Что такое схема цепи. Электрическая цепь постоянного тока и ее характеристики

Электрическая цепь это совокупность устройств, предназначенных для генерирования, передачи, преобразования и использования электрической энергии, процессы в которых могут быть описаны с помощью понятий об электрическом токе, напряжении и ЭДС

В состав электрических цепей (2.2)входит также коммутационная и защитная аппаратура. В состав электрических цепей могут включаться электрические приборы для измерения силы тока, напряжения и мощности.

При описании электрических цепей используют следующие понятия:ветвь электрической цепи, узел электрической цепи, контур, двухполюсник, четырехполюсник.

Ветвь электрической цепи - это участок, элементы которого соединены последовательно. Ток во всех элементах один и тот же.

Узел электрической цепи - это точка соединения трех и болееветвей электрической цепи (2.3).

Контур - это любой путь вдоль ветвей электрической цепи, начинающийся и заканчивающийся в одной и той же точке.

Двухполюсник - это часть электрической цепи с двумя выделенными выводами.

Четырехполюсник - часть электрической цепи с двумя парами выводов.

Режимы работы электрических цепей

Электрическая цепь в зависимости от значения сопротивления нагрузки R может работать в различных характерных режимах:

    номинальном;

    согласованном;

    холостого хода;

    короткого замыкания.

Номинальный режим - это расчетный режим, при котором элементы цепи (источники, приемники, линия электропередачи) работают в условиях, соответствующих проектным данным и параметрам.

Изоляция источника, линии электропередачи, приемников рассчитана на определенное напряжение, называемое номинальным. Превышение этого напряжения приводит к пробою изоляции, увеличению токов в цепи и другим аварийным последствиям.

Тепловой режим источников или приемников энергии рассчитан на выделение в них определенного количества тепла, то есть на определенную мощность, а последняя зависит от квадрата тока RI 2 , rI 2 .

Расчетный по тепловому режиму ток называется номинальным.

Номинальное значение мощности для источника электрической энергии - это наибольшая мощность, которую источник при нормальных условиях работы может отдать во внешнюю цепь без опасности пробоя изоляции и превышения допустимой температуры нагрева.

Для приемников электрической энергии типа двигателей - это мощность, которую могут развивать на валу при нормальных условиях работы. Для остальных приемников электрической энергии (нагревательные и осветительные приборы) - это их мощность при номинальном режиме. Номинальные значения напряжений, токов и мощностей указывают в паспортах изделий.

Согласованный режим работы - это режим, в котором работает электрическая цепь (источник и приемник), когда сопротивление нагрузки R равна внутреннему сопротивлению источника r. Этот режим характеризуется передачей от данного источника к приемнику максимально возможной мощности. Однако в согласованном режиме К.П.Д.= 0,5 - низкий и для мощных цепей работа в согласованном режиме экономически невыгодна. Согласованный режим применяется, главным образом, в маломощных цепях, если К.П.Д. не имеет существенного значения, а требуется получить в приемнике возможно большую мощность.

Режим холостого хода и короткого замыкания. Эти режимы являются предельными режимами работы электрической цепи.

В режиме холостого хода внешняя цепь разомкнута и ток равен нулю. Так как ток равен нулю, то падение напряжения на внутреннем сопротивлении источника так же равно нулю (rI = 0) и напряжение на выводах источника равно ЭДС (= U). Из этих соотношений вытекает метод измеренияЭДС (2.7)источника: при разомкнутой внешней цепи вольтметром, сопротивление которого можно считать бесконечно большим, измеряют напряжение на его выводах.

В режиме короткого замыкания выводы источника соединены между собой, например, сопротивление нагрузки замкнуто проводником с нулевым сопротивлением. Напряжение на приемнике при этом равно нулю.

Сопротивление всей цепи равно внутреннему сопротивлению источника, и ток короткого замыкания в цепи равен:

I к.з. = / r.

Он достигает максимально возможного значения для данного источника и может вызывать перегрев источника и даже его повреждение. Для защиты источников электрической энергии и питающих цепей от токов короткого замыкания в маломощных цепях устанавливают плавкие предохранители, в более мощных цепях - отключающие автоматические выключатели, а высоковольтных цепях - специальные высоковольтные выключатели.

Реальная электрическая цепь - совокупность устройств , предназначенных для передачи, распределения и преобразования энергии. Содержит источники электрической энергии, приемники электрической энергии, измерительные приборы, коммутационную аппаратуру, соединительные линии и провода. Электрическая цепь представляет собой совокупность связанных определенным образом , потребителей (или соответственно активных и пассивных элементов) и преобразователей электрической энергии. Цепь называют пассивной , если она состоит только из пассивных элементов, и активной , если в ней также содержатся активные элементы.

Источником электрической энергии называют элемент электрической цепи, осуществляющий преобразование энергии неэлектрического вида в электрическую. Потребителем электрической энергии называют элемент электрической цепи, преобразующий электрическую энергию в неэлектрическую. Преобразователем электрической энергии называют устройство, изменяющее величину и форму электрической энергии.

Для того чтобы выполнить расчет, необходимо каждое электротехническое устройство представить его схемой замещения . Схема замещения электрической цепи состоит из совокупности идеализированных элементов(резистор, конденсатор, катушка индуктивности).

Напряжение:

Зависимость между током и напряжением на элементе цепи называется вольт-амперной характеристикой (ВАХ) элемента, которая обычно изображается графически.

В качестве потребителя в теории электрических цепей постоянного тока выступает резистор, характеризующийся сопротивлением (R), для которого справедлив закон Ома:

Идеализированный источник тока – это элемент цепи, ток которого не зависит от напряжения и является заданной постоянной величиной.

У реального источника тока с ростом напряжения вырабатываемый ток уменьшается. Любой реальный источник тока может быть приведен к идеализированному следующим образом:

Объединив эти две формулы, получаем:

Для противодействующего источника тока

Объединенная форма обобщенного закона Ома для ветвей, содержащих источник тока:

Где верхний знак соответствуют схеме, на которой U J и J сонаправлены.


  1. Структура электрической цепи.
К структурным или топологическим свойствам цепи относятся такие ее особенности, которые не связаны с характеристиками входящих в нее активных и пассивных элементов. К ним относятся следующие понятия: ветвь, узел, контур.

Ветвью электрической цепи называют участок, элементы которого включены последовательно друг за другом и обтекаются одним и тем же током.

Узлом электрической цепи называют место соединения нескольких ветвей. Узел связывает не менее трех ветвей и является точкой разветвления.

Ветви считаются соединенными последовательно, если они обтекаются одним и тем же током. Ветви считаются соединенными параллельно, если они присоединены к одной и той же паре узлов.

Контуром электрической цепи называется совокупность следующих друг за другом ветвей. Узлы, в которых эти ветви соединяются, являются точками разветвления. При обходе замкнутого контура начальная и конечная точки совпадают.
Цепь, в которой отсутствуют разветвления, называют одноконтурной, при наличии разветвлений – многоконтурной. Многоконтурная цепь характеризуется числом независимых контуров. Совокупность независимых контуров определяется тем, что каждый из последующих контуров, начиная от элементарного, отличается по меньшей мере одной новой ветвью. Число независимых контуров может быть определено по формуле Эйлера:

При параллельном соединении роль эквивалентной проводимости (или проводимости эквивалентного потребителя) играет сумма проводимостей всех потребителей (рис. 1.12.).

9-10) Эквивалентное преобразование «Звезда – треугольник»

В узлах a , b , c и треугольник, и звезда на рис. 1.14. соединяются с остальной частью схемы. Преобразование треугольника в звезду должно быть таковым, чтобы при одинаковых значениях потенциалов одноименных точек треугольника и звезды притекающие к этим точкам токи были одинаковы, тогда вся внешняя схема «не заметит» произведенной замены.

Выразим U ab треугольника через параметры потребителей и притекающие к этим узлам токи. Запишем уравнения Кирхгофа для контура и узлов a и b.

Заменим в первом уравнении токи I 3 и I 2 на соответствующие выражения:

Теперь получим выражение для этого же напряжения при соединении потребителей звездой:

Таким образом , сопротивление луча звезды равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений трех сторон треугольника.

Формулы обратного преобразования можно вывести независимо, либо как следствие соотношений через проводимости:

Или через сопротивления:

11) Баланс мощности.

Согласно закону Джоуля-Ленца, вся электрическая энергия, сообщаемая проводнику в результате работы сил электрического поля, превращается в тепловую энергию:

По обобщенному закону Ома.

Отсюда следует закон сохранения энергии, согласно которому алгебраическая сумма мощностей, подводимых ко всем ветвям разветвленной электрической цепи, равна нулю:

Существует еще одна форма записи баланса мощности:

В левой части суммируются мощности источников энергии, а в правой – мощности, преобразованные в потребителях в тепло. Мощности , отдающих энергию, берутся со знаком «+», а работающих в режиме потребителей – со знаком «–».

12) Расчет неразветвленных электрических цепей

Основой расчета одноконтурных (неразветвленных) электрических цепей, содержащих источники обоих видов и потребители, служат рассмотренные ранее законы Ома и Кирхгофа.

Если в цепи нет источников тока, а параметры потребителей ( R) и источников напряжения (Е ) заданы, то задача обычно состоит в определении тока контура. Положительное направление искомого тока выбирается произвольно и составляется уравнение:

Если в цепи, кроме потребителе ( R ) и источников ЭДС (E ), имеется источник тока (J ), то задача обычно сводится к определению напряжения на источнике тока U J , т.к. ток контура I совпадает с заданным током источника J. Положительная полярность U J выбирается произвольно, но предпочтительно у острия стрелки ставить знак «+» (такой полярности соответствует формула: ). Истинная полярность U J совпадает с выбранной, если при расчете U J выражается положительным числом, и противоположна выбранной, если U J . Искомое падение напряжения на источнике тока U J при отсутствии источников ЭДС определяется по формуле .

13) Метод пропорциональных величин.

В ветви наиболее удаленной от источника (R 6) задаются некоторым значением тока или напряжения. Для удобства расчетов обычно это 1А или 1В. Затем перемещаясь к началу цепи определяют поочередно токи и напряжения всех ветвей вплоть до ветви , содержащей источник. Тем самым определяют какие напряжение U вх и ток I в х . должен иметь источник для того, чтобы вызвать во всех ветвях токи и напряжения вычисленных значений. Если ЭДС (Е ) или задающий ток (J ) с этими значениями не совпадают, то необходимо пропорционально изменить вычисленные значения токов и напряжений ветвей путем умножениях их на отношение или .

I 3 можно определить по I закону Кирхгофа:

U 24 определяем по II закону Кирхгофа:

14) Метод эквивалентных преобразований. Формула токов в параллельных ветвях.

Разветвленную цепь с одним источником обычно упрощают, преобразуя в неразветвленную.

Дальнейший расчет: .

Ток I 3 определяется по закону Кирхгофа:

При расчетах удобно пользоваться формулой о токах в двух параллельных пассивных ветвях . Выведем ее на примере схемы. Напряжение по закону Ома определяется по формуле

15) Метод уравнений Кирхгофа.


  1. Обозначить токи ветвей и произвольно выбрать их положительное направление.

  2. Произвольно выбрать опорный узел и совокупность p = m – n + 1 независимых контуров.

  3. Для всех узлов, кроме опорного, составить уравнения по I закону Кирхгофа. Таких уравнений должно быть (n – 1).

  4. Для каждого выбранного контура составить уравнения по II закону Кирхгофа. Таких уравнений должно быть p .

  5. Система m уравнений Кирхгофа с m неизвестными токами решается совместно и определяются численные значения токов.

  6. Если необходимо, рассчитать с помощью обобщенного закона Ома напряжения ветвей или разность потенциалов узлов.

  7. Проверить правильность расчета с помощью баланса мощности.
Если в цепи есть q источников тока и контуры выбирать таким образом, чтобы каждый источник тока вошел только в один контур, то количество уравнений по II закону Кирхгофа можно уменьшить до m – n + 1 – q.

16)Метод Контурных Токов

За искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по II закону Кирхгофа, т.е. . Основан на II законе Кирхгофа
По найденным контурным токам при помощи I закона Кирхгофа определяются токи ветвей.

Таким образом , методика расчета цепи постоянного тока методом контурных токов следующая:



  1. Произвольно выбрать совокупность p независимых контуров, нанести на схему положительное направление контурных токов, протекающих в выбранных контурах.

  2. Определить собственные, общие сопротивления и контурные ЭДС и подставить их в систему уравнений вида.
Общее сопротивление контура (R ij = R ji ) представляет собой алгебраическую сумму сопротивлений потребителей ветви (нескольких ветвей), одновременно принадлежащих i -ому и j -ому контурам. В эту сумму сопротивление входит со знаком «+», если контурные токи протекают через данное сопротивление в одном направлении (согласно), и знак «–», если они протекают встречно.

Собственное сопротивление контура (R ii ) представляет собой арифметическую сумму сопротивлений всех потребителей, находящихся в i -ом контуре.

Контурные ЭДС представляют собой алгебраическую сумму ЭДС источников, входящих в контур. Со знаком «+» в эту сумму входят ЭДС источников, действующих согласно с обходом контура, со знаком «–» входят ЭДС источников, действующих встречно.


  1. Разрешить полученную систему уравнений относительно контурных токов, используя метод Крамера.

  1. Определить токи ветвей через контурные токи по I закону Кирхгофа.

  2. Проверить правильность расчетов при помощи баланса мощности.
Если в цепи содержится q источников тока, количество совместно рассматриваемых уравнений сокращается на q и становится равным р – q , поскольку токи в таких ветвях известны Необходимо, чтобы каждый источник тока входил только в один контур.

17) Метод узловых потенциалов.

В том случае, когда п- 1 – количество узлов, p – количество независимых контуров), данный метод более экономичен, чем метод контурных токов. Выводится из первого закона Кирхгофа и обобщенному закону Ома(через потенциалы).


  1. Обозначить все токи ветвей и их положительное направление.

  2. Произвольно выбрать опорный узел (? n ) и пронумеровать все остальные (n- 1)-e узлы.

  3. Определить собственные и общие проводимости узлов, а также узловые токи, т.е. рассчитать коэффициенты в системе уравнений.
Собственная проводимость узла (G ii ) представляет собой арифметическую сумму проводимостей всех ветвей, соединенных в i -ом узле.

Общая проводимость i-ого и j-ого узлов (G ij = G ji ) представляет собой взятую со знаком «–» сумму проводимостей ветвей, присоединенных одновременно к i- ому и j- ому узлам.

Проводимости ветвей с источниками тока полагаются равными нулю и в собственные и общие проводимости не входят!

Узловой ток (J ii ) состоит из двух алгебраических сумм: первая содержит токи источников тока, содержащиеся в ветвях, соединенных в i - ом узле; вторая представляет собой произведение ЭДС источников напряжения на проводимости соответствующих ветвей, соединенных в i - ом узле. Со знаком «+» в эту сумму входят E и J источников, действие

В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.

Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.

ЭДС - величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. В СИ измеряется в вольтах.

«Электрический ток – это упорядоченное (направленное) движение заряженных частиц – электронов » правильно только для электрического тока в вакууме, а точнее - электровакуумных приборах.

Альтернативой классическому понятию Электрического тока в проводнике является дипольная атомарная модель. При воздействии энергии источника электрического тока, все диполи атомов проводника поворачиваются, ориентируясь своими одноимёнными полюсами в одном направлении, обеспечивающем мгновенную (со скоростью света), передачу энергии на противоположный конец проводника.
Тогда определение электрического тока для проводников будет выглядеть так:
«Электрический ток – это способность атомов проводника осуществлять перенос электрических зарядов, путём магнитной ориентации под воздействием энергии источника электрического тока ».
Не понятно, что является носителем электрического заряда? Ведь диполи, не перемещаются вдоль проводника, они лишь ориентируются по магнитному полю, поворачиваясь на месте. А заряд это свойство материальных тел и в свою очередь без носителя существовать не может.
А носителя энергии, перемещающегося по проводнику на самом деле и нет! Энергия перемещается в виде фотонов – точечных электромагнитных колебаний имеющих чёткую геометрическую форму и поляризацию. Так как фотон не имеет массу, он способен двигаться со скоростью света – подобно радиосигналу, поскольку и свет, и радиосигнал – это тоже поток фотонов. При этом, двигаясь с такой огромной скоростью он, при отсутствии массы способен резко (без инерции) менять своё направление. Если это движение доверить электронам, то они «пробивали» бы металлы, разрушая их на молекулярном уровне, подобно мелкому космическому «мусору», вращающемуся на космической скорости на околоземных орбитах, и периодически выводящему из строя дорогие космические аппараты, «прошивая» обшивку аппаратов насквозь. Кстати, в электровакуумных приборах, где носителями энергии действительно выступают электроны, такое явление наблюдается.



Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром - разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В). Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро - микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ).

Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

1) Источники электрической энергии (питания).

Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

2) Потребители электрической энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.

3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

Все элементы цепи охвачены одним электромагнитным процессом.

В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r 0 , с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL 1 и EL 2 .

Основные понятия и определения для электрической цепи

Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r 0 , реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R 1 , R 2 ,…,R n . С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.

При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r 0 , а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL 1 и EL 2 заменены активными сопротивлениями R,R 1 и R 2 .


Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.

При расчете в схеме электрической цепи выделяют несколько основных элементов.

Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r 0 ,E,R и в которой возникает ток I; ветвь ab с элементом R 1 и током I 1 ; ветвь anb с элементом R 2 и током I 2 .

Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R 1 и R 2 (рис. 1.2) находятся в параллельных ветвях.

Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.

Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:

а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;

б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;

в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.

Все электрические цепи делятся на линейные и нелинейные.

Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.

Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.

Тема: Электромагнитные явления

Урок: Электрическая цепь и ее составные части

Вспомним, что на прошлом уроке мы оговаривали три условия наличия электрического тока:

1. наличие зарядов;

2. наличие источника тока (гальванического элемента и др.). Источник тока создает электрическое поле внутри проводника, что является причиной движения зарядов;

3. наличие электрической цепи. О последнем понятии мы будет говорить сегодня.

Электрическая цепь должна содержать источник тока (рис. 1-3), т. е. элемент, который создает в цепи электрическое поле и обеспечивает движение заряженных частиц, и потребитель тока, т. е. например, любой бытовой прибор (рис. 4): лампочку, фонарик, компьютер, телевизор, стиральную машину, холодильник и т. п. Источник тока и потребители всегда соединяются проводами (проводниками), т. е. такими элементами, которые способны проводить электрический ток и обладают большим количеством свободных заряженных частиц.

Рис. 1. Гальванический элемент ()

Рис. 2. Аккумулятор ()

Рис. 3. Электростанция ()

Таким образом, электрическая цепь имеет следующие основные составные элементы: источник тока, потребители тока, соединительные провода .

Конечно же, потребители тока сами по себе состоят из более мелких элементов, каждый из которых имеет свое название, функцию и особенности. Электрические цепи бывают сложными и простыми, мы начнем их изучение с простейших вариантов, например, с устройства карманного фонарика. В его составные части входят: источник питания, лампочка, соединительные провода и выключатель. В конце урока мы соберем электрическую цепь, аналогичную цепи внутри фонарика и обсудим ее принцип работы.

Для удобства электрические цепи принято изображать в виде схем, в которых приняты определенные обозначения различных элементов. Условные обозначения элементов электрических цепей известны и классифицированы определенным образом, их достаточно много, но мы познакомимся с основными из них.

Определение . Электрическая цепь , изображенная на рисунке, называется электрической схемой .

Гальванический элемент (источник тока)

Как видно из рисунка, длинной полоской обозначают положительный полюс источника, а короткой - отрицательный

Гальваническая батарея (аккумулятор)

Таким образом обозначается соединение нескольких гальванических элементов

Соединяющиеся провода

Место соединения проводов обозначается жирной точкой, которую еще зачастую именуют узлом

Несоединяющиеся провода

Провода, которые не соединяются, в точке пересечения никак особо не выделяются

Лампа накаливания (лампочка)

Зажимы для подключения электроприборов

К подобному элементу на схеме можно подключать какой-либо электроприбор

Ключ (выключатель)

Элемент цепи для ее замыкания и размыкания

Электрический звонок

Для запоминания этого обозначения можно заметить, что оно похоже на грибочек

Резистор

Этот элемент цепи имеет большое сопротивление

Нагревательный элемент

Плавкий предохранитель

Прибор, который обеспечивает безопасность работы электрической цепи

Указанные в таблице элементы являются составными частями простейших электрических цепей.

Рассмотрим простейшую электрическую цепь на примере устройства карманного фонарика. В нее входят источник питания, лампочка накаливания, соединительные провода и выключатель (ключ).

Собирать цепь удобно в следующей последовательности: сначала подключим лампочку к одному из полюсов источника тока (батарейки), затем второй контакт на лампочке подключаем к разомкнутому предварительно ключу (выключателю) и, чтобы замкнуть цепь, второй контакт ключа соединяем со свободным полюсом источника тока.

После сбора цепи видно, что лампочка не горит, т. к. она все еще разомкнута с помощью ключа, и электрический ток не идет (не выполнено условие замкнутости электрической цепи). Теперь замыкаем ключ, и лампочка загорается (рис. 5), т. к. цепь становится замкнутой и все условия существования электрического тока выполнены.

Рис. 5.

Изобразим схему собранной нами электрической цепи с использованием приведенных в таблице условных обозначений (рис. 6).

Рис. 6.

Конечно же, бессмысленно рассматривать с практической точки зрения те электрические цепи, в которых не выполняется работа электрического тока. О действии электрического тока и о выполнении им работы мы поговорим позже.

На следующем уроке нашей темой будет «Электрический ток в металлах».

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
  2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.

Дополнительные р екомендованные ссылки на ресурсы сети Интернет

  1. Академик ().
  2. Интернет-портал Mukhin.ru ().
  3. YouTube ().

Домашнее задание

  1. Стр. 78: вопросы № 1-4, стр. 79: упражнение № 13. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  2. В вашем распоряжении есть гальванический элемент, лампочка, два ключа и соединительные провода. Нарисуйте принципиальную схему электрической цепи, в которой лампочка загорается только тогда, когда включены оба ключа.
  3. Железный гвоздь и отрезок медного провода воткнули в лимон. Потечет ли ток через провод, которым соединяют гвоздь и медный провод?
  4. С потолка в месте крепления люстры свисают три провода, по которым после подключения люстры идет ток. Если люстру подключить правильно, два выключателя работают таким образом, что один из них включает и выключает одну лампу, а другой - остальные три. Нарисуйте схему соединения ламп в люстре, выключателей и источника тока.

Человечество давно научилось использовать электрические явления природы в своих практических целях для получения, использования, а также преобразования энергии. Такое действие достигается путем применения определенных устройств. Элементы оборудования в совокупности образуют систему. Такая система известна, как электрическая цепь.

Элементы цепи

Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода.

Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

Источниками энергии в схеме такой цепи выступают аккумуляторы, генераторы тока и гальванические элементы. Их еще называют

В приемниках электрической цепи электроэнергия преобразовывается в другой тип энергии. Таким оборудованием бывают двигатели, нагреватели, лампы и т. д.

Стоит отметить, что система может быть внешней и внутренней. Они отличаются наличием приемника. Открытая цепь имеет его в своем составе, а закрытая - только

Электрическая цепь постоянного тока

Ток, величина которого не меняется с течением времени, называется постоянным.

Цепь, через которую проходит такой источник электричества, имеет замкнутую систему. Это электрические цепи постоянного тока. Их составляют различные элементы.

Для обеспечения постоянного источника энергии в системе применяются конденсаторы. Они способны накапливать запасы электрических зарядов.

Емкость конденсатора зависит от размера его металлических пластин.

Чем они больше, тем больший заряд может накопить этот элемент электрической цепи постоянного тока. Электрическую емкость изменяют в таких единицах, как фарада (ф). На схеме этот элемент выглядит следующим образом.

Вместе с источниками и приемниками тока эти элементы образуют электрические цепи постоянного тока.

Последовательное соединение в цепи

Большое количество электрических цепей состоят из нескольких приемников тока. Если эти элементы соединены друг с другом последовательно, то конец одного приемника присоединен к началу другого. Это последовательное соединение системы.

Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. Они удлиняют пути прохождения тока, который будет одинаковым на отдельных участках системы.

Схема электрической цепи в классическом варианте содержит последовательно присоединенные проводники и нагляднее всего описывается таким прибором, как электрогирлянда.

Недостатком такой системы является тот факт, что в случае выхода из строя одного проводника, система не будет работать вся целиком.

Параллельное соединение цепи

Схема электрической цепи параллельного типа соединения элементов является системой, в которой начало содержащихся в ней проводников соединяются в одной точке, а концы их - в другой. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Он распределяется обратнопропорционально сопротивлению приемников энергии.

Если у потребителей величина сопротивления одинаковая, то через них будет проходить одинаковый ток. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Сумма отдельно взятых элементов системы будет равна току в точке их соединения.

Присоединяя к такой цепи новые элементы, сопротивление системы будет уменьшаться. Это связано с увеличением общего сечения проводников при соединении нового потребителя электроэнергии. Позитивной характеристикой такого способа соединения цепи является автономность каждого элемента.

При отключении одного потребителя, совокупное сечение проводников уменьшается, а сопротивление электрической цепи становится большим.

Смешанное соединение в цепи

Смешанный вариант соединения довольно распространен в сфере производства электротехники.

Эта цепь содержит в себе одновременно принцип последовательного и параллельного присоединения проводников.

Чтобы определить сопротивление нескольких потребителей такой схемы, находят отдельно сопротивление всех параллельно и последовательно присоединенных проводников. Их приравнивают к единому проводнику, что в итоге упрощает всю схему.

Режимы работы цепи

Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.

При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным. Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.

Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.