жгуты и кабели, обрывают вблизи мест присоединения (рис.2.4). У зажимов аппаратов при этом показывают лишь отрезки проводов, на полках которых записывают в виде дроби, в которой в числителе - порядковый номер изделия или его буквенно-цифровое обозначение; в знаменателе - номер контакта, например 1/3 или ИМ/3.

В местах присоединения жил проводов и кабелей к аппаратам на схемах соединений изображают выводные зажимы в виде окружностей, внутри которых проставляют их маркировку (заводскую или специально присвоенную).

При высоком уровне автоматизации и большом количестве аппаратуры в схеме, монтаж электрических проводок выполняют по схемам соединений, которые составляют в виде таблиц, где записывают сведения о проводах и адреса присоединения, таблица 2.3.

1) условные обозначения, определяемые ГОСТ 2.751-73, ГОСТ 2.755-74, ГОСТ 2.756-76;

2) принцип действия отдельных аппаратов, входящих в состав установки;

3) свойства последовательного и параллельного соединения контактов и других элементов схем.

При чтении схем следует соблюдать определенную последовательность:

Определить источник электропитания и основные пути энергии от источника к потребителю;

Расчленить схему на простейшие цепи;

Уяснить роль каждого элемента, входящего в отдельные простейшие цепи;

Рассмотреть условия взаимодействия аппаратов, входящих в состав электроустановки.

Таблица 2.3Соединения проводок.

Проводник

Откуда идет

Куда поступает

Данные проводов

Примечание

Передняя стенка

60 К 4/8 К 5/17 ПВ 1х1

58 К 4/17 К 5/8

59 К 4/ ХТ/ 3

21 И/5 ХТ/ 7

Начинать надо с рассмотрения цепи основного аппарата, управ­ляющего работой потребителя. Потом определить, контакты каких ап­паратов входят в эту цепь и как они влияют на работу основного аппарата. Затем следует рассмотреть цепи аппаратов, управляющих этими контактами и т.д.

Рассмотрим в качестве примера работу схемы, изображенной на рис.2.3. Наибольшей наглядностью в чтении (лучше прослеживаются отдельные цепи) обладает схема, выполненная разнесенным способом (рис.2.3,б). Из схемы видно, что электродвигатель (М) питается от сети 380/220 В с частотой 50 Гц. Защите электрической цепи от ко­роткого замыкания осуществляется автоматическим выключателемQF. Дистанционный пуск и остановка- электромагнитным пускателем (КМ), снабженным электротепловым реле (КК) для защиты его от перегру­зок. Управление электродвигателем осуществляется кнопками "пуск" и "стоп" (SВ).

При нажатии SВ (кнопка "пуск" с замыкающим контактом) и вклю­ченном автоматическом выключателеQFобразуется замкнутая элект­рическая цепь: зажим С1-размыкающий контакт с самовозвратомSВ (кнопка "стоп"), замыкающий контактSВ, катушка электромагнитного пускателя КМ, размыкающий контакт электротеплового реле КК, нуле­вой провод сетиN. В электромагните КМ создается магнитное поле. Якорь, притягиваясь к сердечнику, увлекает траверсу, на которой закреплены подвижные главные и блокировочные контакты. Силовые контакты КМ замыкают цепь главного тока (электродвигатель включа­ется), а блокировочный замыкающий контакт КМ шунтирует кнопку "пуск", так как она с пружинным самовозвратом и замкнута лишь на нажатии (поэтому блокировочный контакт КМ часто называют контак­том самопитания).

Для остановки электродвигателя следует нажать кнопку SВ с размыкающими контактами ("стоп"). При этом обесточивается катушка КМ, главные контакты электромагнитного пускателя разомкнутся и отключат электродвигатель. Защита электродвигателя от перегрузок осуществляется тепловым реле КК, работающим следующим образом. При превышении заданного значения электрического тока в цепи пи­тания электродвигателя сработает тепловое реле КК и своим размыкающим контактом разомкнет цепь питания катушки электромагнитного пускателя, что в свою очередь приведет к размыканию его главных контактов и электродвигатель отключится.

Схемой предусмотрена также световая сигнализация работы электродвигателя. При неработающем электродвигателе горит сиг­нальная лампа НL2, при работающем- НLI.

Последовательность чтения структурных схем:

    На рассматриваемом чертеже читаем все надписи;

    Выясняем значение всех незнакомых условных обозначений и изображений;

    Последовательно рассматривают агрегатные щиты контроля и производств, диспетчерские щиты и пульты;

    Определяют виды и направления оперативной связи между пунктами контроля и управления.

    Выясняют наличие связей рассматриваемой структуры управления с другими уровнями управления.

Условные буквенные и графические обозначения на электрических принципиальных схемах

При выполнении схем применяют следующие графические обозначения:

1) условные графические обозначения, установленные в стандартах Единой системы конструкторской документации, а также построенные на их основе;

2) прямоугольники;

3) упрощенные внешние очертания (в том числе аксонометрические).

При необходимости применяют нестандартизованные условные графические обозначения.

При применении нестандартизованных условных графических обозначений и упрощенных внешних очертаний на схеме приводят соответствующие пояснения.

Условные графические обозначения, для которых установлено несколько допустимых (альтернативных) вариантов выполнения, различающихся геометрической формой или степенью детализации, следует применять, исходя из вида и типа разрабатываемой схемы в зависимости от информации, которую необходимо передать на схеме графическими средствами. При этом на всех схемах одного типа, входящих в комплект документации, должен быть применен один выбранный вариант обозначения.

Применение на схемах тех или иных графических обозначений определяют правилами выполнения схем определенного вида и типа.

Условные графические обозначения элементов изображают в размерах, установленных в стандартах на условные графические обозначения.

Размеры условных графических обозначений, а также толщины их линий должны быть одинаковыми на всех схемах для данного изделия (установки).

Примечания :

1. Все размеры графических обозначений допускается пропорционально изменять.

2. Условные графические обозначения элементов, используемых как составные части обозначений других элементов (устройств), допускается изображать уменьшенными по сравнению с остальными элементами (например, резистор в ромбической антенне, клапаны в разделительной панели).

Графические обозначения на схемах следует выполнять линиями той же толщины, что и линии связи.

Условные графические обозначения элементов изображают на схеме в положении, в котором они приведены в соответствующих стандартах, или повернутыми на угол, кратный 90°, если в соответствующих стандартах отсутствуют специальные указания. Допускается условные графические обозначения поворачивать на угол, кратный 45, или изображать зеркально повернутыми.

Если при повороте или зеркальном изображении условных графических обозначений может нарушиться смысл или удобочитаемость обозначения, то такие обозначения должны быть изображены в положении, в котором они приведены в соответствующих стандартах.

Линии связи выполняют толщиной от 0,2 до 1,0 мм в зависимости от форматов схемы и размеров графических обозначений. Рекомендуемая толщина линий от 0,3 до 0,4 мм.

Линии связи должны состоять из горизонтальных и вертикальных отрезков и иметь наименьшее количество изломов и взаимных пересечений.

В отдельных случаях допускается применять наклонные отрезки линии связи, длину которых следует по возможности ограничивать.

3. Линии связи, переходящие с одного листа или одного документа на другой, следует обрывать за пределами изображения схемы без стрелок.

Рядом с обрывом линии связи должно быть указано, обозначение или наименование, присвоенное этой линии (например, номер провода, номер трубопровода, наименование сигнала или его сокращенное обозначение и т.п.), и в круглых скобках номер листа схемы и зоны при ее наличии при выполнении схемы на нескольких листах, например, лист 5 зона А6 (5, А6), или обозначение документа, при выполнении схем самостоятельными документами, на который переходит линия связи.

Линии связи должны быть показаны, как правило, полностью. Линии связи в пределах одного листа, если они затрудняют чтение схемы, допускается обрывать. Обрывы линий связи заканчивают стрелками. Около стрелок указывают места обозначений прерванных линий, например, подключения, и (или) необходимые характеристики цепей, например, полярность, потенциал, давление, расход жидкости и т.п.

Элементы (устройства, функциональные группы), входящие в изделие и изображенные на схеме, должны иметь обозначения в соответствии со стандартами на правила выполнения конкретных видов схем.

Обозначения могут быть буквенные, буквенно-цифровые и цифровые. Обозначения элементов (устройств, функциональных групп), специфических для определенных отраслей техники, должны быть установлены отраслевыми стандартами.

Оборудование и установки на планах силовой и осветительной сети представляются в соответствии с ГОСТ 21.614-84 «Изображения условные графические электрооборудования и проводок на планах». Основные условные графические изображения на планах силовой и осветительной сети представлены в таблице 2.4, а условные обозначения электрических аппаратов в таблице 2.4.

Размеры изображений приводятся на чертежах в масштабе 1:100. При выполнении изображений в других масштабах, размеры изображений следует изменять пропорционально размеру чертежа, при этом размер (диаметр или сторона) условного изображения электрооборудования должна быть не менее 1,5 мм. Размеры изображений щитов, шкафов, пультов, ящиков, электротехнических устройств и электрооборудования открытых распределительных устройств следует принимать по их фактическим размерам в масштабе чертежа. Допускается увеличивать их размер для возможности изображения всех труб с проводкой, подходящих к ним.

Таблица 2.4. Условные графические изображения на планах силовой и осветительной сети.

Наименование

Изображение

I. Электропроводки.

1. Обозначение линий электропроводки.

Общее изображение

Трёхпроводная линия

Линия напряжением 36 В

Линия заземления, зануления

2. Открытая прокладка электропроводки.

Открытая прокладка кабеля

Тросовая электропроводка

Прокладка проводки в лотке

Прокладка проводки в коробе

Прокладка проводки под плинтусом

3. Проводка в трубах.

Общее обозначение

Открытая прокладка

Скрытая прокладка

Проводка уходит на более высокую отметку или приходит с высокой

Проводка уходит на более низкую отметку или приходит с низкой

II. Оборудование.

Коробка ответвительная

Коробка вводная

Коробка, ящик протяжной

Коробка, ящик с зажимами

Щиток магистральный рабочего освещения

Щиток групповой рабочего освещения

Шкаф, панель с односторонним обслуживанием

Шкаф, панель с двухсторонним обслуживанием

Выключатель, общее обозначение

Выключатель для открытой установки с IP 20, IP23:

    Однополюсный

    Двухполюсный

    Трёхполюсный

Выключатель для скрытой проводки:

    Однополюсный

    Двухполюсный

    Трёхполюсный

Выключатель для открытой установки с IP 44, IP55:

    Однополюсный

    Двухполюсный

    Трёхполюсный

Переключатели с IP 20, IP23

Штепсельная розетка открытая двухполюсная с IP 20, IP23

Штепсельная розетка открытая двухполюсная сдвоенная с IP 20, IP23

Штепсельная розетка скрытая двухполюсная

Штепсельная розетка открытая двухполюсная сдвоенная

Штепсельная розетка открытая двухполюсная с IP 44, IP55

Штепсельная розетка с защитным контактом с IP 44, IP55

Светильник с лампой накаливания

Светильник с лампой накаливания на тросе


Светильник с лампой накаливания на кронштейне

Светильник с ГЛНД

Светильник с ГЛВД

Прожектор

Патрон стеновой

Патрон подвесной

Магнитный пускатель

Автоматический выключатель

Пост кнопочный на 1 кнопку

Пост кнопочный на 2 кнопку

Пост кнопочный на 3 кнопку

Электродвигатель с к. з. ротором

Таблица 2.5. Условные обозначения электрических аппаратов.

Графическое обозначение

Буквенное обозначение

Значение

Однофазный силовой трансформатор

Однофазный автотрансформатор

Измерительный трансформатор тока

Трёхфазный асинхронный электродвигатель с короткозамкнутым ротором

Трёхфазный асинхронный электродвигатель с фазным ротором

Трёхфазный электронагревательный элемент косвенного электронагрева

Трёхфазный электронагревательный элемент прямого электронагрева

Электромагнитная катушка реле тока

Электромагнитная катушка магнитного пускателя

Электромагнитная катушка реле напряжения

Электромагнитная катушка реле времени

Электромагнитная катушка промежуточного реле

Нагревательный элемент теплового реле

Размыкающий контакт теплового реле

Силовой трёхфазный автоматический выключатель

Трёхфазный рубильник

Силовые контакты магнитного пускателя

Однофазный автоматический выключатель в цепи управления

Выключатель, разъединитель

Кнопка управления – пуск

Кнопка управления – стоп

Лампа накаливания осветительная

Лампа накаливания сигнальная

Резистор

Плавкий предохранитель

Прибор звуковой сигнализации

Дроссель

Полупроводниковый диод

Пластинчатый конденсатор

Замыкающий контакт реле времени с замедлением при срабатывании

Замыкающий контакт реле времени с замедлением при возврате

Замыкающий контакт реле времени с замедлением при срабатывании и возврате

Графические обозначения элементов (устройств, функцио­наль­ных групп) и соединяющие их линии связи следует располагать на схеме таким образом, чтобы обеспечивать наилучшее представление о структуре изделия и взаимодействии его составных частей

Принципиальная электрическая схема – это чертеж, который показывает все составляющие конкретного объекта. В частности, элементы такого вида, как электромагнитный, магнитный и электромагнитная связь. В том числе в чертежи входят параметры элементов, представленных на чертеже.

Разновидности электрических схем

Какие бывают электрические схемы? Они отличаются по различным критериям, однако на чертежах должны быть отмечены четко, правильно, после тщательной проверки. Электросхема – это изображение графического вида, на котором отображены связи между приборами электроснабжения, за счет чтения которого, можно ознакомиться с тем, как работает электротехническое устройство.



К элементам такой схемы относят:

  • Обмотку электрической машины;
  • Катушку с контакторами в реле;
  • Контакты в электрооборудовании;
  • Резистор и не только.

Благодаря условному графическому изображению, проводится отображение тех элементов в электрической цепи, которые отвечают за получение, преобразование и управление потоками напряжения в сети.

Отображение электрических связей осуществляется посредством проводов и кабелей.

В зависимости от того, для чего предназначена схема, она может быть структурной, функциональной, принципиальной или полной, монтажной. Если схема однолинейная и упрощенная, то провода и места связи изображаются в виде одной линии. За счет отрезков, которые будут пересекать линию под углом в 45ᵒ, показывается то, какое количество проводов и жил кабеля там должно присутствовать.

Что такое монтажная схема

Монтажная разновидность электросхем позволяет изобразить места, где расположены составные части каждого электрифицированного оборудования в детальном виде, чтобы можно было определить метод прокладывания проводки.

Чертежи электрических схем нужны для:

  • Правильности расположения элементов;
  • Проверки их места нахождения после ремонта;
  • Обслуживания помещения, чтобы найти конкретный объект без труда.

Сюда же вносится схема того, как проводятся соединения, а впоследствии по таким данным проводится монтаж устройства, обслуживание и ремонтные работы. Схема обязательно должна включать не только основные принципы, по которым можно подобраться к элементам, но и дополнительные, на случай аварийной ситуации.

Изображение проводится в миниатюрном масштабе, но с максимальной точностью.

В монтажную схему входят схемы проведения внутреннего соединения с указанием того, как соединяются единицы, установленные внутри, а также обязательно отмечать схему внешнего соединения, с точным указанием прокладывания кабелей. Стоит заметить, что отметка каждого электрического вывода устройства и конца токопроводящей жилы имеет маркировку, которая в обязательном порядке вносится на схему.

Что касается методических указаний по тому, как читать такие электрические схемы, то должны составляться рекомендации относительно каждого чертежа, в котором указывается последовательность считывания данных. Сначала считываются типы, и виды схемы по названиям из места, где наложен угловой штамп. Далее нужно исследовать описание силовых цепей, а чтение начинается с источника электроэнергии. Схема управления исследуется максимально детально.

Если присутствуют цепи, в которых присутствуют элементы электроники, то нужно изучить каждый отдельный элемент, например, Mega48PA, обращая внимание на то, как они проводят электрические заряды через каждый полупроводниковый элемент. Важно помнить о том, что питание в основной цепи в устройствах электронного вида считается однопроводным, а потому конечная часть цепи показывается за счет присоединения к корпусу определенного оборудования.

Типы и виды электрических схем

Электротехнические схемы принципиального вида дополнительно делятся на 2 категории. Одна отображает сети силового вида и это трехлинейная схема. Назначение чертежей вполне понятно, так как они позволяют обнаружить место расположения элементов электрической цепи.



По стандарту ГОСТ каждая электрическая схема делится на 7 видов:

  • Структурная;
  • Функциональная;
  • Принципиальная;
  • Монтажная;
  • Подключения;
  • Общая;
  • Схема расположения.

В зависимости от того, для чего предназначена схема на чертеже, она может быть в виде цепи, которая подает питание в сеть или, другими словами, нужно отобразить каждый источник питания и линии, по которым исходит ток. Есть цепи, отвечающие за распределение сети принципиальной схемы, в которой совмещается 2 предыдущих вида схем, что подходит для объектов небольшого вида.

Описание электрической структурной схемы

Помимо принципиальной электрической монтажной схемы, одной из наиболее распространенных является структурная и функциональная схемы. Они предназначены для более точного понимания того, какой присутствует общий принцип действия каждого оборудования, в частности, сложного вида или отдельных мелких составляющих цепи.

В зависимости от вида схемы, осуществляется отметка таких моментов, как:

  • Места соединений элементов;
  • Места подключения элементов к общей сети питания;
  • Порядок подключения элементов.

Структурная отличается от функциональной тем, что в ней определяется и обозначается основная функциональная часть каждого устройства. На схеме функционального типа проводится объяснение процесса, протекающего в цепи. Другими словами, разъясняется то, как работает устройство.

Такие виды схем пользуются популярностью в проведении описания принципа работы сложного электронного устройства, независимо от его вида.

В этом случае использование развернутой принципиальной схемы может привести в заблуждение и спутать в работе. Если детально изучить структурную схему, то можно узнать, из каких отдельных элементов состоит сложное устройство, и как работает его каждый блок в отдельности.

Классификация и виды чертежей и их назначение

Есть ли отличия между чертежами? Есть ли общая классификация и для чего она нужна? Стоит заметить, что чертежи изготавливаются четко в соответствии с требованиями ГОСТа, так как категорически недопустима самодеятельность, и это может стать причиной серьезных последствий.



Примеры чертежей могут быть самые различные, в зависимости от сферы деятельности, а вот классифицируют их на:

  • Детальный;
  • Сборочный;
  • Общий;
  • Теоретический;
  • Габаритный;
  • Монтажный;
  • Электромонтажный;
  • Эскиз;
  • Фоточертеж;
  • Схематический.

Если изучать данную тему более детально, то можно обнаружить массу тонкостей. К примеру, некоторые чертежи состоят из нескольких видов других чертежей. К примеру, к сборочному чертежу относится гидромонтажный, пневмомонтажный, электромонтажный.

На монтажном чертеже, помимо отображения электрооборудования, которое будет подключаться к сети, требуется разметка помещения с его особенностями.

Помимо этого, чертежи могут отличаться по способу выполнения и тому, как они будут использоваться. А именно, бывают оригинальные, подлинники, дубликаты, копии. Каждый чертеж, изготавливаемый на производстве, требует максимальной концентрации, внимания и ответственного, грамотного подхода.

Для чего необходима электрическая функциональная схема

Есть еще один вид электрической схемы под названием функциональная. Она требуется для того, чтобы разъяснить процесс, проводящийся в каждой отдельной функциональной цепи конкретного устройства и нескольких изделий одновременно. Для того чтобы провести обозначение сложного оборудования, нужно создать несколько функциональных схем, каждая из которых будет отвечать за пояснение отдельного процесса, происходящего при конкретном режиме работы.

От особенностей оборудования зависит то:

  • Сколько будет разрабатываться функциональных схем;
  • С какой степенью детализации будет осуществляться их отображение;
  • В каком масштабе будет проводиться составление чертежа.

На схеме обязательно нужно отобразить все функциональные части оборудования. В частности, составляющие элементы, устройства, функциональные группы, связи между ними. За счет графического построения схем, можно получить наглядное отражение того, в какой последовательности происходит функциональный процесс, происходящий внутри изделия.

Стоит заметить, что допустимо не учитывать вид действительного расположения каждого элемента.

Для того чтобы определить каждую функциональную часть между элементами изделия, потребуется использовать условные графические изображения, в соответствии с установленными стандартами для конкретной группы элементов. В данном варианте стоит руководствоваться правилами, по которым выполняется составление принципиальной схемы. Для отображения каждой отдельной функциональной части на схеме, можно использовать прямоугольники. Это будет напоминать вид структурной схемы.

Функциональная схема может использоваться для указания функциональной группы, для чего используется обозначение, присвоенное ей в составлении принципиальной схемы, каждого из составляющих изделия, для чего используются условные графические изображения, в частности буквы, цифры, которые были указаны в принципиальной схеме, и всех устройств, отмеченных значком прямоугольника, который присваивался при составлении принципиальной схемы. Как правило, те элементы, для обозначения которых использовался прямоугольник, должны быть подписаны прямо на схеме внутри этого прямоугольника. Если есть какие-либо сокращения, то расшифровка отмечается на полях в схеме.

Что такое принципиальная электрическая схема (видео)

Заниматься составлением электрических схем должны только профессионалы с опытом работы и соответствующим образованием, что позволит исключить проблемы при чтении и непосредственно использовании документа для монтажа, обслуживания и ремонта впоследствии.