Как проходит ток в цепи. Большая энциклопедия нефти и газа

Cтраница 2


Прохождение электрического тока сопровождается непрерывным расходованием энергии на преодоление сопротивления. Эту энергию доставляет источник электрической энергии, в котором происходит процесс преобразования механической, химической, тепловой или других видов энергии в электрическую.  

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю.  

Прохождение электрического тока через раствор электролита заключается в том, что составные части электролита - разноименно заряженные ионы - передвигаются в противоположных направлениях к электродам. На электродах ионы разряжаются и выделяются в виде нейтральных атомов или атомных групп, которые часто тут же вступают во взаимодействие между собой, или с молекулами растворителя, или же с веществом электрода.  

Прохождение электрического тока всегда сопровождается выделением тепла.  

Прохождение электрического тока (движение электрических зарядов) через раствор существенно отличается от движения электрических зарядов по металлическому проводнику.  

Прохождение электрического тока по проводнику возможно лишь в том случае, когда в последнем имеются положительно или отрицательно заряженные частицы, способные свободно двигаться. Такими частицами могут быть электроны или ионы.  


Прохождение электрического тока через электролит связано с перемещением вещества электролита, составные части которого выделяются на электродах.  

Прохождение электрического тока через константановую обмотку биметаллической пластины вызывает деформацию пластины, в результате чего она будет периодически размыкать контакты. Пока контакты замыкаются слабым усилием, пластина быстро нагревается и деформируется, но остывает и возвращается к первоначальной форме после размыкания контактов медленно. Соответственно в обмотку биметаллической пластины приемника будут проходить слабые кратковременные импульсы, под действием которых эта пластина деформируется мало, а стрелка перемещается из крайнего левого положения лишь к нулевой отметке.  

Прохождение электрического тока через электролиты связано с явлением электролиза. При этом электрические заряды переносятся вместе с ионами. Такую электропроводность называют ионной.  

Прохождение электрического тока через растворы электролитов сопровождается разрядкой ионов па электродах.  

Прохождение электрического тока через тело человека вызывает электрические травмы различного характера: электрические ожоги, электрический удар, электрические знаки-метки. Одновременно в организме человека может происходить электролитическое разложение крови и других жидкостей.  

Прохождение электрического тока можно для ясности уподобить движению потока воды, - тогда силе тока J будет соответствовать количество воды, проходящее через сечение данного канала в единицу времени, напряжению Е будет соответствовать величина напора воды или высота падения водного потока, наконец, сопротивлению R будет соответствовать сопротивление, оказываемое воз. Поэтому как количество воды, проходящее через сечение канала в единицу времени прямо пропорционально высоте падения водяного потока и обратно пропорционально сопротивлению, оказываемому стенками канала, так, по закону Ома, количество электричества, протекающее через данное сечение в единицу времени (сила тока), прямо пропорционально электродвижущей силе (напряжению) и обратно пропорционально сопротивлению проводника.  

Прохождение электрического тока через проводники первого рода не сопровождается переносом вещества в виде ионов. Примером могут служить металлы и полупроводники. Растворы электролитов являются проводниками второго рода. Прохождение через них электрического тока вызывает передвижение вещества в виде ионов и его химические превращения. Ток к проводникам второго рода подводится через проводники первого рода. При прохождении постоянного тока в местах, где изменяется механизм переноса электричества, ионы электролита разряжаются, а нейтральные атомы приобретают заряд.  

Прохождение электрического тока через гальванический элемент выводит электроды из состояния равновесия.  

Движение электронов по проводнику называется электрическим током. В электротехнике условно принято считать направление тока противоположным направлению движения электронов в проводнике. Иначе говоря, направление тока принято считать совпадающим с направлением движения положительных зарядов. Электроны не проходят в своем движении всю длину проводника. Наоборот, они пробегают очень небольшие расстояния до столкновения с другими электронами, атомами или молекулами. Это расстояние называется длиной свободного пробега электронов. Электрический ток непосредственно наблюдать нельзя. О прохождении тока можно только судить по тем действиям, которые он производит. Признаки, по которым легко судить о наличии тока:

1) ток, проходя через растворы солей, щелочей, кислот, а также через расплавленные соли, разлагает их на составные части;

2) проводник, по которому проходит электрический ток, нагревается;

3) электрическийток, проходя по проводнику, создает вокруг него магнитное поле.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя.

Ток, не изменяющийся по величине и по направлению, называется постоянным током. Постоянный электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока. Постоянный ток дают гальванические элементы, аккумуляторы, генераторы постоянного тока, если условия работы электрической цепи не меняются.

Через поперечное сечение проводника проходит заряд за определенное время. Сила тока, прошедшего через поперечное сечение проводника в течение времени, равна: I = q/t. Отношение величины тока I к площади поперечного сечения проводника З называется плотностью тока и обозначается?. ?= I/S; плотность тока измеряется в А/м2.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическим сопротивлением R проводника называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока. R = ?·l /S, где ?- удельное сопротивление проводника, l– длина проводника.

Ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закона Ома и выражается формулой: I = U/R. Ток проходит не только по внешней части цепи, но и по внутренней. ЭДС (E ) источника идет на покрытие внутренних и внешних потерь напряжения в цепи. Закон Ома для всей цепи: I = E/(R+r), где R– сопротивление внешней части цепи, r – сопротивление внутренней части цепи.

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий :

.Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

I = lim Dq/Dt , (*)
Dt - 0

т.е. I = q", где q" - производная от заряда по времени.

Плотность тока - j, единица измерения - 1 А/м 2 .

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

e = А ст. /q .(3)

Потенциал- электростатического поля - скалярная величина, равная отношениюпотен­циальной энергии заряда в поле к этому заряду:

Энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Напряжение - разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного

положительного заряда вдоль силовых линий этого поля.

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

2. ОМА ОБОБЩЁННЫЙ ЗАКОН- линейная зависимость для плазмы между плотностью тока j и напряжённостью эфф. электрич. поля Е эфф, включающего объёмные силы неэлектрич. происхождения (т. н. сторонние силы), вызывающие ток. О. о. з. записывается в дифференц. форме.
Для полностью ионизованной двухкомпонентной плазмы, находящейся в магн. поле Н , О. о. з. в стационарном случае имеет вид

где - соответственно продольная и поперечная проводимости плазмы, т е - масса электрона, v ei - частота его соударений с коном, Е" = Е - [иН ] - электрич. иоле в собств. системе плазмы, движущейся со скоростью и с, p i - ионное давление, п - концентрация плазмы, R - термосила, обусловленная градиентом темп-ры плазмы Т:

О. о. з. в форме (1) выполняется при условии, что пространственные масштабы неоднородностей тока существенно превосходят дебаевский и ларморовский радиусы частиц плазмы.
В часто встречающейся ситуации, когда градиенты давления и темп-ры плазмы имеют одинаковое направление, перпендикулярное магн. полю Н , электрич. поле Е" естеств. образом разделяется на три компоненты и При этом из (1) выделяются "продольный" и "поперечный" законы Ома:

3. Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа - элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Источники питания цепи постоянного тока - это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные - напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

4. Действующий ток численно равен такому постоянному току, при котором за один период в проводнике с тем же сопротивлением выделяется такое же количество тепла, как и при переменном:

, ,

I - постоянный ток;

i - мгновенный ток;

T - период изменения тока.

Среднеквадратическое значение тока:

Среднеквадратическое значение напряжения: .

Из всех форм периодических токов наибольшее распространение получили синусоидальные токи. Синусоидальные токи позволяют наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. В линейных электрических синусоидальные токи всегда сохраняют свою фазу.

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями и представить в виде вращающихся векторов на декартовой или комплексной плоскости.

Рисунок 2.3 - Графическое изображение синусоидальных напряжений

Запишем синусоидальные напряжения с помощью тригонометрических функций:

. (2.15)

Значения в скобках синуса называют фазами синусоид, а значения фазы в начальный момент времени - начальной фазой.

Величина ω называется угловой частотой:

, [рад/с] (2.16)

Т - период [c];

f - частота [Гц].

При совместном рассмотрении двух синусоидально изменяющихся величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз:

Если α=0, то говорят, что сигналы синфазны, если α=π, то говорят, что сигналы в противофазе. Если α=+π/2 - в квадратуре. Т.е. е 2 отстаёт от е 1 на угол α.

5 для установления эквивалентности переменного тока в отношении энергии и мощности, общности методов расчета, а также сокращения вычислительной работы изменяющиеся непрерывно во времени токи. ЭДС и напряжения заменяют эквивалентными неизменными во времени величинами. Действующим или эквивалентным значением называется такой неизменный во времени ток, при котором выделяется в резистивном элементе с активным сопротивлением r за период то же количество энергии, что и при действительном изменяющемся синусоидально токе.

Давайте проведем такой мысленный эксперимент. Представьте, что на расстоянии в 100 километров от города находится некая деревня, и что из города в эту деревню проложена проводная сигнальная линия длиной примерно в 100 километров с лампочкой на конце. Линия экранированная двухпроводная, она проложена на опорах вдоль автомобильной дороги. И если теперь послать сигнал по этой линии из города в деревню, то через какое время он сможет быть там принят?

Расчеты и опыт говорят нам, что сигнал в виде засветившейся лампочки появится на другом конце минимум через 100/300000 секунд, то есть минимум через 333,3 мкс (без учета индуктивности провода) в деревне загорится лампочка, значит в проводнике установится ток (допустим, мы используем постоянный ток от ).

100 - это длина каждой из жил нашего провода в километрах, а 300000 километров в секунду - скорость света - скорость распространения в вакууме. Да, «движение электронов» распространится по проводнику со скоростью света.



Но тот факт, что электроны начинают приходить в движение друг за другом со скоростью света вовсе не означает, что сами электроны движутся в проводнике со столь огромной скоростью. Электроны или ионы, в металлическом проводнике, в электролите или в другой проводящей среде, не могут двигаться так быстро, то есть носители заряда не движутся друг относительно друга со скоростью света.

Скорость света в данном случае - это та скорость, с которой носители заряда в проводнике начинают друг за другом приходить в движение, то есть это скорость распространения поступательного движения носителей заряда. Сами же носители заряда имеют «дрейфовую скорость» при установившемся токе, скажем в медном проводнике, всего несколько миллиметров в секунду!

Поясним этот момент. Допустим, у нас есть заряженный конденсатор, и мы присоединяем к нему длинные провода от нашей лампочки, установленной в деревне на расстоянии в 100 километров от конденсатора. Присоединение проводов, то есть замыкание цепи осуществляем выключателем вручную.

Что произойдет? При замыкании выключателя начинается движение заряженных частиц в тех частях проводов, которые присоединены к конденсатору. Электроны покидают минусовую обкладку конденсатора, электрическое поле в диэлектрике конденсатора уменьшается, положительный заряд противоположной (плюсовой) обкладки уменьшается - на нее забегают электроны из присоединенного провода.

Так разность потенциалов между обкладками уменьшается. А так как электроны в прилегающих к конденсатору проводах начали двигаться, то на их места приходят другие электроны из отдаленных мест провода, иначе говоря начинается процесс перераспределения электронов в проводе из-за действия электрического поля в замкнутой цепи. Этот процесс распространяется все дальше и дальше по проводу и наконец достигает нити накаливания сигнальной лампы.

Итак, изменение электрического поля распространяется по проводнику со скоростью света, активируя электроны в цепи. Но сами электроны движутся гораздо медленнее.



Прежде чем пойти дальше, рассмотрим гидравлическую аналогию. Пусть из деревни в город по трубе подается минеральная вода. Утром в деревне запустили насос, и он стал повышать давление воды в трубе, чтобы заставить воду из деревенского источника двигаться в город. Изменение давления распространяется по трубопроводу очень быстро, примерно со скоростью 1400 км/с (зависит от плотности воды, от ее температуры, от величины давления).

Спустя долю секунды после пуска насоса в деревне, вода начала двигаться уже в городе. Но та же ли это вода, что движется в данный момент в деревне? Нет! Молекулы воды в нашем примере толкают друг друга, а сами движутся значительно медленнее, поскольку скорость их дрейфа зависит от величины напора. Толкотня молекул между собой распространяется на много порядков быстрее чем движение молекул вдоль трубы.

Так и с электрическим током: скорость распространения электрического поля аналогична распространению давления, а скорость движения электронов, образующих ток, аналогична движению непосредственно молекул воды.

Теперь вернемся непосредственно к электронам. Скорость упорядоченного движения электронов (или других носителей заряда) называют дрейфовой скоростью. Ее электроны приобретают благодаря действию .

Если внешнего электрического поля нет, то электроны движутся хаотично внутри проводника лишь в тепловом движении, но направленного тока нет, и следовательно дрейфовая скорость в среднем оказывается равной нулю.

Если внешнее электрическое поле приложено к проводнику, то в зависимости от материала проводника, от массы и заряда носителей заряда, от температуры, от разности потенциалов, - носители заряда придут в движение, но скорость этого движения будет существенно меньше скорости света, порядка 0,5 мм в секунду (для медного проводника сечением 1 мм2, по которому течет ток 10 А, средняя скорость дрейфа электронов составит 0,6–6 мм/c).

Эта скорость зависит от концентрации свободных носителей заряда в проводнике n, от площади сечения проводника S, от заряда частицы e, от величины тока I. Как видите, несмотря на то, что электрический ток (фронт электромагнитной волны) распространяется по проводнику со скоростью света, сами электроны движутся куда медленнее. Получается, что скорость тока - это очень малая скорость.