Основные элементы круговорота азота. Биосферные процессы

Рис. Круговорот азота в биосфере

Круговорот азота охватывает все области биосферы. Поглощение его растениями ограничено , так как они усваивают азот только в форме соединения его с водородом и кислородом (N0 3- и NH 4). И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а точнее поч­венные бактерии , постепенно разлагают белковые вещества отмерших организмов и превращают их в ам­монийные соединения, нитраты и нитриты . Часть нит­ратов попадает в процессе круговорота в подземные воды и загрязняет их.

Азот возвращается в атмосферу вновь с выделен­ными при гниении газами . Правда, часть его окисля­ется в воздухе - во время грозовых разрядов - и поступает в почву с дождевой водой, но таким спо­собом его фиксируется в 10 раз меньше, чем с помо­щью бактерий.

Вмешательство человека в круговорот азота состоит в следующем:

    при сжигании ископаемого топлива в атмосферу выбрасываются большие количества оксида азота (NO). Оксид азота затем соединяется в атмосфере с кислородом и образуется диоксид азота (NO 2),который при взаимодействии с водяным паром может образовывать азотную кислоту (HNO 3 ) . Эта кислота становится компонентом кислотных осадков .

    использование удобрений приводит к выделению в атмосферу «парникового газа » закиси азота (N 2 O )

    увеличение количества нитратов и ионов аммония в водных экосистемах при смыве с удобрений с полей . Избыток питательных веществ приводит к быстрому росту водорослей , при разложении которых расходуется растворенный кислород, что приводит к массовым морам рыб .

Биохимические циклы фосфора и серы намного менее совершенны, т.К. Их основная масса содержится в резервном фонде земной коры, в «недоступном» резерве.

Круговорот серы и фосфора – это типичный осадочный биогеохимический цикл . Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться снова в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Круговорот фосфора

Рис. Круговорот фосфора в биосфере

Фосфор, главным образом в виде фосфат-ионов (РО 3- и НРО 4 2-), является важным питательным элементом как для растений, так и для животных . Он входит в со­став молекул ДНК , несущих генетическую информацию ; молекул АТФ и АДФ , в которых запасается необходи­мая для организмов химическая энергия , используемая при клеточном дыхании; молекул жиров , образующих клеточные мембраны в растительных и животных клет­ках; а также веществ, входящих в состав костей и зу­бов .

Фосфор содержится в горных породах , образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала – апатита .

Общий круговорот фосфора можно разделить на две части - водную и наземную .

В наземных экосистемах фос­фор, высвобождаемый при медленном разрушении (или выветривании ) фосфатных руд , растворяется почвенной влагой и поглощается корнями растений .

Животные получают необходимый им фосфор, поедая растения или других растительноядных животных. Значительная часть этого фосфора в виде экскремен­тов животных и продуктов разложения мертвых жи­вотных и растений возвращается в почву , с эрозией - в реки , и, в конце концов, на дно океана в виде нерастворимых фосфатных осадочных пород.

В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка – морских птиц . Их экскременты (гуано ) снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море . Т.о., часть фосфора возвращается на поверхность суши в виде гуано - обогащенной фосфором органической массы экскрементов питающихся рыбой птиц (пели­канов, олушей, бакланов и т. п.). Однако несравнимо большее количество фосфатов ежегодно смывается с поверхности суши в океан в результате природных процессов и антропогенной деятельности.

Вмешатель­ство человека в круговорот фосфора сводится в основ­ном к двум вариантам:

    добыча больших количеств фосфатных руд для производства минеральных удобрений и моющих средств;

    увеличение избытка фосфат-ионов в водных эко­системах при попадании в них загрязненных стоков с животноводческих ферм , смытых с полей фосфатных удобрений , а также очищенных и неочищенных ком­мунально-бытовых стоков . Избыток этих элементов способствует «взрывному» росту сине-зеленых водорослей и других водных растений, что нарушает жизненное равновесие в водных экосистемах.

Круговорот серы

Сера также имеет основной резервный фонд в отложениях и почве , но в отличие от фосфора имеет резервный фонд и в атмосфере .

В обменном фонде главная роль принадлежит микроорганизмам . Одни из них восстановители , другие – окислители .

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах – в форме иона (SO 4 -2), в газообразной фазе – в виде сероводорода (H2S) или сернистого газа (SO2). В некоторых организмах сера накапливается в чистом виде (S2) и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

Круговорот серы , хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продукции и разложения .

В наземных экосистемах сера возвращается в почву при отмирании растений , захватывается микроорганизмами , которые восстанавливают ее до H2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы – так продолжается круговорот.

Круговорот серы, так же как и азота, может быть нарушен вмешательством человека . Виной тому прежде всего сжигание ископаемого топлива , а особенно угля. Сернистый газ (SO2) нарушает процессы фотосинтеза и приводит к гибели растительности .

При нарушении биогеохимических циклов человеком круговорот веществ становится не циклическим , а ациклическим . Охрана природных ресурсов должна быть в частности направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Главный источник азота органических соединений - газообразный азот N 2 в составе атмосферы. Молекулярный азот не усваивается живыми организмами. Переход его в доступные живым организмам соединения (фиксация) может происходить несколькими путями. Фиксация азота частично происходит в атмосфере, где при грозовых разрядах образуется оксид азота (II), который окисляется до оксида азота (IV), с последующим образованием азотной кислоты и нитратов, выпадающих на поверхность Земли с атмосферными осадками.

Наиболее важной формой фиксации азота является ферментативная фиксация в процессе жизнедеятельности сравнительно немногих видов организмов-азотфиксаторов . Отмирая, они обогащают среду органическим азотом, который быстро минерализуется. Наиболее эффективна фиксация азота, осуществляемая бактериями, формирующими симбиотические связи с бобовыми растениями.

В результате их деятельности в наземных и подземных органах растений (например, клевера или люцерны) за год накапливается азота до 150-400 кг на 1 га. Азот связывают также свободноживущие азотфиксирующие почвенные бактерии, а в водной среде - сине-зеленые водоросли (цианобактерии). Все азотфиксаторы включают азот в состав аммиака (NH 3), и он сразу же используется для образования органических веществ, в основном для синтеза белков. Минерализация азотсодержащих органических веществ редуцентами происходит в результате процессов аммонификации и нитрификации .

Аммонифицирующие бактерии в процессе биохимического разложения мертвого органического вещества переводят азот органических соединений в аммиак, который в водном растворе образует ионы аммония (NH 4 +). В результате деятельности нитрифицирующих бактерий в аэробной среде аммиак окисляется в нитриты (NO 2 -), а затем в нитраты (NO 3 -).

Большинство растений получают азот из почвы в виде нитратов. Поступающие в растительную клетку нитраты восстанавливаются до нитритов, а затем до аммиака, после чего азот включается в состав аминокислот, составляющих белки. Часть азота растениями усваивается непосредственно в виде ионов аммония из почвенного раствора.

Животные получают азот по пищевым цепям прямо или опосредованно от растений. Экскреты и мертвые организмы, составляющие основу детритных пищевых цепей, разлагаются и минерализуются организмами-редуцентами, превращающими органический азот в неорганический.

Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрофикаторов, осуществляющих в анаэробной среде процесс, обратный нитрификации, восстанавливая нитраты до свободного азота.

Значительная часть азота, попадая в океан (в основном со стоком вод с континентов), используется водными фотосинтезирующими организмами, прежде всего фитопланктоном, а затем, попадая в цепи питания животных, частично возвращаются на сушу с продуктами морского промысла или птицами. Небольшая часть азота попадает в морские осадки. Схема круговорота азота приведена на рис.6.


Круговорот фосфора

В круговороте фосфора, в отличие от круговоротов углерода и азота, отсутствует газовая фаза. Фосфор в природе в больших количествах содержится в минералах горных пород и попадает в наземные экосистемы в процессе их разрушения. Выщелачивание фосфора осадками приводит к поступлению его в гидросферу и соответственно в водные экосистемы. Растения поглощают фосфор в виде растворимых фосфатов из водного или почвенного раствора и включают его в состав органических соединений - нуклеиновых кислот , систем переноса энергии (АДФ, АТФ), в состав клеточных мембран. Другие организмы получают фосфор по пищевым цепям. В организмах животных фосфор входит в состав костной ткани, дентина .

В процессе клеточного дыхания происходит окисление органических соединений, содержащих фосфор, при этом органические фосфаты поступают в окружающую среду в составе экскретов. Организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и, таким образом, снова вовлекаться в круговорот.

Поскольку в круговороте фосфора отсутствует газовая фаза, фосфор как и другие биогенные элементы почвы, циркулирует в экосистеме лишь в том случае, если отходы жизнедеятельности откладываются в местах поглощения данного элемента. Нарушение круговорота фосфора может происходить, например, в агроэкосистемах, когда урожай вместе с извлеченными из почвы биогенами перевозится на значительные расстояния, и они не возвращаются в почву в местах потребления.

После неоднократного потребления фосфора организмами на суше и в водной среде, в конечном итоге он выводится в донные осадки в виде нерастворимых фосфатов. После поднятия осадочных пород над уровнем моря в ходе большого круговорота вновь начинают действовать процессы выщелачивания и бигенного разрушения.

Внесение фосфорных удобрений, представляющих собой продукты переработки осадочных пород, позволяет восполнить потребленный фосфор в регионах с интенсивным сельскохозяйственным производством. Однако, смыв удобрений с полей, а также поступление в водоемы фосфатов с продуктами жизнедеятельности животных и человека может приводить к перенасыщению водных экосистем фосфатами и нарушению в них экологического равновесия.

Схема круговорота фосфора приведена на рис. 7.

Круговорот серы

В глобальном круговороте серы (рис. 8) кроме бактерий, грибов и растений, использующих сульфат природных вод и почвы для синтеза серосодержащих аминокислот, работают еще несколько групп специализированных бактерий, осуществляющих превращения в реакциях H 2 S о S <=> SO 4 и H 2 S <=> SO 4 .

Потребность биоты в сере относительно невелика (биофильность S»1), а природные резервуары серы огромны. Поэтому сера редко оказывается лимитирующим биогеном . Биотический круговорот серы включен в общий, в значительной своей части абиогенный, процесс постепенного превращения восстановленных форм серы (в основном сульфидных руд), сложившихся в восстановительной обстановке древней Земли, в окисленные формы. Эта тенденция существенно усиливается техногенезом .

Упрощенная схема круговорота серы

Биотический круговорот биогенных катионов - Na, К, Са, Mg - и микроэлементов на суше ограничивается их потреблением из почвы, последующей миграцией по полным трофическим цепям и возвратом в почву с помощью минерализующих редуцентов.

Проточность (утечка) круговорота для катионов весьма велика. В природных водах, особенно в океане, реализуется мощная концентрирующая функция гидробионтов по отношению к кальцию и магнию.

Высокоточная биологическая регуляция обмена веществ и энергии в биосфере определяет и регуляцию основных параметров окружающей среды. С экологической точки зрения это - важнейшие свойства биосферы как динамической системы.

Большой круговорот веществ в природе (геологический ) обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли.

Осадочные горные породы, образованные за счет выветривания магматических пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и давлений. Там они переплавляются и образуют магму - источник новых магматических пород. После поднятия этих пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадоч-ные породы. Символом круговорота веществ явля-ется спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то новое, что со временем приводит к весьма значительным изменениям.

Большой круговорот — это и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности Мирового океана (на что затрачивается почти половина поступающей к поверхности Земли солнечной энергии), переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает на ту же водную поверхность океана.

Подсчитано, что в круговороте воды на Земле ежегодно участвует более 500 тыс. км 3 воды.

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле, весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Малый круговорот веществ в биосфере (биогеохимический ), в отличие от большого, совершается лишь в пределах биосферы. Сущность его в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения.

Этот круговорот для жизни биосферы - главный , и он сам является порождением жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей планете, обеспечивая биогеохимический круговорот веществ.

Главным источником энергии круговорота является солнечная радиация, которая используется в фотосинтезе. Эта энергия довольно неравномерно распределяется по поверхности земного шара. Например, на экваторе количество тепла, приходящееся на единицу площади, в три раза больше, чем на архипелаге Шпицберген (80° с. ш.). Кроме того, она теряется путем отражения, поглощается почвой, расходуется на транспирацию воды и т. д. а на фотосинтез тратится не более 5% от всей энергии, но чаще всего 2—3%.

В ряде экосистем перенос вещества и энергии осуществ-ляется преимущественно посредством трофических цепей. Такой круговорот обычно называют биологическим . Он предполагает замкнутый цикл веществ, многократно используемый трофической целью.

Однако в масштабах всей биосферы такой круговорот невозможен. Здесь действует биогеохимический круговорот, представляющий собой обмен макро- и микроэлементов и простых неорганических веществ (СО 2 , Н 2 О) с веществом атмосферы, гидросферы и литосферы.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Российской Федерации

Санкт-Петербургский государственный горный институт им. Г.В. Плеханова

(технический университет)

Кафедра геоэкологии

Реферат

По дисциплине: Экология мегаполисов и промагломераций

Тема: «Круговорот азота»

Выполнила: студентка гр. ИЗ-07-1 /Муравьева А.А./

Проверил: доцент /Исаков А.Е./

Санкт-Петербург

Введение

1. Круговорот азота

2. Влияние хозяйственной деятельности человека на круговорот азота

Список литературы

Введение

Азот – газ, молекула которого состоит из двух атомов. Он содержится в атмосфере – на его долю приходится 4/5 всего воздуха. В чистом виде азот соединяется лишь с очень немногими веществами и большинству живых организмов не нужен. Мы сами, например, с каждым вдохом вбираем немалое количество этого химического элемента, который потом выдыхается обратно. Часть его растворяется в крови, но и там с ним ничего не происходит.

Но если заставить азот соединиться с другими атомами, то образуются соединения, необходимые для всего живого. Растения и животные не могут способствовать образованию этих соединений. Таким свойством наделены некоторые бактерии, живущие в почве, - их называют азотфиксирующими. Только их присутствие в почве делает возможным существование всех других форм жизни.

Азотофиксация – процесс связывания свободного азота атмосферы биохимическим путем с помощью бактерий. Способностью к азотофиксации обладают бактерии Rhizobium, проникающие в корни растений (особенно в бобовые), свободноживущие Azotobakter, Clostribium, Azotomonos, а также отдельные роды сине – зеленых водорослей. Эти организмы называют азотофиксаторами. Биохимическая фиксация азота играет большую роль в азотном балансе почв и в земледелии.

1. Круговорот азота

Круговорот важнейшего элемента живого вещества - азота - охватывает все составные части геосферы и является одним из основных биогеохимических циклов, обеспечивающих поддержание жизни на нашей планете.

Азот - один из наиболее распространенных элементов на Земле. Его запасы в атмосфере нашей планеты составляют 4*10 15 т. (78,09% - по объему; 65,6% - по массе).

Азот поступает на земную поверхность вместе с другими газами при извержениях (около 30 т., из них 8 т. на суше, 22 т. за счет подводного вулканизма), при процессах ионизации атмосферы. Соединения азота, синтезированные при ионизации атмосферы, попадают на Землю с осадками в количестве 22 млн. т. азота (над сушей) и 82 т. (над океаном) в год.

Газообразный азот возникает в результате реакции окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов:

4NH 3 + 3O 2 => 2N 2 + 6H 2 O

Важнейшим источником поступления азота на земную поверхность является его биологическая фиксация - связывание молекулярного азота атмосферы в азотистые соединения различными микроорганизмами, в том числе клубеньковыми бактериями, живущими в симбиозе с бобовыми растениями.

Некоторые количества связанного азота в почвах могут дать микроскопические сине-зеленые водоросли ( Cyauphyccal ), которые являются фотосинтезирующими микроорганизмами. Однако вряд ли поступление азота в почву в результате их деятельности в условиях неорошаемого земледелия превышает несколько килограммов на 1 га в год.

Азот, накопившийся в почве, принимает участие в биологическом круговороте. Ежегодно в биологическом круговороте на суше участвуют 2,3*10 9 т. азота (в пересчете на реальный растительный покров). Он входит в состав живого вещества и является основой растительной и в конечном итоге животной массы. Большая часть азота растений представлена белковыми веществами.

Азот является составной частью таких жизненно важных веществ, как нуклеиновые кислоты, хлорофилл, некоторых ростовых веществ (гетероауксин) и витаминов группы В.

Количество азота, вовлекаемого в продукцию живого вещества, в естественных условиях уравновешивается тем количеством, которое возвращается в почву при его отмирании и разложении.

Биологический азот претерпевает в почвах циклические превращения (из нитратов и нитритов - в аммиак и аминокислоты и обратно), в процессе которых он меняет свои валентности.

В результате процесса микробиологического превращения аммонийных солей в нитраты (нитрификация) азот накапливается в той форме, которая вполне доступна растениям. Интенсивность процесса нитрификации в значительной мере зависит от климатических и почвенных условий, температурного режима, увлажнения, химических и физических свойств почвы (степень аэрации, кислотность и др.). Количество общего азота, участвующего в биологическом круговороте, в экваториальном и тропическом поясах наиболее велико. Высокий окислительный потенциал среды способствует быстрой нитрификации азотсодержащих веществ.

Нитрификация – процесс микробиологического превращения аммонийных солей в нитраты – основную форму азотного питания растений. Протекает в почве и воде водоемов. Проходит в две стадии:

1) сначала ион аммония окисляется бактериями в нитрит – ион

NH 3 + O 2 + CO 2 = HNO 2 + - органическое вещество.

2) нитрит – ион окисляется в нитрат – ион

HNO 2 + O 2 + CO 2 = HNO 3 + - органическое вещество.

Процессы разложения органических остатков протекают также исключительно интенсивно и, наряду с господством промывного режима почв, приводят к быстрой потере органических и минеральных веществ.

В более высоких широтах темпы разложения органических остатков замедляются, сезонность климата обеспечивает перерывы во времени поступления опада. Это способствует лучшей аккумуляции питательных элементов в почвах, в том числе азота. Ежегодно с опадом во влажнотропических лесах возвращается 260 кг/га азота, в субтропических лесах - 226, лесах умеренного пояса-45-90 (иногда и менее), в степях - 90-161, пустынях - 14-18 кг/га.

На темпы разложения органического вещества почвы и нитрификации оказывают влияние термические и окислительно-восстановительные условия. С повышением температуры темпы нитрификации систематически возрастают, достигая максимума при 34,5

. Этот процесс не приостанавливается и при низких температурах, но идет крайне медленно, так как нитрифицирующие бактерии чувствительны к пониженной температуре.

При температуре ниже 8-10

, наряду с некоторыми снижениями поступлений в корни нитратного и аммиачного азота, ослабляется использование азота на образование органических азотных соединений и передвижение азота из корней в надземные органы. При еще более низких температурах (5-6 и ниже) поглощение азота корнями резко снижается.

В результате усиленной деятельности нитрифицирующих бактерий большое количество азота накапливается в парах (вчистом пару количество нитратного азота в 2- 2,5 раза выше, чем в занятом).

Ядохимикаты также оказывают определенное воздействие на деятельность почвенной микрофлоры и, таким образом, влияют на уровень обеспеченности растений азотом. Так, хлорорганические соединения (гексахлоран, гептахлор и др.) в случае применения в высоких дозах могут тормозить процессы нитрификации. Фосфорорганические соединения при внесении в повышенных дозах также способны в определенных условиях несколько депрессировать нитрификационные процессы. Такие препараты, как симазин, атразин и др. и производные хлорфеноксиуксусной и хлорфеноксимасляной кислот, к числу которых принадлежат широко распространенные гербициды, как правило, не оказывают депрессирующего влияния на почвенную микрофлору, хотя в отдельных случаях отмечается заметное угнетение нитрификации и стимулирующее влияние на аммонификацию. В то же время производные хлоруксусных и хлорпропионовых кислот проявляют себя довольно сильными ингибиторами нитрификации.

В результате разложения органических веществ, содержащих азот (аммонификация ), в почве накапливаются соли аммония и др. В присутствии кислорода разложение происходит быстрее с образованием продуктов глубокого распада. Без кислорода белок обычно расщепляется до полипептидов и аминокислот, т. е. сравнительно неглубоко. Конечными продуктами аммонификации являются аммиак, углекислота, метан, водород, вода.

Круговорот азота, обусловленный деятельностью живых организмов, не полностью замкнут, так как часть азота при участии бактерий превращается в элементарный азот и возвращается в атмосферу (денитрификация ).

Бактерии-денитрификаторы постоянно отдают азот в атмосферу: они разлагают нитраты в азот, который улетучивается. Эти бактерии активны главным образом в почвах, которые очень богаты азотом и углеродом (особенно в удобренных навозом). Количество азота, образующегося ежегодно в процессе денитрификации, составляет около 147*10 6 т. Результатом денитрификации являются, например, подземные газовые струи из чистого азота. На биогенный характер струй указывает отсутствие в них аргона, обычного в атмосфере.

Часть азота может выйти из круговорота за счет захоронения органического вещества в закрытых водоемах. Если принять суммарную мощность годового прироста торфообразователей для всей площади болот 11,3*10 14 г, то количество азота, ежегодно захороняющегося на суше (0,8-2,9% от веса торфообразователей), составляет около 20*10 6 т. Наибольшие количества азота могут выйти из круговорота в результате накапливания на поверхности Земли селитры (калийных солей азотной кислоты).

Азота в природе.

Одним из наиболее важных элементов является азот. Он входит в состав белков и нуклеиновых кислот. Часть азота усваивается во время молнии, соединяясь с кислородом и образуя оксиды азота. Но основная масса азота переходит в почву и воду в результате фиксации атмосферного азота живыми организмами (рис. 77).

Таким образом, в процессе биогенной миграции в результате взаимодействия живой (биотической) и неживой (абиотической) природы происходит переход неорганической материи в живые организмы и их превращение с возвратом в абиотическое состояние. Этот круговорот азота происходит в природе беспрерывно, и совершается за счёт четырёх последовательных процессов: азотфиксации , аммонификации , нитрификации и денитрификации .

Азотфиксация — это процесс превращения различными микроорганизмами элементарного азота атмосферы в азотистые соединения.

Живущие в почве азотфиксирующие бактерии обогащают почву азотом в результате их минерализации после гибели. На каждом гектаре земли, таким образом, ежегодно накапливается около 25 кг азота.

Наиболее эффективными азотфиксирующими являются клубень-ковые бактерии , обитающие в корневой системе бобовых растений, и свободно живущие в почве азотобактерии .

Аммиак частично усваивается растениями, а час-тично бактериями и превращается в нитраты. Этот процесс назы-вается нитрификацией .

Нитраты, как и аммонийные соли, использу-ются растениями и микроорганизмами. Некоторая же часть нитратов расщепляется отдельными бактериями до элементарного азота и выделяется в атмосферу. Этот процесс называется денитрификацией .

Картинки (фото, рисунки)

На этой странице материал по темам:

Изотопы

Природный азот состоит из двух стабильных изотопов 14 N - 99,635% и 15 N - 0,365%.

Известны радиоактивные изотопы азота с массовыми числами 11,12,13,16 и17. Все они являются очень короткоживущими изотопами. Самый стабильный из них 13 N имеет период полураспада 10 мин.

Магнитный момент ядер изотопов I N 14 =1, I N 15 =1/2.

Распространенность

Вне пределов Земли азот (его соединения и радикалы - CN", NH", NH` 2 , NH 3) обнаружен в газовых туманностях, солнечной атмосфере, на Уране, Нептуне, межзвёздном пространстве. В атмосфере Венеры зафиксировано около 2% азота, но эта цифра ещё требует подтверждения. Азот - четвёртый по распространенности элемент Солнечной системы (после водорода, гелия и кислорода). Жизнь многим обязана азоту, но и азот, по крайней мере, атмосферный, своим происхождением обязан не столько Солнцу, сколько жизненным процессам.

Большая часть азота находится в природе в свободном состоянии. Азот, в форме двухатомных молекул N 2 составляет большую часть атмосферы, где его содержание составляет 75,6% (по массе) или 78,084% (по объему), то есть около 3,87*10 15 тонн. В общем, мы обитаем в азотной атмосфере, умеренно обогащённой кислородом.

Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2*10 13 тонн, кроме того примерно 7*10 11 тонн азота содержатся в гидросфере в виде соединений.

Биологическая роль

Азот является элементом, необходимым для существования животных и растений. Он входит в состав белков (16-18% по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. в составе живых клеток по числу атомов азота около 2%, по массовой доле - около 2,5% (четвертое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9*10 11 тонн. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образовываться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.

Круговорот азота в природе

Азот - бесцветный газ, не имеющий запаха и малорастворимый в воде. Он немного легче воздуха: масса одного литра азота равна 1,25г. Молекулярный азот - химически малоактивное вещество. При комнатной температуре он взаимодействует лишь с литием. Малая активность азота объясняется большой прочностью его молекул, обусловливающей высокую энергию активации реакций, протекающих с участием азота.

Общее содержание азота в земной коре составляет 0,04%(масс.). Азот составляет около 79% атмосферы, но огромное количество живых существ не способны прямо использовать этот запас азота. Сначала он должен быть фиксированным специализированными организмами или человеком - в этом последнем случае фиксация осуществляется с помощью специально разработанных промышленных процессов.

Несмотря на величайшую сложность, этот круговорот осуществляется быстро и беспрепятственно. Воздух, содержащий 78% азота, одновременно служит и огромным вместилищем и предохранительным клапаном системы. Он беспрерывно и в разных формах питает круговорот азота.

Цикл азота состоит в следующем. Его главная роль заключается в том, что он входит в состав жизненно важных структур организма - аминокислот белка, а также нуклеиновых кислот. В живых организмах содержится примерно 3% всего активного фонда азота. Растения потребляют примерно 1% азота; время его круговорота составляет 100 лет.

От растений-продуцентов азотосодержащие соединения переходят к консументам, от которых после отщепления аминов от органических соединений азот выделяется в виде аммиака или мочевины, а мочевина затем также превращается в аммиак (вследствие гидролиза).

Рис. 1. Трансформация и использование СО 2 в природе

В дальнейшем в процессах окисления азота аммиака (нитрификации) образуются нитраты, способные ассимилироваться корнями растений. Часть нитритов и нитратов в процессе денитрификации восстанавливается до молекулярного азота, поступающего в атмосферу. Все эти химические превращения возможны в результате жизнедеятельности почвенных микроорганизмов. Эти удивительные бактерии - фиксаторы азота - способны использовать энергию своего дыхания для прямого усвоения атмосферного азота и синтезирования протеидов. Таким путем в почву ежегодно вносится около 25 кг азота на 1 га.

Но самые эффективные бактерии живут в симбиозе с бобовыми растениями в клубеньках, развивающихся на корнях растений. В присутствии молибдена, который служит катализатором, и особой формы гемоглобина (уникальный случай у растений) эти бактерии (Rhizobium ) ассимилируют громадные количества азота. Образующийся (связанный) азот постоянно диффундирует в ризосфере (часть почвы), когда клубеньки распадаются. Но еще азот поступает в наземную часть растений. Благодаря этому бобовые исключительно богаты протеинами и очень питательны для травоядных. Годовой запас, таким образом, накапливаемый в культурах клевера и люцерны, составляет 150-140 кг/га.

Помимо бобовых такие бактерии живут на листьях растений (в тропиках) из семейства Rublaceae , а также актиномицеты - на корнях ольхи, фиксирующие азот. В водной среде - это синие водоросли.

С другой стороны, бактерии-денитрификаторы разлагают нитраты, освобождают N 2 , который улетучивается в атмосферу. Но этот процесс не очень опасен, так как разлагает примерно 20% общего азота, и то лишь на почвах, очень удобренных навозом (примерно 50-60 кг азота 1 га).

Хотя люди и наземные животные живут на дне воздушного океана, в основном состоящего из азота, именно этот элемент в наибольшей степени определяет запас пищи для обитателей этого океана. Все мы зависим от имеющихся ресурсов фиксированного азота. «Фиксированным» называют азот, включенный в такое химическое соединение, которое может быть использовано растениями и животными. В атмосфере азот не активен, но некоторые организмы всё же могут связывать его. Меньшее количество атмосферного азота фиксируется в природных процессах ионизации. Атмосфера ионизируется космическими лучами, сгорающими метеоритами, электрическими разрядами (молнии) за короткое время выделяющими большое количество энергии, необходимое для того, чтобы азот смог прореагировать с кислородом или водородом воды. Азот фиксируют даже некоторые морские организмы, но, видимо, самыми крупными поставщиками фиксированного азота в природе являются почвенные микроорганизмы и симбиотические ассоциации между такими организмами и растениями.

Фиксация атмосферного азота в природе происходит по двум основным направлениям - абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25000 о С и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).

Однако основная часть молекулярного азота (около 1,4*10 8 т/год) фиксируется биогенным путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium, клубеньковые бактерии бобовых растений Rhizobium , цианобактерии Anabaena, Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубнях ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH 4 +). Этот процесс требует значительных затрат энергии (для фиксации 1г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий - первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» - глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.

Из всех видов вмешательства человека в естественный круговорот веществ промышленная фиксация азота - самое крупное по масштабам. В прежние времена, когда не существовало массового производства искусственных удобрений, когда ещё не выращивались на больших площадях азотфиксирующие бобовые культуры, количество азота, удаляемого из атмосферы в процессе естественной фиксации, вполне уравновешивалось его возвратом в атмосферу в результате деятельности организмов превращающих органические нитраты в газообразный азот. Азот в форме аммиака и соединений аммония, получающийся в процессе биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками), недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и, в конце концов, попадают в мировой океан (этот поток оценивается в 2,5 - 8*10 7 т/год).

Чрезмерный вынос азотистых соединений в реки может вызвать «цветение» водорослей и в результате усиления их биологической активности вода может лишиться кислорода, что вызовет гибель рыбы и других, нуждающихся в кислороде организмов. Самый известный пример этого - быстрая эвтрофизация озера Эри.

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержением вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.

Азот, включенный в ткани растений и животных, после их гибели подвергается аммонификции (разложению азотсодержащих сложных соединений с выделением аммиака и ионов аммония) и денитрификации, то есть, выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

Чтобы получить представление о сложно разветвлённых путях, по которым движется азот в биосфере, проследим путь атомов азота из атмосферы в клетки микроорганизмов, затем в почву - уже в качестве фиксированного азота, а из почвы - в высшие растения, откуда связанный азот может поступать в организмы животных. Растения и животные, отмирая, возвращают фиксированный азот в почву, откуда он либо поступает в новые поколения растений и животных, либо в виде элементарного азота переходит в атмосферу.

Некоторые организмы находят выгодным окислять соединения азота, тогда как другие организмы, обитающие в той же среде, выживают лишь благодаря своей способности восстанавливать эти соединения. Кроме фотосинтезирующих организмов, использующих энергию света, все живые существа получают энергию за счет химических превращений. Обычно это окисление одного соединения с одновременным восстановлением другого, хотя иногда окислятся и восстанавливаться могут разные молекулы одного и того же вещества или даже разные фрагменты одной молекулы. Круговорот азота в живой природе возможен потому, что при окислении атмосферным кислородом восстановленных неорганических соединений азота выделяется энергия в биологически эффективной форме. В анаэробных условиях окисленные соединения азота могут служить окислителями органических соединений, с выходом полезной энергии.

Специфическая роль азота в биологических процессах обусловлена необычно большим числом степеней окисления, то есть валентностей. Валентность - это свойство атома данного элемента присоединять или замещать определённое число атомов другого элемента. В организме животных и растений большая часть азота присутствует или в виде иона аммония, или в виде аминосоединений. В обеих формах азот сильно восстановлен: соединившись с тремя другими атомами, он принял от них три электрона, то есть имеет степень окисления -3. В другой сильно окислённой форме (нитрат-ион (NO 3 +5) пять внешних электронов атома азота участвуют в образовании связей с атомом кислорода, приобретая при этом степень окисления +5. Нитрат-ион - главная форма, в которой азот присутствует в почве. При переходе иона аммония или аминокислот в почвенные нитраты валентность азота должна меняться на 8 единиц, то есть атом теряет 8 электронов. При переходе нитратного азота в азот аминогруппы атом приобретает 8 электронов.

Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру NaNO 3 , образующую мощные пласты на побережье Тихого океана в Чили. Почва содержит не значительные количества азота, преимущественно в виде солей азотной кислоты. Но в виде сложных органических соединений - белков - азот входит в состав всех живых организмов. Превращения, которым подвергаются белки в клетках растений и животных составляют основу всех жизненных процессов. Без белка нет жизни, а так как азот является обязательной составной частью белка, то понятно, какую важную роль играет этот элемент в живой природе.

В целом протекающие в почве реакции, в которых азот восстанавливается, дают значительно больше энергии, чем окислительные реакции, в результате которых у атомов азота отнимаются электроны. Обобщая, можно сказать, что в природе любая реакция, в которой при превращении одного соединения в другое образуется хотя бы 15 ккал / моль, служит источником энергии для того или иного организма или группы организмов.

Фиксация азота требует энергии. Сначала азот надо «активировать», то есть разбить молекулу азота на два атома. На это уйдёт по меньшей мере 160 ккал / моль. Сама фиксация, то есть соединение двух атомов азота с тремя молекулами водорода с образованием двух молекул аммиака, даёт около 13 ккал. Значит, в целом на реакцию расходуется не менее 147 ккал. Но неизвестно, приходится ли азотфиксирующим организмам, в самом деле, расходовать такое количество энергии. Ведь в реакциях, катализируемых ферментами, происходит не просто обмен энергией между реагирующими веществами и конечными продуктами, а снижение энергии активации.

Животные потребляют с пищей растительные белки, аминокислоты и др. азотсодержащие вещества. Таким образом, растения делают органический азот доступным для других организмов - консументов.

Все живые организмы поставляют азот в окружающую среду. С одной стороны, все они выделяют в ходе жизнедеятельности продукты азотистого обмена: аммиак (NH 3), мочевину (СО(NH 2) 2) и мочевую кислоту. Последние два соединения разлагаются в почве с образованием аммиака (который при растворении в воде дает ионы аммония).

Мочевая кислота, выделяемая птицами и рептилиями, также быстро минерализуется особыми группами микроорганизмов с образованием NH 3 и СО 2 . С другой стороны, азот, включённый в состав живых существ, после их гибели подвергается аммонификации (разложение содержащих азот сложных соединений с выделением аммиака и ионов аммония) и нитрификации.

Аммиак или ион аммония, образовавшийся в почве, может поглощаться корнями растений. Азот при этом включается в аминокислоты и становится частью белка. Если растение затем поедается животным, то азот включается в другие белки. В любом случае белок в конечном итоге возвращается в почву, где распадается на составляющие его аминокислоты. В аэробных условиях в почве содержится множество микроорганизмов, способных окислять аминокислоты до двуокиси углерода, воды и аммиака. При разложении, например, глицина выделяется 176 ккал / моль.

Некоторые микроорганизмы из рода Nitrosomonas используют нитрификацию иона аммония как единственный источник энергии. В присутствии кислорода аммиак даёт нитритный ион и воду; выход энергии в этой реакции составляет 65 ккал / моль, а этого вполне достаточно для «приличного» существования. Nitrosomonas относится к группе так называемых автотрофов - организмов, которые не потребляют энергию, запасённую в органических веществах. Фотоавтотрофы используют энергию света, а хемоавтотрофы, подобные Nitrosomonas , получают энергию из неорганических соединений.

Другая специализированная группа микроорганизмов, представителем которой является Nitrobacter , способна извлекать из нитритов энергию, которой пренебрёг Nitrosomonas. При окислении нитритного иона в нитратный освобождается около 17 ккал/моль - немного, но вполне достаточно для того, чтобы поддержать существование Nitrobacter .

В почве немало разных видов бактерий - денитрификаторов, которые попав в анаэробные условия, могут использовать нитратный и нитритный ионы как акцепторы электронов при окислении органических соединений.

Продукты нитрификации - NO 3 - и (NO 2 -) в дальнейшем подвергаются денитрификации. Этот процесс целиком происходят благодаря деятельности денитрифицирующих бактерий, которые обладают способностью восстанавливать нитрат через нитрит до газообразной закиси азота (N 2 O) и азота (N 2). Эти газы свободно переходят в атмосферу.

10 [H] + 2H+ +2NO 3 - = N 2 + 6H 2 O

В отсутствии кислорода нитрат служит конечным акцептором водорода. Способность получать энергию путем использования нитрата как конечного акцептора водорода с образованием молекулы азота широко распространена у бактерий. Временные потери азота на ограниченных участках почвы, несомненно, связаны с деятельностью денитрифицирующих бактерий. Таким образом, круговорот азота невозможен без участия почвенной микрофлоры.

Сравнительная ценность ионов аммония и нитрита как источников азота для растений была объектом многих исследований. Казалось бы, ион аммония явно предпочтительнее: степень окисления азота в нём равна -3, то есть та же, что у азота в аминокислотах; степень окисления же нитратного азота равна +5. Значит, для того чтобы использовать азот из нитратного иона, растение должно затратить энергию на восстановлении пятивалентного азота до трехвалентного. На деле всё обстоит сложнее: то, какая форма азота предпочтительнее, зависит, как оказалось, совсем от других факторов. Так как ион аммония заряжен положительно, почти сразу же после его образования в почве он захватывается частицами ила, на которых и остаётся вплоть до окисления. Отрицательный ион нитрата, напротив, свободно движется в почве, а значит, легче попадает в зону корней.

Почвенные азотофиксирующие организмы оставались малоизученными вплоть до конца XIX века. Учёные даже опасались, что денитрифицирующие бактерии, как раз в то время открытые, постепенно исчерпают запас фиксированного азота в почве и снизят плодородие. В своей речи перед королевским обществом в Лондоне сэр У. Крукс набросал мрачную картину голода, который ожидает человечество в недалёком будущем, если не появятся искусственные способы фиксации азота. В то время главным источником селитры и для производства удобрений, и для выработки взрывчатых веществ были залежи в Чили. Именно потребность во

После того как круговорот азота был в общих чертах изучен, стала понятна роль бактерий - денитрификаторов. Без таких бактерий, возвращающих азот в атмосферу, большая часть атмосферного азота находилась бы сейчас в связанной форме в океане и в осадочных породах. В настоящее время в атмосфере недостаточно кислорода для перевода всего свободного азота в нитраты. Но вполне вероятно, что односторонний процесс в отсутствии денитрификаторов привёл к подкислению воды в океане нитратами. Началось бы выделение двуокиси углерода из карбонатных горных пород. Растения постоянно извлекали бы двуокись углерода из воздуха, углерод с течением времени откладывался бы в форме каменного угля или других углеводородов, а свободный кислород насыщал бы атмосферу и соединялся с азотом. Из-за многообразия и сложности всех этих процессов трудно сказать, как выглядел бы мир реакции денитрификации, но, наверняка, это был бы непривычный для нас мир.

Процесс биологической фиксации азота известен далеко не во всех деталях. Хотелось бы знать, каким образом активирующий фермент, используемый азотфиксирующими бактериями, может при обычной температуре и нормальном давлении выполнять то, что происходит в химическом реакторе при сотнях градусов и атмосфер. Во всем мире наберётся несколько килограммов этого удивительного фермента.

Азотфиксирующие организмы делятся на две большие группы: живущие самостоятельно и живущие в симбиозе с высшими растениями. Граница между этими группами не так резка. Степень взаимозависимости растений и микроорганизмов может быть различной. Симбиотические микроорганизмы непосредственно зависят от растения как источника энергии, а возможно и некоторых питательных веществ. Свободноживущие азотфиксаторы получают энергию от растения косвенным путем, а некоторые из них используют непосредственно световую энергию.

Главными поставщиками фиксированного азота на почвах, занятых злаками, и в других экосистемах, где нет растений с азотфиксирующими симбионтами, служат различные бактерии. В подходящих условиях сине-зелёные водоросли могут быть важным источником фиксированного азота. Их вклад в фиксацию азота особенно заметен на рисовых полях и в других местах, где условия благоприятствуют их развитию. Но для Земли в целом естественным важнейшим источником фиксированного азота служат бобовые растения. Они важнее других азотфиксирующих растений с хозяйственной точки зрения и потому лучше изучены.

Круговорот азота в настоящее время подвергается сильному воздействию со стороны человека. С одной стороны, массовое производство азотных удобрений и их использование приводит к избыточному накоплению нитратов. Азот, поступающий на поля в виде удобрений, теряется из-за отчуждения урожая, выщелачивания и денитрификации.

С другой стороны, при снижении скорости превращения аммиака в нитраты аммонийные удобрения накапливаются в почве. Возможно подавление деятельности микроорганизмов в результате загрязнения почвы отходами промышленности. Однако эти процессы носят локальный характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на ТЭЦ, транспорте, заводах («лисий хвост» (NO 2)). В промышленных районах их концентрация в воздухе становится очень опасной. Под воздействием излучения происходят реакции органики (углеводородов) с оксидами азота с образованием высокотоксичных и канцерогенных соединений.

Факторы, влияющие на круговорот азота

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство. Но в настоящее время на круговорот азота влияет много факторов, вызванных человеком. Во-первых, это кислотные дожди - явление, при котором наблюдается понижение pH дождевых осадков и снега из-за загрязнений воздуха кислотными оксидами (например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 - из кислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:

N 2 + O 2 = 2NO - Q

Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете. Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:

2NO 2 + H 2 O = HNO 3 + HNO 2

образуются азотная и азотистая кислоты. В капельках атмосферной воды эти кислоты диссоциируют с образованием, соответственно нитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву. Вторая группа антропогенных факторов, влияющих на азотистый обмен почв, - это технологические выбросы. Оксиды азота одни из самых распространенных загрязнителей воздуха. А неуклонный рост производства аммиака, серной и азотной кислоты напрямую связан с увеличением объёма отходящих газов, а следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Третья группа факторов - переудобрение почв нитритами, нитратами (натриевая селитра (NaNO 3), калийная селитра (KNO 3), кальциевая селитра (Ca(NO 3)2), нитрат аммония NH 4 NO 3) и органическими удобрениями. И наконец, на азотистый обмен почв отрицательно влияет повышенный уровень биологического загрязнения. Возможные его причины: сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.). Как следствие почва загрязняется аммиаком, солями аммония, мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактериями в нитраты.

Актуальность изучения круговорота азота

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние.

Антропогенные биоценозы - это особые природные сообщества, сформировавшиеся под непосредственным влиянием человека, который сам может создавать новые ландшафты и серьёзным образом изменять экологическое равновесие. Кроме того, деятельность человека оказывает огромное влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие, потому что произошли серьёзные изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате вызванных человеком воздействий. Азот является элементом, необходимым для существования животных и растений, он входит в состав белков, аминокислот, нуклеиновых кислот, хлорофилла, генов и др. В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов.

Для изучения особенностей круговорота азота можно использовать комплексную методику по изучению содержания ионов нитритов (NO 2 -), нитратов (NO 3 -) и аммония (NH 4 +) в почве и её микробиологических показателях.

Очень важно изучать и контролировать круговорот азота, особенно в антропогенных биоценозах, потому что небольшой сбой в какой-либо части цикла может привести к серьёзным последствиям: сильным химическим загрязнениям почв, зарастанию водоемов и загрязнению их продуктами разложения отмершей органики (аммиак, амины и др.), высокому содержанию растворимых соединений азота в питьевой воде.

Токсикология азота и его соединений

Сам по себе атмосферный азот достаточно инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь. Животные, помещенные в атмосферу азота, быстро погибают, но не вследствие ядовитости азота, а из-за отсутствия кислорода.

Многие соединения азота очень активны и нередко токсичны

В подземные воды уходит до 13% азота, содержащегося в минеральных удобрениях. Всемирная организация здравоохранения (ВОЗ) приняла предельно допустимую концентрацию нитратов в питьевой воде: 45 мг/л для умеренных широт и 10 мг/л для тропиков.