Химические показатели загрязнения воды органическими веществами. Показатели являются косвенными показателями органического загрязнения воды

В настоящее время для оценки качества воды используются различные показатели: органолептические, химические, бактериологические, биологические, гельминтологические и др.
а) Органолептические показатели . К органолептическим показателям, с помощью которых производится определение физических свойств воды, относятся: прозрачность, цветность, запах, вкус.

Прозрачность зависит от количества и состава находящихся в воде взвешенных частиц. Она может ухудшаться за счет попадания в водоемы фекально-хозяйственных и производственных сточных вод, а также дождевых и талых, которые несут с собой большое количество взвешенных частиц почвы с поверхности окружающей территории. Считают, что ухудшение прозрачности воды имеет существенное значение с эпидемиологической точки зрения, так как такая вода может стать причиной возникновения кишечных инфекций. Прозрачность воды определяется при помощи специального шрифта Снеллена, который читают через столб воды, налитой в цилиндр. Выражается в сантиметрах.

Цвет воды зависит часто от природных условий. Воды болотистого происхождения (особенно торфяных болот) имеют гамму оттенков от слабо желтого до коричневого, что зависит от содержания в ней гуминовых веществ. Коллоидные соединения железа придают воде желтовато-зеленоватое окрашивание. Микрофлора и микрофауна, особенно водоросли в период цветения, придают воде ярко-зеленый, бурый и другие окраски, Самую разнообразную окраску вода приобретает в результате стока вод промышленных предприятий.

Цветность воды определяют колориметрически при помощи стандартной шкалы и выражают в градусах.

Запах может быть различным: болотный (при разложении растительных органических веществ); гнилостный (от разлагающихся нечистот и отбросов), свежей травы, землистый, зловонный и др.

Вкус может быть неприятным, если в воду попадут бытовые сточные воды и находящиеся в них примеси загнивают. Различный специфический привкус часто придают воде производственные стоки. Природные воды иногда имеют своеобразный вкус, что связано с условиями их формирования: соленый привкус придают воде хлориды, горький- сернокислый магний, вяжущий - сернокислый кальций и др.

Запах и вкус определяют органолептически и оценивают в баллах по пятибалльной системе.

Активная реакция воды рН зависит от присутствия в ней ионов Н и ОН. Обычно она колеблется в пределах 6,8-8,5.

Температура воды в интервале 7-11° является наиболее благоприятной для организма человека. В открытых водоемах она меняется в соответствии с изменением температуры воздуха. Подземные воды имеют более постоянную, сравнительно низкую температуру, колебания которой свидетельствуют о возможности подтока поверхностных вод.

Плотный или сухой остаток характеризует общую минерализацию воды.
б) Химические показатели . К этой группе относятся различные химические вещества. Одни из них оказывают вредное влияние на организм человека, другие позволяют косвенно судить о загрязнении воды органическими веществами и тем самым определить степень эпидемиологической опасности воды. Среди веществ, указывающих на загрязнение воды органическими веществами, наибольшее значение имеет определение азотсодержащих веществ (аммиака, нитритов, нитратов).

Аммиак образуется в начальной стадии разложения попавших в воду веществ органического происхождения. Его наличие даже в виде следов вызывает подозрение, что в воду попали свежие нечистоты человека и животных. И с этой точки зрения он является косвенным показателем, указывающим на заражение воды микробами. Вместе с тем его находят в болотистых, торфяных водах, а также в железистых грунтовых водах. Естественно, что в этом случае он не имеет санитарно-показательного значения.

Нитриты (соли азотистой кислоты) могут быть также различного происхождения. Дождевые воды почти всегда содержат азотистую кислоту в количестве 0,01-1,7 мг/л. Нитриты могут образоваться в результате восстановления нитратов денитрифицирующими бактериями, а также при нитрификации аммиака. В последнем случае они приобретают большое санитарно-показательное значение и их наличие указывает на то, что аммиак, образовавшийся в воде в результате разложения органических веществ, начал подвергаться минерализации. Следовательно, наличие нитритов в воде свидетельствует о недавнем загрязнении ее органическими веществами животного происхождения.

Нитраты (соли азотной кислоты) обнаруживаются в незагрязненных водах болотистого происхождения, но они могут оказаться в воде как продукт минерализации аммиака и нитритов, образовавшихся в результате гниения органических отбросов. Наличие только нитратов при отсутствии нитритов и аммиака указывает на давнее, возможно случайное, однократное загрязнение воды фекалиями человека и животных. Если одновременно с нитратами в воде присутствуют аммиак и нитриты, это является серьезным признаком постоянного и длительного загрязнения воды. В связи с тем что в настоящее время установлена роль нитратов воды в возникновении метгемоглобинемии, особенно у Детей, этому показателю придается большое значение.

Практически азотсодержащие вещества определяются колориметрически при помощи фотоэлектроколориметров или методом объемной колориметрии.

Хлориды являются ценным санитарным показателем. Они всегда содержатся в моче и кухонных отбросах, а следовательно, если их находят в воде, возникает подозрение о загрязнении ее хозяйственно-бытовыми сточными водами. Однако они могут оказаться и в грунтовой воде, так как, фильтруясь через почву, содержащую хлористый натрий, она обогащается хлоридами. Хлориды определяются методом аргентометрического титрования.

Определенное значение при оценке качества воды играет окисляемость - показатель, характеризующий количество находящихся в воде легко окисляющихся органических веществ. Так как непосредственное определение в воде органических веществ является методически сложным, то о них судят косвенно, по количеству кислорода, пошедшему на их окисление в 1 л воды. Следовательно, этот показатель дает общее, условное представление о количестве органических загрязнений. Практически окисляемость определяется методом перманганометрии.

Жесткость воды обусловливается наличием в ней растворимых солей кальция и магния. Различают: общую жесткость, зависящую от растворенных солей угольной, соляной, азотной, серной и фосфорной кислот; устранимую (или карбонатную), обусловленную присутствием бикарбонатов, которые при кипячении выпадают в виде белого осадка; неустранимую (или постоянную), зависящую от солей, не выпадающих в осадок при кипячении.

Определение жесткости воды продиктовано необходимостью учета хозяйственно-бытовых интересов населения, которое избегает пользоваться жесткой водой, прибегая даже в ряде случаев к сомнительному в санитарном отношении водоисточнику, но с мягкой водой. Это объясняется тем, что в жесткой воде плохо развариваются овощи и мясо, ухудшается качество чая, затрудняется стирка белья, при мытье наблюдается раздражение кожи вследствие образования нерастворимых соединений в результате замещения в мыле натрия кальцием или магнием.

Как показали исследования последних лет, непосредственного влияния на организм человека повышенная жесткость воды не оказывает. Определяется общая жесткость путем комплексометрического титрования. Выражается жесткость в миллиграмм-эквивалентах на 1 л воды.

Помимо этих показателей, при оценке качества воды открытых водоемов применяются определение биохимической потребности кислорода (БПК5 - пятисуточная проба), величина растворенного кислорода и некоторые другие.

Что касается определения химических веществ, оказывающих непосредственно вредное влияние на организм человека, то оно производится в том случае, если имеется подозрение на наличие в воде того или иного токсического вещества или группы веществ. Полученные результаты сравнивают с установленными санитарным законодательством предельно допустимыми концентрациями (ПДК) вредных веществ в воде.

в) Санитарно-бактериологические показатели качества воды . Непосредственное обнаружение в воде возбудителей инфекционных заболеваний является затруднительным в виду того, что методы выделения патогенных микроорганизмов, особенно вирусов, сложны и не позволяют в короткий срок дать заключение об эпидемиологической характеристике воды. Поэтому санитарно-бактериологическая оценка производится по косвенным показателям, которыми являются: 1) микробное число и 2) содержание кишечной палочки. Оба эти показателя общеприняты на основе длительных наблюдений, свидетельствующих о том, что чем сильнее загрязнена вода, тем больше в ней сапрофитной и кишечной микрофлоры и, наоборот, чем меньше она загрязнена (особенно выделениями человека и хозяйственно-бытовыми сточными водами), тем меньше в этой воде число микробов и, в частности, кишечных палочек и, следовательно, тем слабее выражена возможность возникновения инфекционных заболеваний при употреблении такой воды.

Микробное число (общее количество микробов в 1 мл воды) является ориентировочным показателем, поскольку подсчитываются все находящиеся в пробе микробы без их идентификации; оно указывает на загрязнение воды любой сточной жидкостью, отбросами и т. д., которые не гарантированы от содержания в них патогенных бактерий.

Обнаружение кишечной палочки в воде имеет большое санитарно-показательное значение. Это связано с тем, что местом естественного обитания ее является толстый кишечник человека и животного. Во внешнюю среду она может попадать только с испражнениями. Следовательно, обнаружение кишечной палочки в воде свидетельствует о загрязнении ее фекалиями, в которых могут находиться, помимо B. coli, патогенные бактерии кишечной группы - возбудители брюшного тифа, дизентерии, паратифов. Кишечная палочка называется показателем фекального загрязнения воды.

Для того чтобы выяснить степень эпидемиологической опасности воды в отношении кишечных инфекций, необходимо установить интенсивность фекального загрязнения воды, т. е. определить количество кишечных палочек в воде, так как чем больше B. coli в воде, тем сильнее она загрязнена фекалиями. Количественно наличие кишечной палочки характеризуется двумя показателями:
а) коли-титр - наименьшее количество воды (в миллилитрах), в котором содержится одна кишечная палочка,
б) коли-индекс - количество кишечных палочек в 1 л воды.

В последние годы некоторые авторы предлагают использовать для санитарно-бактериологической оценки воды, помимо кишечной палочки, фекальный стрептококк, Clostridium perfringens Welenii, бактериофаг. Разрабатывается метод обнаружения патогенных бактерий кишечной группы при помощи гаптена (неспецифического антигена) и др.

При исследовании воды водоисточников, особенно открытых водоемов, большое значение приобретают некоторые другие показатели и приемы.

Так, при исследовании воды в водоисточниках, особенно в открытых водоемах, большое значение имеет санитарно-топографическое обследование, задачей которого является обнаружение на площади водосбора, который питает водоем, факторов, могущих ухудшить качество воды. Изучается рельеф местности, состав почвы, наличие лесных массивов. Характеризуется размещение населенных пунктов, промышленных предприятий, сельскохозяйственное использование территории. Особое значение имеет изучение степени заселения территории, так как чем выше плотность населения, тем больше образуется отбросов органического происхождения и тем реальнее возможность попадания их в водоем и возникновения водных эпидемий. Необходимо получить сведения об использовании водоема в народнохозяйственных целях, обратив особое внимание на водный транспорт и рыбное хозяйство, на использование водоемов в спортивных целях, на заболеваемость населения данного района. Большое значение имеют гидрометрические измерения (глубина, скорость течения, расход воды и т. д.).

Существенную роль играет биологический анализ, так как известно, что в водоеме большие количества водных растений и животных влияют на качество воды. В силу этого водная флора и фауна используются в качестве показательных организмов, чувствительно реагирующих на изменение условий жизни водоема. Эти биологические организмы называются сапробными (sapros - гнилостный). Существуют четыре зоны сапробности (полисапробная, α-мезосапробная, β-мезосапробная и олигосапробная). Каждой из них соответствует определенная флора и фауна, а также степень содержания кислорода в воде.

Обнаружение яиц гельминтов и цист кишечных простейших также имеет большое эпидемиологическое и санитарно-гигиеническое значение.

Большое значение приобрело в последние годы исследование воды на содержание радиоактивных веществ.

Вода - важнейший элемент окружающей среды, оказывающий существенное влияние на здоровье и деятельность человека, это основа зарождения и поддержания всего живого. Известный французский писатель Антуан де Сент-Экзюпери сказал о природной воде: "Вода! У тебя нет ни вкуса, ни цвета, ни запаха, тебя невозможно описать, тобой наслаждаются, не ведая, что ты такое! Нельзя сказать, что ты необходима для жизни: ты сама жизнь, ты наполняешь нас радостью, которую не объяснить нашими чувствами... Ты самое большое богатство на свете...".

6.1. ГИДРОСФЕРА, ЕЕ ЭКОЛОГО-ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ

Нашу планету с полным основанием можно назвать водной, или гидропланетой. Общая площадь океанов и морей в 2,5 раза превышает территорию суши, океанические воды покрывают почти 3 / 4 поверхности Земного шара слоем толщиной около 4 км. На протяжении всей истории существования нашей планеты вода воздействовала на все, из чего слагался Земной шар. И в первую очередь явилась тем основным строительным материалом и средой, которые способствовали появлению и развитию жизни.

Вода - единственное вещество, которое встречается одновременно в трех агрегатных состояниях; при замерзании вода не сжимается, а расширяется почти на 10 %; наибольшей плотностью вода обладает при температуре 4 °С, дальнейшее охлаждение, наоборот, способствует уменьшению плотности, благодаря этой аномалии водоемы не промерзают зимой до дна и в них не прекращается жизнь.

При температуре больше 38 °С часть молекул воды разрушается, повышается их реакционная способность, возникает опасность разрушения нуклеиновых кислот в организме. Возможно, именно с этим связана одна из величайших тайн природы - почему температура тела человека 36,6 °С.

Все водные запасы на Земле объединяются понятием гидросфера.

Гидросфера - совокупность всех водных объектов Земного шара - прерывистая водная оболочка Земли. Воды рек, озер и подземные воды являются составными частями гидросферы (табл. 6.1).

Гидросфера является составной частью биосферы и находится в тесной взаимосвязи с литосферой, атмосферой и биосферой. Она обладает высокой динамичностью, связанной с круговоротом воды. В круговороте воды выделяют три основных звена: атмосферное, океаническое и материковое (литогенное). Атмосферное звено круговорота характеризуется переносом влаги в процессе циркуляции воздуха и образованием атмосферных осадков. Для океанического звена характерно испарение воды и непрерывное восстановление водяного пара в атмосфере, а также перенос огромных масс воды морскими течениями. Океаническим течениям принадлежит большая климатообразующая роль.

Литогенное звено - это участие в круговороте воды подземных вод. Пресные подземные воды залегают преимущественно в зоне активного водообмена, в верхней части земной коры.

Таблица 6.1 Структура гидросферы

6.2. ИСТОЧНИКИ ВОДОСНАБЖЕНИЯ,

ИХ ГИГИЕНИЧЕСКАЯ ХАРАКТЕРИСТИКА И ПРОБЛЕМЫ САНИТАРНОЙ ОХРАНЫ ВОД

К источникам хозяйственно-питьевого водоснабжения следует отнести подземные, поверхностные и атмосферные воды.

К подземным водам относятся грунтовые воды, располагающиеся на водоупорном ложе и не имеющие над собой водоупорной кровли; межпластовые воды, имеющие водоупорное ложе и кровлю. Если пространство между ложем и кровлей не полностью занято водой, то это безнапорные воды. Если же это пространство заполнено и вода находится под напором, то такие воды называются межпластовыми напорными, или артезианскими.

Поверхностные воды - это воды рек, озер, водохранилищ. Наиболее надежными в гигиеническом отношении считаются межпластовые воды. Благодаря защищенности водоносных пластов артезианские воды обычно обладают хорошими органолептическими свойствами и характеризуются почти полным отсутствием бактерий. Межпластовые воды богаты солями, жесткие, так как, фильтруясь через почву, обогащаются углекислотой, которая выщелачивает из почвы соли кальция и магния. В то же время солевой состав подземных вод не всегда оптимален. Подземные воды могут содержать избыточные количества солей, тяжелых металлов (бария, бора, бериллия, стронция, железа, марганца и др.), а также микроэлементов - фтора. Кроме того, эти воды могут быть радиоактивны.

Питание открытых водоемов происходит в основном за счет атмосферных осадков, поэтому химический состав и бактериологическая обсемененность их непостоянны и зависят от гидрометеорологических условий, характера почв, а также наличия источников загрязнения (выпуски хозяйственно-бытовых, городских, ливневых, промышленных сточных вод).

Атмосферные (или метеорные) воды - это воды, которые выпадают на поверхность земли в виде осадков (дождя, снега), ледниковые воды. Для атмосферных вод характерна малая степень минерализации, это воды мягкие; содержат растворенные газы (азот, кислород, углекислоту); прозрачны, бесцветны; физиологически неполноценны.

Качество атмосферной воды зависит от местности, где собирают эту воду; от метода сбора; тары, в которой она хранится. Перед использованием вода обязательно должна подвергаться очи-

стке и обеззараживанию. Используется в качестве питьевой в маловодных районах (на Крайнем Севере и на юге). В течение длительного времени не может быть использована для питья, так как содержит мало солей и микроэлементов, в частности бедна фтором.

При выборе источника питьевого водоснабжения с гигиенических позиций предпочтение отдается в убывающем порядке следующим источникам: 1) напорные межпластовые (артезианские); 2) безнапорные межпластовые; 3) грунтовые; 4) поверхностные открытые водоемы - водохранилища, реки, озера, каналы.

Для выбора и оценки качества источников водоснабжения разработан ГОСТ 27.61-84 "Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические и технические требования и правила выбора". За объект стандартизации в этом ГОСТе взяты источники водоснабжения, которые разделены на три класса. Для каждого из них предложена соответствующая система обработки воды.

Природный источник, выбираемый для целей централизованного водоснабжения населения, должен удовлетворять следующим основным требованиям:

Обеспечить получение необходимого количества воды с учетом роста числа населения и водопотребления.

Давать воду, отвечающую гигиеническим требованиям при экономически выгодной системе очистки.

Обеспечить бесперебойность снабжения населения водой, не нарушая сложившийся гидрологический режим водоема.

Иметь условия для организации зон санитарной охраны (ЗСО).

Проблема питьевого водоснабжения - одна из актуальных гигиенических проблем для многих регионов Земного шара. На это есть объективные причины: неравномерное распределение пресных вод на планете. Большая часть пресных вод планеты сосредоточена в Северном полушарии. Треть наиболее жарких районов суши имеет крайне скудные речные системы. В таких районах практически трудно гарантировать снабжение населения водой и создание санитарно-гигиенических условий в соответствии с современными требованиями.

С другой стороны, в середине XX в. человек столкнулся с неожиданной и непредвиденной проблемой - недостатком пресной воды в тех районах Земного шара, где вода никогда не была дефицитом: в районах, страдающих подчас от избытка влаги. Речь идет об интенсивном антропогенном загрязнении водоисточников, что выдвигает острейшие проблемы современного питьевого водоснабжения: их эпидемиологической и токсикологической безопасности.

Решение этих проблем начинается с вопросов охраны водоисточников. Вопросы охраны водных объектов волнуют сегодня представителей самых различных специальностей. И это не случайно. Один и тот же водоисточник используется многими водопользователями. У каждого из них свое собственное представление о благополучии водной экосистемы и свои утилитарные требования к качеству воды. С одной стороны, это определяет множественность научных разработок по проблеме качества вод. С другой стороны, затрудняет ее решение, так как трудно удовлетворить требования всех водопользователей; найти единые методические подходы; единые, удовлетворяющие всех, критерии.

В течение многих лет преобладала концепция, согласно которой приоритет отдавался таким водопользователям, как промышленность, энергетика, мелиорация и т. д., и на последнем месте стояли интересы охраны вод.

Законы, правительственные решения отражали, прежде всего, права и обязанности различных водопользователей и в меньшей мере вопросы безопасности вод.

В то же время санитарная охрана водоемов должна базироваться на профилактическом принципе, обеспечивать безопасность питьевых вод и здоровья населения.

Существует несколько моделей организации системы водоохранных мероприятий. Так, на протяжении многих десятилетий господствовала концепция академика А. Н. Сысина и С. Н. Черкин-ского, в основу которой положен принцип "оптимизации" сброса и соблюдения ПДК у пунктов водопользования населения, что не позволяет в современных условиях оценить реальную нагрузку на водоем. Это обусловлено многими факторами: несовершенством аналитической базы и отсутствием полного мониторинга за качеством сточных, питьевых вод и воды водоисточников; низкая эффективность требований к организации ЗСО; несовершенство управления сбросом сточных вод на основе ПДС; трудность выбора безопасных источников водоснабжения; низкая барьерная функция отечественных водопроводов.

Сегодня появились новые подходы к природоохранной деятельности.

В основе их лежат две принципиально различные модели охраны окружающей среды: директивно-экономическая (ДЭМ) и модель технического нормирования (МТН).

ДЭМ устанавливает жесткие лимиты на сброс загрязняющих веществ, что требует строительства дорогостоящих очистных сооружений, приводит к нерентабельности основного производства.

В 90-е гг. ХХ в. была введена плата за сброс. За нормативный сброс загрязняющих веществ (на уровне ПДС) плата относилась на счет себестоимости продукции; за превышение нормативно допустимого сброса устанавливались штрафные санкции (из прибыли предприятия). Получалась парадоксальная ситуация: при иллюзии очень жесткого эколого-гигиенического нормирования заведомая невыполнимость этих требований приводила к нулевому результату.

Основным недостатком ДЭМ, которая хоть и носит профилактический характер и базируется на принципах гигиенического нормирования, является ее ориентация на стратегию "конца трубы". Весь комплекс водоохранных мероприятий, согласно этой модели, внедряется в конце технологического цикла. Сначала производим загрязнения, затем пытаемся от них избавиться.

Наиболее перспективной является МТН, которая, в отличие от ДЭМ, ориентирована на борьбу с загрязнениями в источнике их образования. МТН относит к источникам загрязнения непосредственно технический процесс и ориентирована на стратегию "наилучшей существующей технологии" (НСТ).

Выбор НСТ в Швеции осуществляют специальные фирмы-консультанты, которые проводят экологический аудит и готовят заявку. Обосновывается выбор НСТ (на альтернативной основе); проводится системный анализ материальных и энергетических потоков, сырья, качества готовой продукции.

Обоснованность выбора оценивает Шведский Национальный природоохранный суд. В Швеции отработан весь механизм получения эколого-гигиенического заключения на производственную деятельность: от этапа подачи заявки до выбора НСТ и получения заключения на модернизацию производства.

6.3. ФИЗИОЛОГО-ГИГИЕНИЧЕСКОЕ

ЗНАЧЕНИЕ ВОДЫ

Без воды, как и без воздуха, нет жизни.

Вода входит в структуру организма, составляя основную часть веса тела. Человек буквально рожден из воды. Содержание воды в различных органах и тканях различно. Так, кровь - более чем на 90 % вода. Почки состоят из воды на 82 %, мышцы содержат воды до 75 %, в печени воды до 70 %, кости содержат 28 % воды, даже зубная эмаль содержит 0,2 % воды.

Не менее значительна роль воды как растворителя питательных веществ. Процесс растворения пищевых веществ с помощью

ферментов, всасывание питательных веществ через стенки пищеварительного канала и доставка их тканям осуществляется в водной среде.

Вместе с солями вода принимает участие в поддержании величины осмотического давления - этой важнейшей константы организма.

Вода является основой кислотно-щелочного равновесия.

Без воды невозможен водный и минеральный обмен в организме. За сутки в организме человека дополнительно образуется до 300-400 мл воды.

Вода определяет объем и пластичность органов и тканей. Наиболее подвижным резервуаром ее является кожа и подкожная клетчатка.

Вода систематически поступает в организм и выводится из него (табл. 6.2).

Физиологическая потребность в воде зависит от возраста, характера работы, пищи, профессии, климата и т. д. У здорового человека в условиях обычных температур и легкой физической нагрузки физиологическая потребность в воде составляет 2,5- 3,0 л/сут.

Вода, принимаемая внутрь, с полным основанием может рассматриваться как питательное вещество, так как содержит минеральные вещества, различные органические соединения, микроэлементы. Многочисленные минеральные воды с успехом используются для лечения патологии самых различных органов и систем: пищеварения, выделительной системы, системы кроветворения, ЦНС, сердечно-сосудистой патологии.

Однако в условиях жаркого климата и тяжелой физической нагрузки потребность в воде резко возрастает. (Суточная потребность в воде при выполнении работы средней тяжести при температуре

Таблица 6.2

Объем воды в организме за сутки, л

воздуха 30-32 °С увеличивается до 5-6 л, а при выполнении тяжелой физической нагрузки возрастает до 12 л.) Велико значение воды в теплообмене человека. Обладая большой теплоемкостью и большой теплопроводностью, вода способствует поддержанию постоянной температуры тела. Особую роль в теплообмене человека вода играет в условиях высоких температур, так как при температурах окружающей среды выше температуры тела человек отдает тепло преимущественно за счет испарения влаги с поверхности кожи.

Лишение воды человек переносит труднее, чем лишение пищи. Без воды человек может прожить только 8-10 дней. Дефицит всего в 3-4 % вызывает снижение работоспособности. Потеря 20 % воды ведет к смерти.

Вода может использоваться в целях закаливания, механизм которого определяется термическим воздействием воды (контрастное закаливание - русские, финские бани); механическим - массаж массой воды - в душах, при купании в море; химическим действием морской воды, содержащей много солей.

Вода улучшает микроклимат населенных мест, смягчая действие крайних температур зимы и лета. Способствует росту зеленых насаждений. Имеет эстетическое значение в архитектурном оформлении городов.

6.4. ВОДА КАК ПРИЧИНА МАССОВЫХ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

В отдельных случаях, когда питьевая вода является недоброкачественной, она может стать причиной эпидемий. Исключительно большое значение имеет водный фактор в распространении: острых кишечных инфекций; глистных инвазий; вирусных заболеваний; важнейших тропических трансмиссивных заболеваний.

Основным резервуаром патогенных микроорганизмов, кишечных вирусов, яиц гельминтов в окружающей среде являются фекалии и хозяйственно-бытовые сточные воды, а также теплокровные животные (крупный рогатый скот, домашняя птица и дикие животные).

Классические водные эпидемии инфекционных заболеваний регистрируются сегодня преимущественно в странах с низким уровнем жизни. Однако и в экономически развитых странах Европы, Америки регистрируются локальные эпидемические вспышки кишечных инфекций.

Через воду могут передаваться многие инфекционные заболевания, в первую очередь холера. История знала 6 пандемий холеры. По данным ВОЗ, в 1961-1962 гг. началась 7-я пандемия холеры, которая достигла максимума к 1971 г. Особенность ее состоит в том, что она вызывалась холерным вибрионом Эль-Тор, который более длительно выживает в окружающей среде.

Распространение холеры в последние годы связано с целым рядом причин:

Несовершенством современных систем водоснабжения;

Нарушениями международного карантина;

Усиленной миграцией людей;

Быстрой перевозкой загрязненных продуктов и воды водным и воздушным транспортом;

Распространенным носительством штамма Эль-Тор (от 9,5 до 25 %).

Водный путь распространения особенно характерен для брюшного тифа. До устройства централизованного водоснабжения водные эпидемии брюшного тифа были обычными для городов Европы и Америки. Менее чем за 100 лет, с 1845 по 1933 г., описаны 124 водные вспышки брюшного тифа, причем 42 из них возникли в условиях централизованного водоснабжения, и 39 эпидемий. Эндемичным по брюшному тифу был Петербург. Крупные водные эпидемии брюшного тифа имели место в Ростове-на-Дону в 1927 г. и в Краснодаре в 1928 г.

Паратифозные водные эпидемии, как самостоятельные, встречаются крайне редко и обычно сопровождают эпидемии брюшного тифа.

Сегодня достоверно установлено, что через воду может передаваться и дизентерия - бактериальная и амебная, иерсениозы, кам-пилобактериозы. Сравнительно недавно возникла проблема заболеваний, вызванных легионеллами. Легионеллы поступают с аэрозолями через дыхательные пути и занимают второе место после пневмококков в качестве причины воспаления легких. Чаще заражаются в бассейнах или на курортах в местах использования термальных вод, при вдыхании водяной пыли вблизи фонтанов.

К водным заболеваниям следует отнести ряд антропозоонозов, в частности лептоспирозы и туляремию. Лептоспиры обладают способностью проникать через неповрежденную кожу, поэтому человек заражается чаще в районах купания в загрязненных водоемах либо во время сенокосов, полевых работ. Эпидемические вспышки приходятся на летне-осенний период. Ежегодная заболеваемость во всем мире составляет 1 %, в рекреационный период возрастает

до 3 %.

Водные вспышки туляремии возникают при заражении источников водоснабжения (колодцы, ручьи, реки) выделениями больных грызунов в период туляремийных эпизоотий. Заболевания чаще регистрируются среди сельскохозяйственных рабочих и скотоводов, употребляющих воду из загрязненных рек и небольших ручьев. Хотя известны эпидемии туляремии и при использовании водопроводной воды в результате нарушений режима очистки и обеззараживания.

Водный путь распространения характерен также для бруцеллеза, сибирской язвы, эризипилоида, туберкулеза и других антро-позоонозных инфекций.

Часто недоброкачественная вода может быть источником вирусных инфекций. Этому способствует высокая устойчивость вирусов в окружающей среде. Сегодня наиболее изучены водные вспышки вирусных инфекций на примере инфекционного гепатита. Большинство вспышек гепатита связано с нецентрализованным водоснабжением. Однако и в условиях централизованного водоснабжения водные эпидемии гепатита имеют место. Например, в Дели (1955-1956 гг.) - 29 000 человек.

Определенное значение имеет водный фактор и в передаче инфекций, вызванных полиовирусами, вирусами Коксаки и ЕСНО. Водные вспышки полиомиелита имели место в Швеции (1939-1949 гг.),

ФРГ - 1965 г., Индии - 1968 г., СССР (1959, 1965-1966 гг.).

В основном вспышки связаны с использованием загрязненной колодезной воды и речной воды.

Особого внимания заслуживают эпидемии вирусной диареи или гастроэнтеритов. С купанием в плавательных бассейнах связывают вспышки фарингоконъюнктивальной лихорадки, конъюнктивитов, ринитов, вызываемых аденовирусами и вирусами ЕСНО.

Определенную роль играет вода и в распространении гельмин-тозов: аскаридоза, шистосомоза, дракункулеза и др.

Шистосомоз - заболевание, при котором в венозной системе обитают гельминты. Миграция этого кровяного сосальщика в печень и мочевой пузырь может вызвать серьезные формы заболевания. Личинка гельминта может проникать через неповрежденную кожу. Заражение происходит на рисовых полях, при купании в мелких загрязненных водоемах. Распространение в Африке, на Ближнем Востоке, в Азии, Латинской Америке, ежегодно болеют около 200 млн человек. В XX в. получил распространение вследствие строительства оросительных каналов ("стоячая вода" - благоприятные условия для развития моллюсков).

Дракункулез (ришта) - гельминтоз, протекающий с поражением кожи и подкожной клетчатки, с выраженным аллергическим

компонентом. Заражение происходит при питье воды, содержащей рачков - циклопов - промежуточных хозяев гельминта.

Заболевание на территории России ликвидировано, но распространено в Африке, Индии. В отдельных районах Ганы население поражено до 40 %, в Нигерии - до 83 %. Распространению дра-кункулеза в этих странах способствует ряд причин:

Особый способ забора воды из водоисточников с большими колебаниями уровня воды, что вызывает необходимость устройства ступеней по берегам. Человек вынужден босиком заходить в воду, чтобы ее набрать;

Ритуальное омовение;

Религиозные предрассудки, запрещающие пить колодезную воду (в колодцах вода "темная, дурная");

В Нигерии - обычай готовить пищу на сырой воде. Менее выражена роль воды в распространении аскаридоза и три-

хоцефалеза, вызываемого власоглавом. Однако описана эпидемия аскаридоза, поразившая 90 % населения одного из городов ФРГ.

Роль водного фактора в передаче трансмиссивных заболеваний косвенная (переносчики, как правило, размножаются на водной поверхности). К важнейшим трансмиссивным заболеваниям относится малярия, основные очаги которой регистрируются на африканском континенте.

Желтая лихорадка относится к вирусным заболеваниям, переносчиком являются комары, которые размножаются в интенсивно загрязненных водоемах (болотистых местностях).

Сонная болезнь, переносчиком являются некоторые виды мухи Цеце, обитающие на водоемах.

Онхоцеркоз или "речная слепота", переносчик также размножается на чистой воде, быстрых реках. Это гельминтоз, протекающий с поражением кожи, подкожной клетчатки и органа зрения, относится к группе филяриидозов.

Использование инфицированной воды для умывания может способствовать распространению таких заболеваний, как:

Трахома: передается контактным путем, но возможно и заражение через воду. Сегодня в мире страдает трахомой около 500 млн человек;

Чесотка (лепра);

Фрамбезия - хроническое, циклическое инфекционное заболевание, которое вызывается возбудителем из группы спирохет (трепонемой Кастеллани). Заболевание характеризуется разнообразными поражениями кожи, слизистых оболочек, костей, суставов. Фрамбезия распространена в странах с влажным тропическим климатом (Бразилия, Колумбия, Гватемала, азиатские страны).

Таким образом, существует определенная зависимость между заболеваемостью и смертностью населения от кишечных инфекций и обеспечением населения доброкачественной водой. Уровень водопотребления свидетельствует в первую очередь о санитарной культуре населения.

6.5. СОВРЕМЕННЫЕ ПРОБЛЕМЫ СТАНДАРТИЗАЦИИ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ

Качество питьевой воды должно соответствовать следующим общим требованиям: вода питьевая должна быть безопасна в эпидемическом и радиационном отношении, безвредна по своему химическому составу и благоприятна по своим физическим и органо-лептическим свойствам. Эти требования отражены в Санитарно-эпидемиологических правилах и нормах - СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества".

Нормативные документы всего мира обеспечивают эпидемиологическую безопасность отсутствием в питьевой воде микробиологических и биологических факторов риска - общих колиформных (ОКБ) и термотолерантных колиформных (ТКБ) бактерий, колифагов, спор сульфитредуцирующих клостридий и цист лямблий (табл. 6.3).

Таблица 6.3

Общие колиформные бактерии характеризуют весь спектр кишечных палочек, выделяемых человеком и животными (грамотри-цательные, ферментирующие лактозу при 37 °С, не обладающие оксидазной активностью).

Гигиеническое значение ОКБ велико. Наличие их в питьевой воде указывает на фекальное загрязнение. Если ОКБ обнаруживаются в процессе водоподготовки, то это свидетельствует о нарушении технологии очистки, в частности о снижении уровня обеззараживающих агентов, застойных явлениях в водопроводных сетях (так называемое вторичное загрязнение воды). Общие колиформные бактерии, выделенные из воды водоисточника, характеризуют интенсивность процессов самоочищения.

Показатель ТКБ был введен в СанПиН 2.1.4.1074-01 как показатель свежего фекального загрязнения, эпидемически опасного. Но это не совсем правильно. Доказано, что представители этой группы достаточно долго выживают в водоеме.

При обнаружении в питьевой воде того или иного индикаторного микроорганизма исследования повторяют, дополняя определением азотной группы. Если в повторных анализах обнаруживают отклонение от требований, проводят исследования на наличие патогенной флоры или вирусов.

Клостридии в настоящее время рассматриваются как более перспективные индикаторные микроорганизмы в отношении патогенной флоры, устойчивой к хлору. Тем не менее это технологический показатель, который используется для оценки эффективности водоочистки. Исследования, проведенные на Рублевской водопроводной станции, подтверждают, что при отсутствии колиформных бактерий клостридии практически всегда выделяются из очищенной воды, т. е. они более устойчивы к традиционным методам обработки. Исключение, как отмечают исследователи, составляют периоды паводков, когда усиливаются процессы коагуляции и хлорирования. Наличие паводков свидетельствует о большей вероятности присутствия патогенных микроорганизмов, устойчивых к хлору.

Радиационная безопасность питьевой воды определяется ее соответствием нормативам по показателям, представленным в табл. 6.4.

Таблица 6.4

Показатели радиационной безопасности

Идентификация присутствующих в воде радионуклидов и измерение их индивидуальных концентраций проводятся при превышении количественных значений общей активности.

Безвредность питьевой воды по химическому составу определяется ее соответствием нормативам по:

Обобщенным показателям и содержанию вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ антропогенного происхождения, получивших глобальное распространение (табл. 6.5).

Таблица 6.5

Обобщенные показатели

Таблица 6.6

Неорганические и органические вещества

Таблица 6.7

Показатели содержания вредных веществ, поступающих в воду и образующихся в процессе ее обработки в системе водоснабжения

В раздел "Обобщенные показатели" вошли интегральные показатели, уровень которых характеризует степень минерализации воды (сухой остаток и жесткость), содержание органических веществ в воде (окисляемость) и наиболее распространенные и повсеместно определяемые загрязнители воды (ПАВ, нефтепродукты и фенолы).

В соответствии с СанПиН 2. .4. 074-0 в качестве нормативов содержания химических веществ в воде используют величины ПДК или ориентировочно допустимый уровень (ОДУ) в мг/л:

ПДК - максимально допустимая концентрация, при которой вещество не оказывает прямого или опосредованного влияния на здоровье человека (при воздействии на организм в течение всей жизни) и не ухудшает гигиенические условия водопотребления;

ОДУ - ориентировочно допустимые уровни веществ в водопроводной воде, разработанные на основе расчетных и экспресс-экспериментальных методов прогноза токсичности.

Нормативы установлены в зависимости от признака вредности веществ: санитарно-токсикологического (с.-т.); органолептическо-го (орг.) с расшифровкой характера изменения органолептических свойств воды (зап. - изменяет запах воды; окр. - придает воде окраску; пен. - образует пену; пл. - образует пленку; привк. - придает привкус; оп. - вызывает опалесценцию).

Раздел СанПиН "Безвредность воды по химическому составу" позволяет оценить токсикологическую опасность питьевой воды. Токсикологический риск питьевых вод существенно отличается от эпидемиологического. Трудно представить, что одно вещество может присутствовать в питьевой воде в концентрациях, опасных для здоровья. Поэтому внимание специалистов привлекают хронические эффекты, воздействие таких веществ, которые способны мигрировать через очистные сооружения водопровода, токсичны, могут кумулироваться, обладают отдаленными биологическими эффектами. К ним относятся:

Токсичные металлы;

ПАУ - полициклические ароматические углеводороды;

ХОС - хлорорганические соединения;

Пестициды.

Металлы. Хорошо и прочно связываются в водных экосистемах с донными отложениями, снижают барьерную функцию водопроводов, мигрируют по биологическим цепям, накапливаются в организме человека, вызывая отдаленные последствия.

Полиароматические углеводороды. Типичным представителем является 3,4-бенз(а)пирен, канцероген, может попадать в питьевую воду при ее контакте со стенками трубопроводов, покрытыми каменноугольной смолой. 99 % ПАУ человек получает с продуктами питания, тем не менее учитывать их в питьевой воде актуально из-за их канцерогенности.

Группа хлорорганических соединений очень обширна, большинство из них обладает мутагенным и канцерогенным действием. ХОС образуются в процессе обеззараживания недостаточно очищенной воды на водопроводной станции. В настоящее время разработан перечень наиболее приоритетных ХОС (0 веществ) - хлороформ, четыреххлористый углерод (CCl 4), дихлорбромметан, ди-бромхлорметан, три- и тетрахлорэтилен, бромоформ, дихлорметан,2-дихлорэтан и,2-дихлорэтилен. Но чаще всего из питьевой воды выделяется хлороформ. Поэтому этот показатель, как наиболее приоритетный, введен в СанПиН 2. .4. 074-0 .

Таблица 6.8

Показатели органолептических свойств питьевой воды

Для многих регионов мира эта проблема очень актуальна, в том числе для российского Севера, поверхностные водоисточники которого богаты гуминовыми веществами, которые хорошо хлорируются и относятся к веществам-предшественникам.

Пестициды являются опасными экотоксикантами, устойчивы в окружающей среде, токсичны, способны к кумуляции и отдаленным эффектам. В СанПиН 2.4.1074-01 регламентированы наиболее токсичные и опасные из этой группы веществ - У-ГХУГ (линдан); ДДТ - сумма изомеров; 2-4-Д.

Органолептические свойства питьевой воды должны соответствовать требованиям, указанным в табл. 6.8.

Величина, указанная в скобках, может быть установлена по согласованию с органами государственной санитарно-эпидемиологической службы.

6.6. ПОКАЗАТЕЛИ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ,

ИХ ЭКОЛОГО-ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ

Вода питьевая должна быть приятной в эстетическом отношении. Потребитель косвенно оценивает безопасность питьевой воды по ее физическим и органолептическим свойствам.

К физическим свойствам воды относятся температура, мутность, цветность. От температуры воды зависит: интенсивность течения процессов самоочищения в водоеме, содержание растворенного в воде кислорода. Температура воды подземных источников отличается большим постоянством, поэтому изменение этого показателя может свидетельствовать о загрязнении данного водоносного горизонта бытовыми или промышленными сточными водами.

Вода питьевая должна быть освежающей температуры (7-12 °С) Теплая вода плохо утоляет жажду, неприятна на вкус. Вода с температурой 30-32 °С усиливает моторику кишечника. Холодная вода, с температурой ниже 7 °С, способствует возникновению простудных заболеваний, затрудняет пищеварение, нарушает целостность зубной эмали.

К органолептигеским свойствам воды относятся вкус и запах. Вода питьевая не должна иметь запаха. Наличие запахов делает ее неприятной на вкус и подозрительной в эпидемиологическом отношении.

Количественно запах определяется по 5-балльной системе опытным лаборантом-дегустатором:

1 балл - это еле ощутимый запах, определяемый только опытным лаборантом;

2 балла - запах, который замечает потребитель, если на него обратить внимание;

3 балла - ощутимый запах;

4 балла - резкий запах;

5 баллов - очень интенсивный запах.

В современных стандартах на качество питьевой воды допускается запах не более 2 баллов.

Вкус воды зависит от температуры воды, растворенных в воде солей и газов. Поэтому наиболее вкусная вода - колодезная, родниковая, ключевая. Вода питьевая должна быть приятной на вкус. Нормируются дополнительные привкусы, не свойственные воде. Количественно привкусы также оцениваются по пятибалльной системе и допускаются не более 2 баллов.

В гигиенической практике в особую группу выделяются вещества, свидетельствующие о загрязнении природных вод органическими отходами (продуктами жизнедеятельности человека и животных). К таким показателям относится, прежде всего, триада азота: аммиак, нитриты и нитраты. Эти вещества являются косвенными показателями фекального загрязнения воды.

Именно круговороту азота, который является важнейшей составной частью белка, принадлежит наибольшее санитарно-гигиеническое значение. Источником органического азота в воде являются органические вещества животного происхождения, т. е. продукты жизнедеятельности человека и животных. В водоемах продукты белковой природы подвергаются сложным биохимическим превращениям. Процессы превращения органических веществ в вещества минеральные называются процессами минерализации.

В течение процессов минерализации различают две основные фазы: аммонификация белка и нитрификация.

Процесс постепенного превращения белковой молекулы через стадии альбумоз, пептонов, полипептидов, аминокислот до конечного продукта этого распада - аммиака и его солей, называется аммонификацией белка. Процесс аммонификации белка наиболее энергично протекает при свободном доступе кислорода, но может происходить и в анаэробных условиях.

В дальнейшем аммиак под влиянием ферментов нитрифицирующих бактерий из группы Nitrozomonas окисляется до нитритов. Нитриты, в свою очередь, ферментами бактерий из группы Nit-trobacter окисляются до нитратов. На этом процесс минерализации заканчивается. Таким образом, аммиак - первый продукт минерализации органических веществ белковой природы. Наличие значительных концентраций аммиака всегда свидетельствует о свежем загрязнении водоисточника нечистотами человека и животных.

Но в отдельных случаях аммиак может встречаться и в чистых природных водах. В воде подземных источников аммиак встречается как продукт восстановления нитратов сернистыми соединениями железа (сульфидами) в присутствии углекислоты, которая выступает в качестве катализатора этого процесса.

Болотистые воды с большим содержанием гуминовых кислот также восстанавливают нитраты (при их значительном содержании) до аммиака. Аммиак такого происхождения допускается в питьевых водах в количестве не больше сотых долей мг/л. В воде шахтных колодцев до 0,1 мг/л по азоту аммиака.

Нитриты, так же как и аммиак, свидетельствуют о свежем загрязнении воды органическими веществами животного происхождения. Определение нитритов - тест очень чувствительный. Большие концентрации их почти всегда делают воду подозрительной в эпидемиологическом отношении. Нитриты в чистых водах встречаются очень редко и допускаются в виде следов, т. е. в тысячных долей мг/л.

Нитраты - конечный продукт минерализации органических веществ, свидетельствуют о давнем, старом по времени загрязнении водоисточника, не опасном в эпидемиологическом отношении.

Если в воде водоисточника одновременно обнаруживаются все три компонента (аммиак, нитриты и нитраты) - это свидетельствует о том, что данный водоисточник загрязняется давно и постоянно.

В чистых подземных водах нитраты обнаруживаются очень часто, особенно в глубоких подземных горизонтах. Это связано с большим или меньшим содержанием солей азотной кислоты в почве.

Показатели наличия в воде органигескихвеществ. Состав органических веществ, встречающихся в природных водах, очень сложный и изменчивый. Органические вещества могут образовываться в самом водоисточнике в результате распада водных организмов и растений - это органические вещества растительного происхождения. Кроме того, в водоисточник с бытовыми и промышленными сточными водами в большом количестве поступают органические вещества животного происхождения.

В гигиенической практике широко используются косвенные показатели, характеризующие сумму органических веществ. К таким показателям относится окисляемость воды. Под оки-сляемостью воды понимают то количество кислорода, которое необходимо для окисления всех органических веществ, содержащихся в одном литре воды. Выражается окисляемость в мгО2 /л. Определяется по методу Кубеля. Принцип метода сводится к тому, что в пробу воды, подкисленную, вносится KMnO 4 как источник кислорода, который идет на окисление органических веществ воды.

Окисляемость позволяет косвенно определить всю сумму органических веществ воды. Окисляемость нельзя назвать показателем загрязнения. Это показатель наличия в воде органических веществ, так как в цифру окисляемости войдут все органические вещества (растительного и животного происхождения), а также недооки-сленные неорганические соединения. Окисляемость природных вод не нормируется. Величина ее зависит от типа водоисточника.

Для чистых подземных вод окисляемость равна 1-2 мгО2 /л. Вода из поверхностных водоемов может иметь высокую величину окисляемости и не быть загрязненной: до 10 мгО2 /ли более. Это чаще всего связано с наличием гуминовых кислот, органических веществ растительного происхождения. Особенно это характерно для северных рек, где почвы богаты гумусом. По одной только цифре окисляемости нельзя определить, чистая или загрязненная вода, для этого обязательно необходимо привлечь другие данные (показатели азотной группы, бактериологические показатели).

Растворенный в воде кислород. Содержание растворенного в воде кислорода зависит от температуры воды; барометрического давления; от площади свободной водной поверхности; флоры и фауны водоема; от интенсивности процессов фотосинтеза; от уровня антропотехногенного загрязнения.

По количеству растворенного в воде кислорода можно судить о чистоте водоема. Содержание растворенного в воде кислорода

в чистой воде наибольшее при 0 °С. С повышением температуры воды количество растворенного кислорода уменьшается. При содержании растворенного кислорода в количестве 3 мг/л рыбы покидают водоем. Форель - очень прихотливая рыба, водится только в очень чистых водоемах с содержанием растворенного кислорода не менее 8-12 мг/л. Карп, карась - не менее 6-8 мг/л.

Показатель БПК - биохимическая потребность в кислороде. В санитарной практике имеет значение не столько абсолютное содержание растворенного в воде кислорода, сколько степень его уменьшения (расходования) в течение определенного срока хранения воды в закрытых сосудах - т. е. так называемая биохимическая потребность в кислороде. Чаще всего определяют убыль или расход кислорода за 5 сут, так называемую БПК-5.

Чем больше расход кислорода за 5 сут, тем больше содержится в воде органических веществ, тем выше уровень загрязнения.

Так же как и для окисляемости, для БПК-5 нет определенных нормативов. Величина БПК-5 зависит от содержания в воде органических веществ, в том числе и растительного происхождения, а следовательно, и от вида водоисточника. Величина БПК-5 в пробах воды, отобранных из поверхностных водоисточников, богатых гуминовыми соединениями, больше, чем для воды из подземных горизонтов.

Вода считается очень чистой, если БПК-5 не более 1 мгО2 /л (подземные, атмосферные воды). Чистой, если БПК-5 2 мгО2 /л. Сомнительной при величине БПК-5 4-5 мгО 2 /л.

Минеральный (солевой) состав воды. Количественно величина солевого состава воды или степень минерализации воды определяется величиной сухого остатка. Сухой остаток характеризует сумму всех химических соединений (минеральных и органических), растворенных в 1 л воды. Величина сухого остатка влияет на вкусовые качества воды. Пресной считается вода с содержанием солей не более 1000 мг/л. Если солей в воде больше 2500 мг/л, то такая вода относится к соленым. Величина сухого остатка для воды питьевой должна быть не больше 1000 мг/л. Иногда разрешается пить воду с величиной сухого остатка до 1500 мг/л. Вода с большим содержанием солей имеет неприятный солоноватый или горьковатый привкус.

Чистые природные воды, как поверхностные, так и подземные, характеризуются различным содержанием солей. Как правило, величина этого показателя сильно колеблется даже в пределах одной страны и увеличивается с севера на юг. Так, в северных регионах России поверхностные и грунтовые воды слабо минерализованы

(до 100 мг/л). Основную часть минерального состава воды в этих регионах составляют бикарбонаты Са и Mg. В южных районах поверхностные и грунтовые воды характеризуются гораздо большим содержанием солей, а следовательно, и большей величиной сухого остатка. Причем основную часть солевого состава воды в этих районах составляют хлориды и сульфаты. Это так называемые хлорид-но-сульфатно-натриевые воды. Это районы Причерноморья, При-каспия, Донбасса, Грузии, государств Средней Азии.

Есть еще один показатель, который интегрально характеризует содержание в воде минеральных компонентов. Это величина жесткости воды.

Различают несколько видов жесткости: общую, устранимую и постоянную. Под общей жесткостью понимают жесткость, обусловленную содержанием катионов Са и Mg в сырой воде. Это жесткость сырой воды. Устранимая жесткость - это жесткость, которая устраняется в течение 1 ч кипячения и обусловлена наличием гидрокарбонатов Са и Mg, которые при кипячении разлагаются с образованием карбонатов, выпадающих в осадок. Постоянная жесткость - это жесткость кипяченой воды, она обусловлена чаще всего хлористыми и сернокислыми солями кальция и магния. Особенно трудно удаляются из воды сульфаты и хлориды магния. Нормируется в питьевой воде величина общей жесткости; допускается до 7 мг? экв/л, иногда до 10 мг? экв/л.

Физиологическое значение солей жесткости. За последние годы коренным образом изменилось в гигиене отношение к физиологическому значению солей жесткости. Долгое время значение жесткости воды рассматривалось только в хозяйственно-бытовом аспекте. Жесткая вода мало пригодна для промышленных и хозяйственно-бытовых нужд. В ней плохо развариваются мясо, овощи; затруднительно использование такой воды для целей личной гигиены. Соли кальция и магния образуют с жирными кислотами моющих средств нерастворимые соединения, которые раздражают и высушивают кожу. Более того, очень долгое время, еще со времен Ф. Ф. Эрисмана, бытовало мнение, что солевой состав природных вод не может оказывать серьезного влияния на здоровье человека при обычном употреблении воды для питья. С питьевой водой человек получает около 1-2 г солей в сутки. В то же время с пищей за сутки в организм человека поступает около 20 г (с животной пищей) и до 70 г (при растительной диете) минеральных солей. Поэтому еще M. Рубнер и Ф. Ф. Эрисман считали, что минеральные соли редко встречаются в питьевых водах в таком количестве, чтобы вызывать заболевания среди населения.

Таблица 6.9 Жесткость питьевой воды и смертность от сердечно-сосудистых заболеваний среди мужчин в возрасте 45-64 лет в городах Англии и Уэлса

(по М. Гарднер, 1979)

В последнее время в литературе появилось много сообщений о влиянии воды с повышенной минерализацией на здоровье человека (табл. 6.9). В основном это касается хлоридно-сульфатно-нат-риевых вод, которые встречаются в южных регионах. При употреблении воды малой и средней минерализации в организм действительно поступает, как и считал Ф. Ф. Эрисман, 0,08-1,1 % солей от поступающих с пищей. При высокой минерализации питьевой воды и потреблении до 3,5 л воды в южных районах эта величина может достигнуть 25-70 % по отношению к пищевым рационам. В таких случаях поступление солей практически удваивается (пища + вода), что небезразлично для организма человека.

По данным А. И. Бокиной, жители Москвы ежедневно с водой получают 770 мг солей; жители Санкт-Петербурга - 190 мг солей; Запорожья, Апшерона, Ростовской области (Сальский район) - от 2000 до 8000 мг; Туркмении - до 17 500 мг.

Вода, как высокоминерализованная, так и маломинерализованная, может оказывать неблагоприятное воздействие на здоровье. По данным А. И. Бокиной, И. А. Малевской, вода повышенной степени минерализации увеличивает гидрофильность тканей, снижает диурез, способствует расстройству функций пищеварения, так как угнетает все показатели секреторной деятельности желудка. Жесткая вода обладает послабляющим действием на кишечник, особенно содержащая сернокислые соли магния. Кроме того, у лиц, длительно

употребляющих высокоминерализованную воду сульфатно-кальциевого типа, отмечаются изменения водно-солевого обмена, кислотно-щелочного равновесия.

Жесткая вода может, по данным А. И. Бокиной, способствовать возникновению мочекаменной болезни. На Земном шаре отмечаются зоны, где мочекаменная болезнь носит характер эндемии. Это районы Аравийского полуострова, Мадагаскара, Индии, Китая, Средней Азии, Закавказья и Закарпатья. Это так называемые "каменные зоны", где отмечается повышенная заболеваемость уроли-тиазом.

Но есть и другая сторона проблемы. В связи с использованием населением опресненных морских вод были проведены гигиенические исследования по нормированию нижнего предела минерализации. Экспериментальные данные подтвердили, что длительное потребление дистиллированной воды или слабоминерализованной воды нарушает водно-солевое равновесие организма, в основе которого лежит повышенный выброс Na в кровь, что способствует перераспределению воды между внеклеточной и внутриклеточной жидкостями. Следствием этих нарушений ученые считают повышенный уровень заболеваний сердечно-сосудистой системы среди населения этих регионов.

Нижним пределом минерализации, при котором поддерживается гомеостаз организма, является сухой остаток в 100 мг/л, оптимальным уровнем минерализации является сухой остаток в 200- 300 мг/л. При этом минимальное содержание Са должно быть не менее 25 мг/л; Mg - не менее 10 мг/л.

Хлористые соли встречаются практически во всех водоисточниках. Содержание их в воде зависит от характера почв и увеличивается с северо-запада на юго-восток. Особенно много хлоридов в водоемах Узбекистана, Туркмении, Казахстана. Хлориды влияют на вкус воды, придавая ей солоноватый привкус. Допускается содержание хлоридов до пределов вкусовой ощутимости, т. е. не более 350 мг/л.

В некоторых случаях хлориды можно использовать как показатель загрязнения. Хлориды выводятся из организма человека через почки, поэтому хозяйственно-бытовые сточные воды всегда содержат много хлоридов. Но нужно помнить, что хлориды могут использоваться в качестве показателей загрязнения только в сравнении с местными, региональными нормами.

В том случае, когда содержание хлоридов в чистой воде данной местности не известно, решить вопрос о загрязнении воды только по одному этому показателю невозможно.

Сульфаты вместе с хлоридами составляют основную часть солевого состава воды. Можно употреблять воду с содержанием сульфатов не более 500 мг/л. Так же как хлориды, сульфаты нормируются по влиянию на вкус воды. Могут также в отдельных случаях рассматриваться как показатели загрязнения.

6.7. ХИМИЧЕСКИЙ СОСТАВ ВОДЫ КАК ПРИЧИНА МАССОВЫХ НЕИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

Водный фактор оказывает существенное влияние на здоровье населения. Это влияние может быть как прямым (непосредственным), так и косвенным (опосредованным). Косвенное влияние проявляется прежде всего в ограничении потребления воды, имеющей неблагоприятные органолептические свойства (вкус, запах, окраску). Вода может быть причиной массовых инфекционных заболеваний. А при определенных условиях может быть причиной и массовых неинфекционных заболеваний.

Возникновение массовых неинфекционных заболеваний среди населения связывается с химическим, а точнее с минеральным составом воды.

В составе животных организмов обнаружено около 70 химических элементов, в том числе 55 микроэлементов, которые в сумме составляют около 0,4-0,6 % живого веса организмов. Все микроэлементы можно разделить на 3 группы. К первой группе относятся микроэлементы, которые постоянно содержатся в животных организмах и роль которых в процессах жизнедеятельности четко установлена. Они играют существенную роль в росте и развитии организма, кроветворении, размножении. Входя в состав ферментов, гормонов и витаминов, микроэлементы выполняют роль катализаторов биохимических процессов. Сегодня для 14 микроэлементов достоверно установлена их биохимическая роль. Это такие микроэлементы, как Fe, Zn, Cu, J, F, Mn, Mo, Co, Br, Ni, S, P,

K, Na.

Ко второй группе микроэлементов относятся те, которые также постоянно содержатся в животных организмах, но их биохимическая роль или мало изучена, или не изучена вовсе. Это Cd, Sr, Se, Ra, Al, Pb и др.

В третью группу входят микроэлементы, количественное содержание которых и их биологическая роль не изучены совсем (W, Sc, Au и ряд других).

Недостаток или избыток жизненно важных микроэлементов первой группы в пище приводит к нарушению обмена веществ и возникновению соответствующего заболевания.

Чаще поступление микроэлементов в организм человека происходит таким путем: почва - растения - животные организмы - человек.

Для некоторых микроэлементов, например фтора, характерен другой путь: почва - вода - человек, минуя растения.

В природе происходит постоянное рассеивание микроэлементов за счет метеорологических факторов, воды, а также жизнедеятельности живых организмов. В результате создается неравномерное распределение микроэлементов в земной коре, формируется недостаток или избыток микроэлементов в почве и воде определенных географических районов. В результате в этих районах возникают своеобразные изменения во флоре и фауне: от незаметных физиологических сдвигов до изменений формы растений, эндемических заболеваний и гибели организмов. Профессор А. П. Виноградов и академик В. И. Вернадский разработали теорию "биогеохимических провинций", согласно которой непрерывно протекающие в земной коре геохимические процессы и изменения химического состава организма являются процессами взаимосвязанными.

Что понимают под "биогеохимическими провинциями"? Это такие географические районы, где причинным фактором заболеваний является характерный минеральный состав воды, растительности и животных вследствие недостатка или избытка микроэлементов в почве, а заболевания, возникающие в этих районах, - называют геохимическими эндемиями или эндемическими заболеваниями. Под этой группой заболеваний и понимают типичные массовые заболевания населения неинфекционной природы.

Одной из распространенных эндемий является уровская болезнь, или болезнь Кашина - Бека. Это заболевание впервые обнаружено и описано в 1850-х гг. и эндемично для горно-таежных, болотистых районов.

Название уровская болезнь получила по наименованию реки Урова, притока Аргуни, впадающей в Амур. Впервые была описана врачом Н. И. Кашиным в 1856 г. и в начале 1900-х гг. Е. В. Беком. Ее основной очаг расположен в Забайкалье по долине рек Уро-ва, Урюмкан, Зея на территории Читинской области, отчасти - в Иркутской и Амурской областях. Кроме того, уровская болезнь широко распространена в Северной Корее и Северном Китае; обнаружена в Швеции.

Уровская болезнь развивается преимущественно в детском возрасте 6-15 лет, реже в 25 лет и старше. Процесс развивается мед-

ленно, поражается преимущественно костно-суставная система. Наиболее ранним и основным признаком является короткопалость рук с симметрично деформированными и утолщенными суставами. Население и большинство исследователей связывают уровскую болезнь с водным фактором.

В возникновении этой патологии придавали значение повышенной радиоактивности воды, наличию в ней солей, тяжелых металлов (свинца, кадмия, коллоидного золота), поскольку эндемические очаги были в местах рудных полиметаллических месторождений. Имела место и инфекционная теория возникновения уровской болезни. Это теория самого доктора Бека, описавшего ее. Однако она также не подтвердилась, так как выделить специфический микроорганизм не удалось. В настоящее время большинство исследователей придерживается алиментарно-токсической теории возникновения уровской болезни. Одним из этиологических моментов считается использование воды слабой минерализации, с малым содержанием кальция, но высоким содержанием стронция. Считается, что стронций, находясь в конкурентных с кальцием отношениях, вытесняет кальций из костей. Таким образом, водный фактор, не являясь основной причиной возникновения уровской болезни, рассматривается как существенное условие возникновения ее эндемических очагов.

Заболевания, связанные с различным содержанием фтора в питьевой воде. В природных водах содержание фтора колеблется в значительных пределах (табл. 6.10).

Таблица 6.10 Фтор в воде водоисточников различных стран

(по М. Г. Коломейцевой, 1961)

Среднесуточная физиологическая потребность во фторе для взрослого человека составляет 2,000-3,000 мкг/сут, и 70 % ее человек получает с водой и только 30 % - с пищей. Для фтора характерен малый диапазон доз - от токсических до биологически полезных.

С фтором связывают распространение двух групп массовых и совершенно различных заболеваний - гипо- и гиперфторозов.

При длительном употреблении воды, бедной солями фтора (0,5 мг/ли меньше), развивается заболевание, называемое кариесом зубов. Заболеваемость кариесом необычайно высока. В регионах, бедных фтором, поражается почти все население. Существует обратная зависимость между содержанием фтора в воде и распространенностью кариеса среди населения.

Однако кариес - это частное проявление гипофторозных состояний. Почти 99 % фтора в организме находится в составе твердых тканей. Мягкие ткани бедны фтором. При дефиците F происходит его мобилизация из костной ткани во внеклеточную жидкость. Существенную роль в этом процессе играет рН.

При кариесе зубов и остеопорозе минеральная часть костной ткани растворяется под воздействием кислот. В первом случае кислая среда создается бактериями, населяющими полость рта, а во втором - остеокластами и другими костными клетками, резорбирую-щими минеральные компоненты кости.

Различают несколько видов гипофторозов:

Внутриутробный, врожденный, сопровождается недоразвитием скелета. Чаще встречается в эндемичных районах;

Гипофтороз детей грудного и раннего дошкольного возраста сопровождается замедленным прорезыванием зубов, темпом роста, рахитом;

Гипофтороз детей школьного возраста чаще проявляется в виде кариеса зубов;

Гипофтороз взрослых сопровождается явлениями остеопо-роза и остеомаляции.

В особые формы выделяют гипофтороз беременных и женщин постклимактерического периода. В эти периоды жизни у женщины идет активная потеря минеральных веществ, что сопровождается развитием остеопороза. В самостоятельную группу выделяют старческий гипофтороз.

Однако и избыточные, чрезмерные концентрации в питьевой воде фтора приводят к патологии. Длительное употребление воды, содержащей фтор в концентрации выше 1,0-1,5 мг/л, способствует возникновению флюороза (от латинского названия Fluo-rum).

Флюороз - весьма распространенная геохимическая эндемия. Чаще возникновение этого заболевания связано с использованием для питья воды из подземных горизонтов. В подземных водах фтор встречается в концентрациях до 3-5 мг/ли выше, иногда до 27 мг/ли выше.

Впервые пятнистость зубной эмали, как ранний признак флюороза, обнаружилв 1901 г. Эгер у итальянских эмигрантов (рис. 1). В 1916 г. были опубликованы исследования о распространенности этого заболевания среди населения США, однако лишь в 1931 г. была доказана связь между флюорозом и повышенным содержанием фтора в питьевой воде.

Флюороз характеризуется своеобразным буроватым цветом и крапчатостью зубов. Первые клинические признаки заболевания проявляются в изменении эмали зубов. На поверхности эмали появляются меловидные полоски и пятна; в дальнейшем происходит окрашивание эмали в коричневый цвет, флюорозные пятна увели-

Рис. 1. Флюороз зубов:

а - 1-я стадия - отдельные меловидные пятна; б - 2-я стадия - пигментация эмали; в - 3-я стадия - разрушение зубной коронки

Рис. 2. Эндемический флюороз скелета:

а - рентгенограмма с массивными обызвествлениями ребер и позвоночника; б - деформация нижних конечностей у ребенка

чиваются, появляется пигментация эмали темно-желтого или коричневого цвета, наступают необратимые изменения в зубах, касающиеся не только эмали, но иногда и дентина, вплоть до полного разрушения коронок. В течение длительного времени считалось, что флюороз выражается только элективным поражением зубов и скелета (рис. 2).

Однако фтор поражает многие органы и ткани.

При длительном (в течение 10-20 лет) потреблении воды с концентрацией фтора 10 мг/ли выше могут наблюдаться изменения со стороны костно-суставного аппарата: остеосклероз, диффузный остеопороз, костные отложения на ребрах, деформация скелета. Фтор имеет исключительное сродство ко всем кальцинированным тканям и внетканевым отложениям кальция. Поэтому часто атеро-склеротические изменения сосудов сопровождаются местными отложениями фтора. Таким же вторичным фторозом часто сопровождается желчно-каменная и мочекаменная болезнь.

В стандарте США принят новый подход к нормированию фтора в питьевой воде. Оптимальный уровень фтора для каждого населенного места зависит от климатических условий. Количество выпитой воды, а следовательно, и количество фтора, которое посту-

пает в организм человека, в первую очередь зависит от температуры воздуха. Поэтому в южных районах, там, где человек выпивает большее количество воды, а следовательно, и фтора вводит больше, содержание его в 1 л устанавливается на меньшем уровне.

Признание роли климатического фактора, определяющего различное количество потребляемой воды, в связи с характерным для фтора крайне ограниченным диапазоном доз от биологически полезных до токсических было учтено при нормировании фтора

в СанПиН 2.1.4.1074-01.

При искусственном фторировании воды концентрация фтора должна поддерживаться на уровне 70-80 % от нормативов, принятых для каждого климатического района. Наиболее действенной профилактической мерой по борьбе с кариесом зубов является фторирование воды на водопроводных станциях.

Нитратно-нитритная метгемоглобинемия. До 1950-х гг. нитраты питьевых вод рассматривались как санитарный показатель, характеризующий конечный продукт минерализации органических загрязнений. В настоящее время нитраты питьевых вод рассматриваются и как токсикологический фактор. Впервые о токсической роли нитратов в питьевой воде высказал предположение в 1945 г. профессор Х. Комли. Однако способность нитратов вызывать мет-гемоглобинемию была известна задолго до Х. Комли. Еще в середине прошлого столетия (в 1868 г.) Гемджи удалось доказать, что добавление амилнитрата к крови ведет к образованию метгемо-глобина.

Х. Комли впервые пришел к выводу о том, что метгемоглобине-мия может быть обусловлена употреблением воды с высокой концентрацией нитратов. С этого сообщения практически началось изучение нитратов питьевой воды как фактора заболеваемости населения. За период с 1945 по 1950 г. Ассоциацией здравоохранения США было зарегистрировано 278 случаев метгемоглобинемии среди детей с 39 смертельными исходами, причиной которых было употребление воды с большим содержанием нитратов. Затем подобные сообщения появились во Франции, Англии, Голландии, Венгрии, Чехословакии и других странах. В 1962 г. Г. Горн и Р. Пржи-боровский сообщили о регистрации в ГДР 316 случаев метгемо-глобинемии с 29 смертельными исходами.

Каков же патогенез возникновения метгемоглобинемии водного происхождения?

У здорового человека в крови всегда имеется небольшое количество метгемоглобина (0,5-1,5 %). Этот "физиологический" мет-гемоглобин играет в организме очень важную роль, связывая ток-

сические вещества типа сульфидов, а также образующиеся в процессе метаболизма цианистые соединения. Однако у взрослого здорового человека образующийся метгемоглобин постоянно восстанавливается в гемоглобин ферментом метгемоглобинредуктазой. Метгемоглобинемией называется такое состояние организма, когда содержание метгемоглобина в крови превышает норму - 1,5 %. Метгемоглобин (или гемиглобин) образуется из гемоглобина в результате истинного окисления. Сам гемоглобин состоит из двух частей: гемма (представляет собой ферропорфирины, т. е. порфирины, соединенные с железом) и глобина.

Гемоглобин в крови распадается на гемм (Fe 2+) и глобин. Железо гемма (Fe 2+) окисляется до Fe 3+ , превращаясь в гематин, дающий стойкое соединение с О2.

Метгемоглобин - это сочетание гематина (гемиглобин) (т. е. окисленного гемма, содержащего Fe 3+) и глобина, который не способен вступать в обратимую связь с О2, переносить и отдавать его тканям.

Это то, что происходит в крови. В желудочно-кишечном тракте нитраты еще в верхних его отделах восстанавливаются нитратре-дуцирующей микрофлорой, в частности В. subtillis, до нитритов. Этот процесс активно продолжается и в кишечнике, под действием E. coli; Clostridium perfringens. Нитриты в тонком кишечнике всасываются в кровь и здесь вступают в реакцию с гемоглобином. Избыток нитратов выводится через почки.

Наиболее чувствительны к действию нитратов в питьевой воде дети до года (грудные) при условии искусственного вскармливания (смеси готовят на воде, богатой нитратами). Отсутствие кислотности в желудочном соке новорожденных (физиологическая ахилия) ведет к заселению верхних отделов желудочно-кишечного тракта нитрифицирующими бактериями, которые восстанавливают нитраты в нитриты прежде, чем они успевают полностью всосаться. У детей более старшего возраста кислотность желудочного сока подавляет рост нитрифицирующей микрофлоры. Другим фактором, влияющим на повышенную всасываемость нитритов, является повреждение слизистой оболочки кишечника.

Немаловажную роль в возникновении метгемоглобинемии играет наличие у детей раннего грудного возраста фетального гемоглобина, который гораздо быстрее окисляется в метгемоглобин, чем гемоглобин взрослых. Кроме того, этому способствует и чисто физиологическая особенность грудного возраста - отсутствие фермента метгемоглобинредуктазы, восстанавливающей метгемоглобин в гемоглобин.

Сущность заболевания сводится к тому, что большая или меньшая часть гемоглобина заболевшего ребенка переводится в мет-гемоглобин. Нарушается доставка кислорода тканям, вызывая ту или иную степень кислородного голодания.

Уровень метгемоглобина, превышающий 10 %, является для организма критическим и вызывает снижение оксигенации артериальной и венозной крови, глубокое нарушение внутреннего дыхания с накоплением молочной кислоты, появление цианоза, тахикардии, психического возбуждения, сменяющегося комой.

Долгое время считалось, что метгемоглобинемией могут болеть только дети раннего грудного возраста. Профессор Ф. Н. Субботин (1961), обследуя детские коллективы в Ленинградской области, установил, что и дети более старшего возраста, от 3 до 7 лет, также реагируют образованием МШЬ при употреблении воды, содержащей нитраты. При этом выраженных клинических симптомов не наблюдается, но при более тщательном обследовании детей имеют место изменения со стороны ЦНС, сердечно-сосудистой системы, насыщение крови О 2 . Эта симптоматика проявляется в условиях повышенной физической нагрузки. К этому фактору (повышенному содержанию NO 3) чувствительны больные с патологией верхних дыхательных путей, сердечно-сосудистой системы.

Эндемический зоб. Физиологическое значение йода определяется участием в синтезе гормона щитовидной железы - тироксина. При этом специфическая гормональная функция щитовидной железы обеспечивается поступлением йода в организм извне: главным образом с пищей, а также с водой.

Зоб - это стойкое увеличение щитовидной железы, обусловленное гиперплазией тиреоидной паренхимы, является наиболее известной и широко распространенной в Европе и Америке геохимической эндемией.

Очаги эндемического зоба наблюдаются главным образом в высокогорных областях в глубине континентов (некоторые районы Альп, Гималаев, Карпат, Памира, Кавказа и др.). Реже эти очаги локализуются по водоразделам рек в местностях лесистых, торфяно-болотистых с подзолистыми почвами (район Ладожского озера, некоторые районы Сибири,

рис. 3, 4).

Рис. 3. Зоб (увеличение щитовидной железы 4-й степени)

Рис. 4. Эндемический зоб, кретинизм

Женщины более склонны к этому заболеванию, чем мужчины, что подтверждает статистика. В тяжелых очагах женщины болеют в 3 раза чаще мужчин (1: 1 до 1: 3), в очагах средней тяжести соотношение составляет от 1: 3 до 1: 5, в легких - от 1: 5 до 1: 7.

В возникновении эндемического зоба большая роль отводилась водному фактору, т. е. недостатку йода в воде. В действительности это не совсем так.

Суточная потребность в йоде составляет 100-200 мкг йода в сутки. В то же время суточный баланс йода составляет 120-125 мкг (по А. П. Виноградову) и складывается:

70 мкг - из растительной пищи;

40 мкг - из животной пищи;

5 мкг - из воды;

5 мкг - из воздуха.

Таким образом, физиологически необходимые количества йода организм получает не с питьевой водой, а с продуктами питания. Это подтверждается и тем, что водопроводная вода Москвы, Санкт-Петербурга содержит исключительно мало йода (1,6 мкг/л), однако в этих городах нет эндемического зоба, так как население их питается привозными продуктами, обеспечивающими благоприятный йодный баланс. Поэтому имеется достаточно оснований считать, что в возникновении эндемического зоба основная роль принадлежит пищевому фактору.

Низкое содержание йода в питьевой воде не служит непосредственной причиной заболевания населения эндемическим зо-

бом. Однако малая концентрация йода в водных источниках данной местности может иметь сигнальное значение, свидетельствуя о неблагоприятных местных природных условиях, способных вызвать зобную эндемию.

К основным мерам профилактики следует отнести йодирование поваренной соли.

6.8. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТРАДИЦИОННЫХ И ПЕРСПЕКТИВНЫХ СПОСОБОВ ОБЕЗЗАРАЖИВАНИЯ И КОНСЕРВАЦИИ ПИТЬЕВОЙ ВОДЫ

Обеспечение населения доброкачественной питьевой водой в настоящее время является не только гигиенической, но и актуальной научно-технической и социальной проблемой. Это обусловлено многими причинами и, в первую очередь, интенсивным загрязнением водоисточников, что формирует дефицит воды питьевого качества. Проблема эпидемиологической опасности актуальна для всех регионов России, ибо сегодня доказано, что 2 /3 водоисточников на территории страны не отвечают гигиеническим требованиям.

Если в 1960-1970-е гг. удалось стабилизировать, а в ряде стран снизить процент эпидемических заболеваний водного характера, то уже с середины 1980-х гг., особенно в последние 10-15 лет, наблюдается интенсивный рост такой патологии. Более того, появляются новые формы инфекций, передающиеся через воду, изменяется характер циркуляции возбудителя в водной среде.

Так, первичный занос в Россию даже такой классической водной инфекции, как холера, не завершился становлением полного эпидемиологического благополучия, а создал предпосылку для циркуляции возбудителя в окружающей среде. Это обусловлено появлением нового, более устойчивого в окружающей среде, типа холерного вибриона - Эль-тор.

Возрос процент вирусных инфекций. Эта проблема очень актуальна для всех стран мира, и особенно для России. Известно более 100 различных возбудителей тяжелых вирусных заболеваний водного происхождения, таких как полиомиелит, гепатиты А и Е, менингит, миокардит, гастроэнтерит. Идентифицированы новые вирусы малых круглых структур как причины острых гастроэнтеритов (США, Австралия, Япония). Только за 1995 г. в России зарегистрировано более 68 тыс. случаев этого заболевания.

Более того, отмечается появление новых возбудителей или возможность передачи с водой тех заболеваний, роль которых в инфекционной патологии человека ранее считалась гипотетической. Так, из систем горячего водоснабжения выделены легионеллы, которые могут вызывать тяжелые атипичные пневмонии. Заражение происходит ингаляционным путем в душе, вблизи термальных вод, фонтанов и т. д. Усугубляет эту ситуацию несовершенство современных систем водоснабжения. Материалы обследования 49 наиболее централизованных систем водоснабжения на территории Ленинградской, Архангельской и Вологодской областей подтверждают это.

Из общего числа обследованных водопроводов на 36 станциях набор очистных сооружений не соответствует классу водоисточника, включает традиционный блок фильтрации, коагуляции и отстойников с обеззараживанием жидким хлором. Отсутствуют современные элементы доочистки (микрофильтрация, окислительные и сорбционные методы обработки воды). Снижена барьерная функция водопроводов и плохое санитарно-техническое состояние разводящих систем.

В отдельных районах Ленинградской, Архангельской и Вологодской областей велик процент проб питьевой воды (от 48 до 65 %), не благополучных по бактериологическим показателям. Растет уровень заболеваемости ротавирусной инфекцией. Так, в Вологодской области динамика заболеваемости ротавирусной инфекцией имеет выраженную тенденцию к росту. Уровень регистрируемой заболеваемости вирусными диареями и гастроэнтеритами в этом регионе более чем в 8 раз превышает федеральный уровень.

В связи с этим обеззараживание питьевой воды как средство профилактики эпидемических заболеваний является наиболее значимым среди всех процессов кондиционирования.

В настоящее время особую актуальность приобретают вопросы обеззараживания питьевой воды не только в условиях централизованного хозяйственного питьевого водоснабжения, но и на автономных объектах: в малых населенных пунктах, на экспедиционных базах, морских судах.

Серьезно осложняется обеспечение доброкачественной питьевой водой во время стихийных бедствий, эпидемий, вооруженных конфликтов, крупных аварий, когда источники водоснабжения, как правило, загрязнены и определенное время люди снабжаются привозной питьевой водой. В таких случаях возникает необходимость использовать эффективные способы обеззараживания и консервирования воды.

Существует много способов обеззараживания питьевых вод, и каждый из них имеет свои преимущества и недостатки. В практике подготовки принято условно разделять способы обеззараживания воды на реагентные (химические), безреагентные (физические) и комбинированные.

К химическим способам обеззараживания питьевой воды относятся: хлорирование, озонирование, использование препаратов серебра, йода, меди и некоторых других реагентов (перекись водорода).

Если первые два способа получили широкое распространение на очистных сооружениях водопровода, то последующие применяются при обеззараживании небольших объемов воды на автономных объектах, в полевых и экстремальных условиях водоснабжения.

Хлорирование - наиболее распространенный способ обеззараживания воды как в нашей стране, так и за рубежом.

Хлорирование осуществляется: газообразным хлором, диоксидом хлора или веществами, содержащими активный хлор, хлорной известью, гипохлоритами, хлораминами и др.

История хлорирования воды как метода ее обеззараживания берет свое начало с 1853 г., когда русский врач П. Карачанов предложил в своей брошюре "О способах очищения воды" использовать хлорную известь и описывал способ ее применения. Это предложение не было оценено и вскоре было забыто. Через 40 лет австрийский врач Траубе (1894) вновь предложил хлорную известь для обеззараживания воды, основываясь на микробиологических исследованиях Коха. В практике городского водоснабжения впервые хлорирование было применено в Кронштадте в 1910 г. В 1912 г. начали хлорировать воду в Петербурге.

Таким образом, действующим началом при хлорировании воды является свободный хлор, гипохлоритная кислота и ее анион, объединяемые в понятие "активный хлор". Так как на свету гипохло-ритная кислота может распадаться с выделением атомарного кислорода, обладающего сильным окислительным действием, некоторые авторы включают в это понятие атомарный кислород:

Достоинствами хлорирования являются:

Широкий спектр антимикробного действия в отношении вегетативных форм;

Экономичность;

Простота технологического оформления;

Наличие способа оперативного контроля за эффективностью обеззараживания.

Вместе с тем хлорирование имеет ряд существенных недостатков:

Хлор и его препараты являются токсичными соединениями, поэтому работа с ними требует строгого соблюдения техники безопасности;

Хлор воздействует в основном на вегетативные формы микроорганизмов, при этом грамположительные формы бактерий более устойчивы к его действию, чем грамотрицательные;

Хлор ухудшает органолептические показатели и приводит к денатурации воды.

Спороцидный эффект проявляется при высоких концентрациях активного хлора 200-300 мг/л и экспозиции от 1,5 до 24 ч. Вирулицидное действие наблюдается при концентрациях активного хлора от 0,5 до 100 мг/л. Высокорезистентными к действию хло ра являются цисты простейших и яйца гельминтов. Хлорирование воды способствовало появлению микроорганизмов, устойчивых к хлору.

Следует отметить, что эффективность обеззараживания хлором существенно зависит как от биологической характеристики микроорганизмов, так и от химического состава воды и экспозиции. Так, поверхностно-активные вещества препятствуют реализации бактерицидного процесса обеззараживания и даже проявляют стимулирующее действие, вызывая размножение микрофлоры.

В середине 1970-х гг. было доказано, что хлорирование питьевых вод способствует образованию галогенсодержащих соединений, обладающих отдаленными биологическими эффектами - мутагенным и канцерогенным. В реакцию с хлором вступают очень многие органические вещества, их называют "предшественниками". Вопрос о предшественниках образования хлорорганических соединений (ХОС) сложен и до конца не решен. В настоящее время в качестве предшественников ХОС изучено около 80 различных веществ. Наибольшее количество хлорированного материала продуцируют гуминовые кислоты, танины, хиноины, органические кислоты, фенолы и их производные, анилин и другие органические вещества.

Гигиеническая значимость ХОС, образующихся при хлорировании воды, различна. Одни из них в исчезающе малых концентрациях придают воде резкий неприятный запах (монохлорфенолы), тем самым сразу обнаруживая себя в воде; другие обладают выраженными токсическими эффектами, проявляют себя как канцеро-

гены и мутагены (хлороформ, четыреххлористый углерод, хлор-этилены и др.). Спектр ХОС, выделенных из питьевой воды, в различных странах идентичен и свидетельствует о том, что эта проблема актуальна для многих стран. Образуется целый ряд ХОС в микрограммовых количествах, однако наибольший процент (до 70-80 %) составляет хлороформ. Концентрация последнего может достигать 800 мкг/ли более.

К наиболее приоритетным из них были отнесены 10 веществ: хлороформ, четыреххлористый углерод, дихлорбромметан, дибром-хлорметан, три- и тетрахлорэтилен, бромоформ, дихлорметан, 1,2-дихлорэтан и 1,2-дихлорэтилен.

Насколько реальна опасность для здоровья человека ХОС питьевой воды? Ряд онкоэпидемиологических исследований, проведенных в США, Канаде, ФРГ, предполагают зависимость между содержанием в питьевой воде ХОС и онкологической заболеваемостью, особенно уровнем онкологии ЖКТ и мочевыделительной системы.

Существует предположение, что токсикология хлорированных вод обусловлена не столько летучими низкомолекулярными хлор-органическими соединениями, сколько стабильными высокомолекулярными веществами, спектр которых до настоящего времени не расшифрован и которые составляют большую часть (до 90 %) продуктов хлорирования, но остаются не учтенными.

Перспективным является хлорирование с использованием ги-похлорита натрия, который получают из поваренной соли методом электролиза. Выпускаются электролизные установки для малых водопроводных станций и более мощные - для станций производительностью до 300 тыс. м 3 /сут.

Использование гипохлорита натрия:

Более безопасно и экономично;

Уменьшает коррозию оборудования и трубопроводов. Уменьшение образования ХОС в питьевой воде возможно за счет:

Предотвращения их образования;

Удаления на заключительном этапе.

Целесообразнее и экономичнее предотвратить образование

ХОС.

Это достигается:

Изменением режима хлорирования;

Заменой жидкого хлора другими окислителями (диоксидом С1, хлораминами, озоном и т. д.);

Использованием комбинированных методов на стадии первичного обеззараживания.

Первичное хлорирование очень распространено на отечественных водопроводах, ведется большими дозами, так как цель его не только обеззараживание, но и борьба с планктоном, снижение цветности, интенсификация процессов коагуляции, дезинфекции водоочистных сооружений.

Следует изменить режим хлорирования: вести его меньшими дозами (1,5-2 мг/л) или использовать дробное хлорирование (доза С1 вводится небольшими порциями - частично перед сооружениями 1-й ступени очистки, частично перед фильтрацией). Изменение режима хлорирования уменьшает образование ХОС на 15-30 %. При высоких концентрациях органических загрязнений следует исключить первичное хлорирование, заменив его периодическим (с целью санитарной обработки сооружений).

В процессе традиционной обработки (коагулирования, отстаивания и фильтрации) удаляется до 50 % органических загрязнений, а следовательно, снижается и образование ХОС. Если отказаться нельзя, то можно заменить хлор другими окислителями.

Озон на стадии первичной обработки на 70-80 % снижает образование ХОС. При совместном использовании озонирование должно предшествовать хлорированию. Можно газообразный хлор заменить хлораминами. Аммонизацию в целях снижения ХОС можно проводить на разных этапах. На стадии предварительной обработки можно вместо хлора использовать ультрафиолетовое излучение (УФИ), при этом содержание ХОС снижается

на 50 %.

Озонирование. Альтернативным хлору дезинфектантом, который в настоящее время используется более чем на 1000 водопроводных станциях в Европе, является озон. В России озон используется на водопроводах Москвы и Нижнего Новгорода.

Озон обладает более широким спектром действия как дезин-фектант (уменьшает вирулентность брюшнотифозных, паратифозных и дизентерийных бактерий, оказывает активное влияние на споровые формы и вирусы). Обеззараживающее действие озона в 15-20 раз, а на споровые формы бактерий примерно в 300- 600 раз сильнее действия хлора. Высокий вирулицидный эффект (до 99,9 %) озона отмечается при реальных для практики водоснабжения концентрациях 0,5-0,8 мг/ли экспозиции 12 мин. Исследования последних лет показали высокую эффективность озона при уничтожении в воде патогенных простейших.

Озон улучшает органолептические и физические свойства воды (устраняет свойственные питьевой воде привкусы и запахи, уменьшает цветность воды, разрушая гуминовые кислоты до углекис-

лого газа и летучих слабоокрашенных кислот типа креновых). Кроме того, озон придает воде отчетливый голубоватый оттенок, а также активно удаляет фитопланктон из воды; обезвреживает в воде такие химические соединения, как фенолы, нефтепродукты, пестициды (карбофос, метафос, трихлометафос-3 и др.), а также поверхностно-активные вещества (ПАВ). Применение озона уменьшает использование коагулянтов, позволяет снизить дозу хлора и отказаться от первичного хлорирования, которое является основной причиной образования ХОС.

К преимуществам озонирования следует отнести наличие способа оперативного контроля за эффективностью обеззараживания, отработанные технологические схемы получения реагента.

Озонирование, как и хлорирование, не лишено недостатков: озон является взрывоопасным и токсичным реагентом; на порядок более дорогой способ, чем хлорирование; быстрое разложение озона (20-20 мин) ограничивает его применение; после озонирования нередко наблюдается значительный рост микрофлоры.

Кроме того, озонирование воды сопровождается образованием побочных продуктов, небезразличных для здоровья человека. Озон вступает в сложные химические реакции, которые зависят от рН среды. В щелочных системах могут образовываться свободные гид-роксильные радикалы. При озонировании питьевых вод образуются альдегиды, кетоны, карбоновые кислоты, гидроксилированные и алифатические ароматические соединения, в частности формальдегид, бензальдегид, ацетальдегид и др.

Однако продукты озонирования менее токсичны для экспериментальных животных, чем продукты хлорирования, и не обладают, в отличие от последних, отдаленными биологическими эффектами. Это было доказано в экспериментах с продуктами деструкции наиболее распространенных групп химических соединений: фенолов, углеводородов, бензина, пестицидов.

При озонировании воды существуют проблемы и технологического порядка. Эффективность озонирования зависит от рН, уровня загрязнения воды, щелочности, жесткости, мутности и цветности воды. В результате озонирования природных вод увеличивается количество биоразлагаемых органических соединений, что является причиной вторичного загрязнения воды в распределительной сети; снижается санитарная надежность систем водоснабжения. Для устранения повторного роста микроорганизмов в распределительной сети и пролонгирования эффекта обеззараживания озонирование необходимо сочетать с вторичным хлорированием и аммонизацией.

Возможны следующие варианты озонирования:

Одноступенное озонирование: использование озона на стадии предварительной обработки воды или после ее коагуляции перед фильтрацией. Цель - окисление легкоокисляемых веществ, улучшение процесса коагулирования, частичное обеззараживание;

Двухступенное озонирование: предварительное и после коагуляции. Вторичное более глубоко окисляет остаточные загрязнения, повышает эффект последующей сорбционной очистки;

Трехступенное озонирование: предварительное, после коагуляции и перед распределительной сетью. Заключительное обеспечивает полное обеззараживание и улучшает органолептические свойства воды.

Режим обработки и схему озонирования выбирают на основании данных физико-химического анализа воды.

Озонирование, как правило, не исключает хлорирования, так как озон не обладает пролонгирующим действием, поэтому на заключительном этапе должен применяться хлор. Озон может нарушать процесс коагуляции. При озонировании должна быть предусмотрена сорбционная ступень очистки. В каждом случае должны проводиться предпроектные технологические исследования.

В настоящее время возрос интерес к перекиси водорода, как обеззараживающему агенту, обеспечивающему осуществление технологических процессов без образования токсичных продуктов, загрязняющих окружающую среду. Предположительно, основным механизмом антибактериального действия перекиси водорода является образование супероксидных и гидроксильных радикалов, которые могут оказывать бактерицидное действие.

Наиболее распространенным из химических способов обеззараживания и консервации воды на автономных объектах является использование ионов серебра.

Практический опыт применения серебра и его препаратов с целью обеззараживания и консервации питьевой воды накапливается человечеством на протяжении многих веков. Установлен высокий бактерицидный эффект ионов серебра уже в концентрации 0,05 мг/л. Серебро обладает широким спектром антимикробного действия, подавляя бактерии и вирусы.

Наибольшее распространение получило использование электролитического или анодорастворимого серебра. Электролитическое введение реагентов позволяет автоматизировать процесс обеззараживания воды, а образующиеся при этом на аноде ионы гипохло-

рита и перекисных соединений усиливают бактерицидное действие анодорастворимого серебра. К достоинствам способа относится возможность автоматизации процесса и точного дозирования реагента. Серебро оказывает выраженное последействие, что позволяет консервировать воду на срок до 6 мес. и более. Однако серебро дорогой и весьма дефицитный реагент. На его антимикробное действие заметно влияют физико-химические свойства обрабатываемой воды.

Эффективными рабочими концентрациями серебра, особенно в практике обеззараживания воды на кораблях и других автономных объектах, являются 0,2-0,4 мг/л и выше. Вирулицидное действие его ионов проявляется только при высоких концентрациях - 0,5-10 мг/л, что существенно выше ПДК, которая установлена по токсикологическому признаку вредности и составляет 0,05 мг/л. В связи с этим обработка серебром рекомендуется для обеззараживания и консервации небольших объемов воды на объектах с автономными системами водоснабжения.

С целью снижения высоких концентраций серебра предложено использовать его в комбинации с постоянным электрическим полем, некоторыми окислителями, физическими факторами. Например, комбинированная обработка ионами серебра в концентрации 0,05 мг/л с наложением постоянного электрического поля напряженностью 30 В/см.

В практике обеззараживания питьевой воды все большее место находит применение ионов меди, которые, как и серебро, оказывают выраженное бактерицидное и вирулицидное действие, но в еще больших концентрациях, чем серебро. Предложен способ консервации питьевой воды ионами меди в концентрации 0,3 мг/л с последующей обработкой в постоянном электрическом поле напряженностью 30 В/см.

В настоящее время для консервации воды широко используется комбинация хлорирования с введением серебра и меди, что позволяет избежать некоторых сопутствующих хлорированию недостатков и продлить срок хранения воды до 7 мес. Хлорсеребренный и хлормедный способы заключаются в одновременной обработке воды хлором в дозе 1,0 мг/л и ионами серебра или меди в концентрации 0,05-0,2 мг/л.

Для обеззараживания индивидуальных количеств воды могут быть использованы препараты йода, которые, в отличие от препаратов хлора, действуют быстрее, не ухудшают органолептические свойства воды. Бактерицидный эффект йода обеспечивается при концентрации 1,0 мг/ли экспозиции 20-30 мин. Вирулицидное

Важные преимущества перед химическими методами обеззараживания воды имеют безреагентные методы ее обработки, с использованием ультрафиолетового и ионизирующего излучения, ультразвуковых колебаний, термической обработки, а также высоковольтные импульсные электрические разряды - ВИЭР (20- 40 кВ) и низкоэнергетические импульсные электрические разряды - НИЭР (1-10 кВ). Одним из наиболее перспективных является метод ультрафиолетовой обработки воды. Метод имеет много преимуществ, в первую очередь характеризуется широким спектром антибактериального действия с включением споровых и вирусных форм и короткой экспозицией, исчисляемой несколькими секундами.

Наибольшей чувствительностью к действию ультрафиолетового излучения (УФИ) обладают вегетативные формы, затем вирусы, споровые формы и цисты простейших. Весьма перспективным считается использование импульсной ультрафиолетовой обработки (УФ-обработки).

К преимуществам УФИ следует также отнести:

Сохранение природных свойств воды; УФИ не денатурирует воду, не изменяет вкус и запах воды;

Отсутствие опасности передозировки;

Улучшение условий труда персонала, так как исключаются из обращения вредные вещества;

Высокая производительность и простота эксплуатации;

Возможность полной автоматизации.

Эффективность УФ-обеззараживания не зависит от рН и температуры воды.

В то же время метод имеет ряд недостатков, и, для того чтобы достичь эффекта обеззараживания, следует помнить, что бактерицидный эффект зависит от: мощности источников УФИ (низкого и высокого давления); качества обеззараживаемой воды и чувствительности различных микроорганизмов.

По конструкции источники УФИ делятся на лампы с отражателями и лампы с закрытыми кварцевыми чехлами. УФ-лампы с отражателями используются в установках непогружного типа, когда отсутствует непосредственный контакт с водой, но они неэффективны. Для обеззараживания питьевой воды чаще применяются

лампы погружного типа с защитными кварцевыми чехлами - более эффективны, обеспечивают равномерное распределение дозы облучения во всем объеме воды.

Проникновение УФ-лучей в воду сопровождается их поглощением веществами, находящимися во взвешенном и растворенном состоянии. Поэтому, с учетом эксплуатационной и экономической целесообразности, УФ-обеззараживание может быть использовано только для обработки воды с цветностью не более 50° по Сг-Со-шкале, мутностью до 30 мг/л и содержанием железа до 5,0 мг/л. Минеральный состав воды влияет не только на эффект обеззараживания, но и на образование осадка на поверхности чехлов.

К недостаткам УФ-облучения следует отнести: образование озона, содержание которого следует контролировать в воздухе рабочей зоны; данная технология не имеет последействия, что делает возможным вторичный рост бактерий в распределительной сети.

УФИ в технологии водоподготовки питьевой воды может быть использовано на этапе:

Предварительного обеззараживания как метод, альтернативный первичному хлорированию при соответствующем качестве воды водоисточника, либо в комбинации с хлором, доза хлора сокращается на 15-100 %. Это снижает уровень образования ХОС и микробного загрязнения;

Для заключительного обеззараживания. На этом этапе УФО используется как самостоятельный метод и в сочетании с реагент-ными методами.

Ионизирующее излучение. Для обеззараживания воды можно использовать ионизирующее излучение, которое оказывает выраженное бактерицидное действие. Доза γ-излучения порядка 25 000-50 000 Р вызывает гибель практически всех видов микроорганизмов, а доза 100 000 Р освобождает воду от вирусов. К числу недостатков способа относятся: строгие требования к технике безопасности для обслуживающего персонала; ограниченное число подобных источников излучения; отсутствие последействия

и способа оперативного контроля за эффективностью обеззараживания.

Ультразвуковые колебания. Применению ультразвуковых колебаний (УЗК) для обеззараживания воды было посвящено большое количество работ как отечественных, так и зарубежных авторов.

К преимуществам УЗК можно отнести следующие: широкий спектр антимикробного действия; отсутствие отрицательного влияния на органолептические свойства воды; независимость бактерицидного действия от основных физико-химических параметров воды; возможность автоматизации процесса.

Вместе с тем многие теоретические, научные и технологические основы использования УЗК до настоящего времени не разработаны. В результате возникают трудности при определении оптимальной интенсивности колебаний и их частоты, времени озвучивания и других параметров процесса.

Все большее распространение в подготовке питьевой воды получают адсорбционные методы. На активированном угле (АУ), самом универсальном адсорбенте, или более дешевом антраците задерживается большая часть органических соединений; высокомолекулярные олефины, амины, карбоновые кислоты, растворимые органические красители, поверхностно-активные вещества (в том числе и бионеразлагаемые), ароматические углеводороды и их производные, хлорорганические соединения (в частности, пестициды). Эти соединения лучше сорбируются на гранулированных АУ, чем на порошкообразных АУ. Исключение составляют компоненты, придающие природным водам вкус и запах, которые лучше сорбируются ПАУ.

Сорбция на АУ неэффективна для устранения из воды низкомолекулярных ХОС, высокомолекулярных гуминовых веществ и радиоактивных соединений. Более того, в присутствии гуминовых кислот время сорбции полихлорированных бифенилов увеличивается в 5 раз по сравнению с их адсорбцией из деионизированной и дистиллированной воды. Поэтому гуминовые соединения лучше удалять до фильтрации на углях (например, коагуляцией или фильтрацией на синтетических сорбентах). АУ, поглощая хлор, повышают опасность бактериального загрязнения питьевых вод, требуют частой регенерации, неэкономичны.

Синтетические и природные сорбенты обладают более высокой сорбционной способностью, но часто удаляют лишь отдельные органические загрязнения. Так, синтетические углеродистые смолы, а также цеолиты (природные сорбенты) эффективно устра-

няют из питьевой воды низкомолекулярные ХОС, в том числе хлороформ и хлорэтилены. Особенно эффективны в этом отношении волоконные сорбенты и специальные композиционные сорбцион-но-активные материалы (КСАМ).

Таким образом, адсорбционные методы являются весьма эффективной технологией удаления органических загрязнений. Например, в США на их основе разработаны малогабаритные установки (до 140 м 3 /сут), позволяющие получать в полевых условиях питьевую воду даже из сточных вод душевых, кухонь, прачечных.

Недостатки:

Высокая себестоимость для обезвреживания отдельных пол-лютантов, обусловленная проблемой регенерации АУ;

Низкая эффективность относительно низкомолекулярных органических соединений, гуминовых кислот, радона. Более того, радон разрушает АУ и делает его радиоактивным;

АУ поглощает хлор - опасность вторичной бактериальной загрязненности воды в распределительной сети.

К технологиям XXI в. отнесены ионообменный и мембранные методы обработки питьевых вод. Ионный обмен эффективно используется для умягчения и полного обессоливания воды, извлечения нитратов, арсенатов, карбонатов, соединений ртути и других тяжелых металлов, а также органических и радиоактивных соединений. Однако многие специалисты считают его экологически опасным, так как со стоками ионообменных установок после химической регенерации ионообменников сбрасывается огромное количество минеральных веществ, что приводит к постепенной минерализации водных объектов.

Наибольшее признание в водоподготовке получили баромемб-ранные процессы: микрофильтрация (МФТ), ультрафильтрация (УФТ) и обратный осмос (ОО), а также нанофильтрация (НФТ). Микрофильтрационные мембраны эффективны для обеззараживания воды, задерживая бактерии и вирусы. Современные передовые технологии с успехом используют этот метод, альтернативный хлорированию и озонированию.

Микро- и ультрафильтрация позволяет обеззараживать воду до уровня, соответствующего стандарту питьевой воды, а также отделять высокомолекулярные соединения, такие как гуминовые кислоты, лигниносульфоны, нефтепродукты, красители и др. Для очистки воды от низкомолекулярных тригалометанов (ТГМ), таких как четыреххлористый углерод, 1,1,1-трихлорэтилен, 1,1-дихлорэти-лен, 1,2-дихлорэтан, 1,1,1-трихлорэтан, бензол и др., рациональнее использовать обратный осмос либо предварительную обработку

воды коагулянтом. Обратный осмос используют для обессолива-ния морских вод.

Нанофильтрация - один из наиболее перспективных методов водоподготовки. Используются мембраны с размером пор порядка нанометра. Фильтрация осуществляется под давлением. Устраняются гуминовые и фульвокислоты на 99 %, вода обесцвечивается.

Недостатком мембранных методов является обессоливание питьевых вод, что требует последующей коррекции микроэлементного и солевого состава воды.

Таким образом, мембранная обработка позволяет получать воду с предельно низким содержанием загрязняющих веществ; мембранные модули очень компактны, капитальные и эксплуатационные затраты на мембранную сепарацию невелики. Все это привело к промышленному выпуску высококачественных мембран и широкому распространению баромембранных процессов в водоподго-товке развитых стран - Франции, Англии, Германии, Японии, США. При этом в одном только штате Флорида (США) мембранные процессы внедрены на 100 станциях водоочистки.

В настоящее время рассматривается возможность использования импульсных электрических разрядов (ИЭР) для обеззараживания воды. Высоковольтный разряд (20-100 кВ) происходит за считаные доли секунды и сопровождается мощными гидравлическими процессами с образованием ударных волн и явлений кавитации, возникновением импульсных УФИ и УЗК, импульсных магнитных и электрических полей.

Импульсный электрический разряд высокоэффективен в отношении бактерий, вирусов и спор при короткой экспозиции. Эффект практически не зависит от концентрации микроорганизмов и их вида, мало зависит от органических и неорганических примесей, присутствующих в обрабатываемой воде. На выраженность бактерицидного эффекта ИЭР влияют величина рабочего напряжения и межэлектродного промежутка, емкость конденсаторов, суммарная плотность энергии обработки (в Дж/мл или кДж/мл) и ряд других технических параметров. Энергоемкость ИЭР в пилотных исследованиях составляла 0,2 кВт? ч/м 3 , т. е. была сопоставима с таковой при озонировании. Имеются сообщения о бактерицидном действии не только высоковольтных ИЭР, но и ИЭР малой мощности и напряжения (до 0,5 кВт).

К недостаткам обеззараживания воды высоковольтными ИЭР относятся:

Сравнительно высокая энергоемкость и сложность используемой аппаратуры;

Несовершенство метода оперативного контроля за эффективностью обеззараживания;

Недостаточная степень изученности механизма действия разряда на микроорганизмы, а значит, и роли каждой составляющей данного комбинированного способа.

Особый интерес вызывают исследования, посвященные оценке обеззараживания воды низкоэнергетическими ИЭР (НИЭР). Данная технология отличается от воздействия высоковольтных разрядов на порядок более низким значением рабочего напряжения (1-10 кВ) и энергии единичного импульса, относясь к категории так называемого "мягкого" разряда. Особенностью биологического действия НИЭР в воде является комбинированное влияние на микроорганизмы уже упомянутых импульсных физических факторов и химической составляющей, образующихся в зоне разряда свободных радикалов. Кроме того, НИЭР обладает выраженным последействием, которое связывают с образующимися ионами металлов (серебра, меди), выделяющихся с электродов в процессе разряда. Это обстоятельство позволяет рассматривать НИЭР как комбинированный физико-химический способ обеззараживания питьевой воды. Выгодно отличаясь от высоковольтных ИЭР меньшими энергозатратами, НИЭР при прочих равных условиях оказывает более выраженное бактерицидное действие. Эффективность бактерицидного действия НИЭР обратно пропорциональна величине рабочего напряжения, а оптимальное значение последнего приближается к 3 кВт. Комплексная гигиеническая оценка данной технологии, проведенная рядом авторов, позволяет рассматривать НИЭР как перспективный способ обеззараживания питьевой воды.

Однако большинство исследователей и практика подготовки питьевых вод показывают, что для обеспечения основных требований к питьевой воде, на которых базируются стандарты всех стран (безопасность в эпидемическом отношении, безвредность по химическому составу и благоприятность органолептических свойств), необходимо использовать комбинированные физико-химические методы обработки воды.

Предварительная оценка существующих и разрабатываемых комбинированных способов обеззараживания питьевой воды свидетельствует, что наилучшие перспективы в будущем имеют физико-химические способы, относящиеся к группе фотоокислительных технологий, и электрохимические способы, в частности воздействие НИЭР. А именно, комбинации химических окислителей (озона, хлора) и ультрафиолета (фотокатализ) либо перекиси водорода

и озона; ионов серебра и меди с ультрафиолетом, что уменьшает коррозионные свойства дезинфектантов.

Преимущества комбинированных методов:

Больший бактерицидный эффект;

Улучшение физических и органолептических свойств воды;

Окисляются органические соединения воды и, что очень важно, продукты их распада. Так, например, при окислении фенола О3 образуются формальдегид, ацетальдегид и др., которые удаляются в процессе последующей обработки ультрафиолетом;

Более эффективно удаляются продукты деструкции таких органических соединений, как хлорсодержащие пестициды, синтетические моющие средства, синтетические поверхностно-активные вещества (СПАВ);

Достаточно дешевы, просты в техническом исполнении, обладают эффектом последействия, имеется экспресс-метод контроля.

Обезжелезивание питьевых вод. Железо может находиться в воде в двух формах: в подземных водах в виде растворенных солей двухвалентного железа (бикарбонаты, сульфаты, хлориды); в поверхностных водах в виде коллоидных, тонкодисперсных взвесей, гуматов Fe-Fe(OH) 2 и Fe(OH) 3 ; FeS. Вне зависимости от форм и концентраций железа, такие воды всегда содержат железобактерии, которые в подземном горизонте без О2 неактивны. При подъеме на поверхность и обогащении воды О2 железобактерии бурно развиваются и способствуют коррозии и вторичному загрязнению воды железом.

В отечественной практике коммунального водоснабжения обез-железивание проводится преимущественно аэрацией. При этом двухвалентное железо окисляется до железа, последнее в кислой среде минерализуется:

Наиболее распространены способы глубокой аэрации с вентиляционным дегазатором и упрощенной аэрацией; каталитическое окисление железа непосредственно на фильтрах.

Эти методы малоэффективны, так как:

Используемые материалы имеют низкую пористость - до 60 %, т. е. 40 % объема фильтра не участвуют в этом процессе;

Наиболее эффективны песчаные фильтры, но они малопроизводительны;

При простой аэрации Fe 2+ не окисляется, не образует фло-

ков;

Каталитические реакции идут в самом теле фильтра, при этом образуется пленка из биогенных элементов и фильтры выходят из строя.

Известкование - применяется, если железо находится в виде сульфатов. Обработка известью приводит к образованию гидроокиси железа, которая осаждается.

Наиболее перспективна многоступенчатая окислительно-сорб-ционная технология обезжелезивания.

В различных аналитических лабораториях нашей страны специалисты ежегодно выполняют не менее 100 млн. анализов качества воды, причем 23 % определений заключается в оценке их органолептических свойств, 21 % — мутности и концентрации взвешенных веществ, 21 % составляет определение общих показателей — жесткости, солесодержания, ХПК, БПК, 29 % — определение неорганических веществ, 4 % — определение отдельных органических веществ. Значительное количество анализов выполняют санитарно-эпидемиологические службы.
Результаты анализов показывают, что в химическом отношении опасной для здоровья являются каждая четвертая проба, в бактериальном — каждая пятая. Необходимо отметить также, что стоимость комплексного анализа качества питьевой воды за рубежом составляет около 1100 долларов.

По нормативам качества, определяющим наличие и допустимые концентрации примесей, воды различают как питьевую, природные воды (водоемов хозяйственно-питьевого, культурно-бытового и рыбохозяйственного назначения) и сточные воды (нормативно-очищенные, стоки неизвестного происхождения, ливневые).Иногда выделяют также различные виды источников водопотребления, например, водопровод, колодцы, артезианские скважины, подземные источники и поверхностные источники и др. Подобное выделение проводится в тех случаях, когда необходимо учесть специфику источника, либо когда можно ожидать какие-либо характерные способы загрязнения воды, а также пути распространения загрязнений.

Нормативы качества воды различных источников — предельно-допустимые концентрации (ПДК), ориентировочные допустимые уровни (ОДУ) и ориентировочно-безопасные уровни воздействия (ОБУВ) — содержатся в нормативно-технической литературе, составляющей водно-санитарное законодательство. К ним, в частности, относятся Государствен¬ные стандарты — ГОСТ 2874, ГОСТ 24902, ГОСТ 17.1.3.03, различные перечни, нормы, ОБУВ, санитарные правила и нор¬мы охраны поверхностных вод от загрязнений сточными вода¬ми СНиП № 4630 и др.

Среди нормативов качества воды устанавливаются лимитирующие показатели вредности — органолептические, санитарно-токсикологические или общесанитарные. Лимитирующий показатель вредности — это признак, характеризующийся наименьшей безвредной концентрацией вещества в воде.

К органолептическим лимитирующим показателям относятся нормативы для тех веществ, которые вызывают неудовлетворительную органолептическую оценку (по вкусу, запаху, цвету, пенистости) при концентрациях, находящихся в пределах допустимых значений. Так, ПДК для фенола, устанавливаемая по наличию запаха, составляет 0,001 мг/л при условии хлорирования воды, и 0,1 мг/л — в отсутствии хлорирования. К органолептическим лимитирующим показателям относят также ПДК для имеющих окраску соединений хрома (VI) и хрома (Ш); имеющих запах и характерный привкус керосина и хлорофоса; образующего пену сульфолана и т.п.

Ли¬митирующие общесанитарные показатели устанавливаются в виде нормативов для относительно малотоксичных и неток¬сичных соединений — например, уксусной кислоты, ацетона, дибутилфталата и т.п.

Для остальных (основной массы) вредных веществ установлены лимитирующие санитарно-токсикологические показатели вредности.

НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ВОДНО-САНИТАРНОГО ЗАКОНОДАТЕЛЬСТВА

- ГОСТ 2874-82 «Вода питьевая»;
- ГОСТ 25151-82 «Водоснабжение. Термины и определения»;
- ГОСТ 27065-85 «Качество вод. Термины и определения»;
- ГОСТ 17.1.1.01-77 « Использование и охрана вод. Термины и определения»;
- СанПиН № 4630-88 «ПДК и ОДУ вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»;
- СанПиН 2.1.4.559-96 « Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»

1.1. Температура

Температура является важной гидрологической характеристикой водоема, показателем возможного теплового загрязнения. Тепловое загрязнение водоема происходит обычно в результате использования воды для отвода избыточного тепла и сбрасывания воды с повышенной температурой в водоем. При тепловом загрязнении происходит повышение температуры воды в водоеме по сравнению с естественными значениями температур в тех же точках в соответствующие периоды сезона.

Основные источники промышленных тепловых загряз-нений — теплые воды электростанций (прежде всего атомных) и крупных промышленных предприятий, образующиеся в ре-зультате отведения тепла от нагретых агрегатов и машин.

Электростанции часто сбрасывают в водоемы воду, имеющую температуру на 8-12 °С больше, чем забираемая из того же во-доема вода.

Тепловое загрязнение опасно тем, что вызывает интенсификацию процессов жизнедеятельности и ускорение естественных жизненных циклов водных организмов, измене-ние скоростей химических и биохимических реакций, проте-кающих в водоеме.

В условиях теплового загрязнения значи-тельно изменяются кислородный режим и интенсивность процессов самоочищения водоема, изменяется интенсивность фотосинтеза и др. В результате этого нарушается, часто необ-ратимо, природный баланс водоема, складываются особые эко-логические условия, негативно сказывающиеся на животном и растительном сообществе, в частности:

Подогретая вода дезориентирует водные организмы, создает условия для истощения пищевых ресурсов;
. усиливаются температурные различия по вертикальным слоям, особенно в холодный сезон, по «вывернутому» типу, противоположному тому, который складывается в результате естественного распределения температур воды;
. при повышении температуры воды, уменьшается концентрация растворенного кислорода, что усугубляет кислородный режим, особенно в зонах сброса коммунально-бытовых стоков;
. при повышенной температуре многие водные организмы, и в частности рыбы, находятся в состоянии стресса, что снижает их естественный иммунитет;
. происходит массовое размножение сине-зеленых водорослей;
. образуются тепловые барьеры на путях миграций рыбы;
. уменьшается видовое разнообразие растительного и животного «населения» водоемов и др.

Специалисты установили: чтобы не допустить необратимых нарушений экологического равновесия, температура воды в водоеме летом в результате спуска загрязненных (теплых) вод не должна повышаться более чем на 3°С по сравнению со среднемесячной температурой самого жаркого года за послед¬ние 10 лет.

2. Органолептические показатели

Любое знакомство со свойствами воды, сознаем мы это или нет, начинается с определения органолептических показателей, т.е. таких, для определения которых мы пользуемся нашими органами чувств (зрением, обонянием, вкусом), Органолептическая оценка приносит много прямой и косвенной информации о составе воды и может быть проведена быстро и без каких-либо приборов. К органолептическим характеристи¬кам относятся цветность, мутность (прозрачность), запах, вкус и привкус, пенистость.

2.1. Цветность

Цветность — естественное свойство природной воды, обусловленное присутствием гуминовых веществ и комплексных соединений железа. Цветность воды может определяться свойствами и структурой дна водоема, характером водной растительности, прилегающих к водоему почв, наличием в водосборном бассейне болот и торфяников и др. Цветность воды определяется визуально или фотометрически, сравнивая окраску пробы с окраской условной 100-градусной шкалы цветности воды, приготавливаемой из смеси бихромата калия K2Cr2О7 и сульфата кобальта CoS04. Для воды поверхностных водоемов этот показатель допускается не более 20 градусов по шкале цветности.

2.2. Запах

Запах воды обусловлен наличием в ней летучих пахнущих веществ, которые попадают в воду естественным путем либо со сточными водами . Практически все органические вещества (в особенности жидкие) имеют запах и передают его воде. Обычно запах определяют при нормальной (20 °С) и при повышенной (60 °С) температуре воды.

Запах по характеру подразделяют на две группы, описы¬вая его субъективно по своим ощущения: 1) естественного происхождения (от живущих и отмерших ор¬ганизмов, от влияния почв, водной растительности и т.п.);
2) искусственного происхождения. Такие запахи обычно значительно изменяются при обработке воды.

Характер и интенсивность запаха

Интенсивность запаха оценивают по 5-балльной шкале, приведенной в табл. 5 (ГОСТ 3351).

Таблица для определения характера и интенсивности запаха

Интенсивность запаха

Характер проявления запаха

Оценка ин-тенсивности запаха

Запах не ощущается

Очень слабая

Запах сразу не ощущается, но обнару-живается при тщательном исследовании (при нагревании воды)

Слабая

Запах замечается, если обратить на это внимание

Заметная

Запах легко замечается и вызывает не-одобрительный отзыв о воде

Отчетливая

Запах обращает на себя внимание и за-ставляет воздержаться от питья

Очень сильная

Запах настолько сильный, что делает воду непригодной к употреблению

Для питьевой воды допускается запах не более 2 баллов.

Можно количественно определить интенсивность запаха как степень разбавления анализируемой воды водой, лишенной запаха.При этом определяют «пороговое число» запаха.

2.3. Вкус и привкус

Оценку вкуса воды проводят питьевой природной во-дой при отсутствии подозрений на ее загрязненность. Раз-личают 4 вкуса: соленый, кислый, горький, сладкий . Осталь-ные вкусовые ощущения считаются привкусами (солоноватый, горьковатый, металлический, хлорный и т.п.).

Интенсивность вкуса и привкуса оценивают по 5-балльной шкале, приведенной в табл. 6 (ГОСТ 3351).При определении вкуса и привкуса воду не проглатывать!

Таблица для определения характера и интенсивности вкуса и привкуса

Интенсив-ность вкуса и привкуса

Характер проявления вкуса и привкуса

Оценка ин-тенсивности вкуса и прив-куса

Вкус и привкус не ощущаются

Очень слабая

Вкус и привкус сразу не ощущаются по-требителем, но обнаруживаются при тща-тельном тестировании

Вкус и привкус замечаются, если обратить на это внимание

Заметная

Вкус и привкус легко замечаются и вызы-вают неодобрительный отзыв о воде

Отчетливая

Вкус и привкус обращают на себя внима-ние и заставляют воздержаться от питья

Очень сильная

Вкус и привкус настолько сильные, что делают воду непригодной к употреблению

Для питьевой воды допускаются значения показателей вкус и привкус не более 2 баллов.

2.4. Мутность

Мутность воды обусловлена содержанием взвешенных в воде мелкодисперсных примесей — нерастворимых или коллоидных частиц различного происхождения.
Мутность воды обусловливает и некоторые другие характеристики воды — такие как:
— наличие осадка, который может отсутствовать, быть незначительным, заметным, большим, очень большим, измеряясь в миллиметрах;— взвешенные вещества, или грубодисперсные примеси — определяются гравиметрически после фильтрования пробы, по привесу высушенного фильтра. Этот показатель обычно малоинформативен и имеет значение, главным образом, для сточных вод;
— прозрачность, измеряется как высота столба воды, при взгляде сквозь который на белой бумаге можно различать стандартный шрифт см. раздел «Прозрачность».

Мутность воды

2.5. Прозрачность

Прозрачность, или светопропускание, воды обусловлено ее цветом и мутностью, т.е. содержанием в ней различных окрашенных и минеральных веществ. Прозрачность воды часто определяют наряду с мутностью, особенно в тех случаях, когда вода имеет незначительные окраску и мутность, которые за¬труднительно обнаружить.

2.6. Пенистость

Пенистостью считается способность воды сохранять ис¬кусственно созданную пену. Данный показатель может быть использован для качественной оценки присутствия таких ве-ществ, как детергенты (поверхностно-активные вещества) при¬родного и искусственного происхождения и др. Пенистость определяют, в основном, при анализе сточ¬ных и загрязненных природных вод.

3. Водородный показатель (рН)

Водородный показатель (рН) представляет собой отрицательный логарифм концентрации водородных ионов в растворе: рН= -lgH+.
Для всего живого в воде (за исключением некоторых кислотоустойчивых бактерий) минимально возможная величина рН=5; дождь, имеющий рН < 5,5, считается кислотным дождем.
В питьевой воде допускается рН 6,0-9,0; в воде водоемов хозяйственно-питьевого и культурно-бытового водопользования — 6,5—8,5. Величина рН природной воды определятся, как правило, соотношением концентраций гидрокарбонат-анионов и свободного СО2;. Пониженное значение рН характерно для болотных вод за счет повышенного содержания гуминовых и других природных кислот.
Измерение рН при контроле качества природной и пить¬евой воды проводится практически повсеместно.

4. Щелочность и кислотность

Щелочность обусловлена присутствием в воде веществ, содержащих гидроксо-анион, а также веществ, реагирующих с сильными кислотами (соляной, серной). К таким соединениям относятся:

1) сильные щелочи (КОН, NaOH) и летучие основания (на¬пример, NНз x Н2О), а также анионы, обуславливающие высокую щелочность в результате гидролиза в водном растворе при рН>8,4 (S2-, P043-, SiOз2- и др.);
2) слабые основания и анионы летучих и нелетучих слабых кислот (НСОз-; СОз2-, Н2Р04-; НРО42-, СНзСОО-, HS-, анионы гуминовых кислот и др.).
Щелочность пробы воды измеряется в г-экв/л или мг-экв/л и определяется количеством сильной кислоты (обычно исполь¬зуют соляную кислоту с концентрацией 0,05 или 0,1 г-экв/л), израсходованной на нейтрализацию раствора.

При нейтрализации сильных щелочей до значений рН 8,0-8,2 в качестве индикатора используют фенолфталеин.Определяемая таким образом величина называется свободной щелочностью.

При нейтрализации слабых оснований и анионов летучих и нелетучих слабых кислот до значений рН 4,2-4,5 в качестве индикатора используют метиловый оранжевый.Определяемая таким образом величина называется общей щелочностью. При рН 4,5 проба воды имеет нулевую щелочность.

Соединения первой группы из приведенных выше определяются по фенолфталеину, второй — по метилоранжу. Щелочность природных вод в силу их контакта с атмосферным воздухом и известняками, обусловлена, главным образом, содержанием в них гидрокарбонатов и карбонатов, которые вносят значительный вклад в минерализацию воды. Мы уделим этим компонентам достаточно внимания, рассмотрев подробно в разделе «Карбонаты и гидрокарбонаты». Соединения первой группы могут содержаться также в сточных и загрязненных поверхностных водах.

Аналогично щелочности, иногда, главным образом при анализе сточных и технологических вод, определяют кислотность воды.
Кислотность воды обусловлена содержанием в воде ве¬ществ, реагирующих с гидроксо-анионами.

К таким соединениям относятся:

1) сильные кислоты: соляная (НСl), азотная (НNОз), сер¬ная (H2S04);
2) слабые кислоты: уксусная (СНзСООН); сернистая (Н2SОз); угольная (Н2СОз); сероводородная (H2S) и т.п.;
3) катионы слабых оснований: аммоний (NH4+) катионы органических аммонийных соединений.

Кислотность пробы воды измеряется в г-экв/л или мг-экв/л и определяется количеством сильной щелочи (обычно исполь¬зуют растворы КОН или NaOH с концентрацией 0,05 или 0,1 г-экв/л), израсходованной на нейтрализацию раствора. Анало¬гично показателю щелочности, различают свободную и общую кислотность. Свободная кислотность определяется при титро¬вании сильных кислот до значений рН 4,3-4,5 в присутствии в качестве инди-катора метилового оранжевого. В этом диапазоне оттитровываются НСl, HNOз, H2SO4 НзРO4.

Естественная кислотность обусловлена содержанием слабых органических кислот природного происхождения (на¬пример, гуминовых кислот). Загрязнения, придающие воде по¬вышенную кислотность, возникают при кислотных дождях, при попадании в водоемы не прошедших нейтрализацию сточ¬ных вод промышленных предприятий и др.
Общая кислотность обусловлена содержанием катионов слабых оснований, определяется при титровании до значений рН 8,2-8,4 в присутствии фенолфталеина в качестве индикатора. В этом диапазоне оттитровываются слабые кисло¬ты — органические, угольная, сероводородная, катионы сла¬бых оснований.

5. Минеральный состав

Минеральный состав воды интересен тем, что отражает результат взаимодействия воды как физической фазы и среды жизни с другими фазами (средами): твердой, т.е. береговыми и подстилающими, а также почвообразующими минералами и породами; газообразной (с воздушной средой) и содержащейся в ней влагой и минеральными компонентами. Кроме того, минеральный состав воды обусловлен целым рядом протекающих в разных средах физико-химических и физических процессов — растворения и кристаллизации, пептизации и коагуляции, седиментации, испарения и конденсации и др. Большое влияние на минеральный состав воды поверхностных водоемов оказывают протекающие в атмосфере и в других средах хи¬мические реакции с участием соединений азота, углерода, кислорода, серы и др.

Ряд показателей качества воды, так или иначе, связан с определением концентрации растворенных в воде различных минеральных веществ. Содержащиеся в воде минеральные соли вносят разный вклад в общее солесодержание, которое мо¬жет быть рассчитано суммированием концентраций каждой из солей. Пресной считается вода, имеющая общее солесодержание не более 1 г/л. Можно выделить две группы минеральных солей, обычно встречающихся в природных водах.

Основные компоненты минерального состава воды
Допустимая величина общей жесткости для питьевой воды и источников централизованного водоснабжения составляет не более 7 мг-экв/л (в отдельных случаях — до 10 мг-экв/л), лимитирующий показатель вредности — органолептический.

Компонент минерального состава воды

Предельно-допустимая кон-центрация (ПДК)15

ГРУППА 1

1. Катионы:

Кальций (Са2+)

Натрий (Na+)

Магний (Mg2+)

2. Анионы:

Гидрокарбонат (НСОз-)

Сульфат (S042-)

Хлорид (Сl-)

Карбонат (СОз2-)

ГРУППА 2

/. Катионы

Аммоний (NH4+)

Тяжелые металлы

0,001 ммоль/л

Железо общее (сумма Fе2+иFе3+)

Нитрат (NOз-)

Ортофосфат (РО43-)

Нитрит (N02-)

Как видно из табл. 8, основной вклад в минеральный состав вносят соли 1-й группы), и образуют так называемые «главные ионы»), которые определяют в первую очередь. К ним относятся хлориды, карбонаты, гидрокарбонаты, сульфаты. Соответствующими катионами для названных анионов являются калий, натрий, кальций, магний. Соли 2-й группы также необходимо учитывать при оценке качества воды, т.к. на каждую из них установлено значение ПДК, хотя они вносят незначительный вклад в солесодержание природных вод.

5.1. Карбонаты и гидрокарбонаты

Как отмечалось выше (в разделе «Щелочность и кислотность), карбонаты и гидрокарбонаты представляют собой компоненты, определяющие природную щелочность воды. Их содержание в воде обусловлено процессами растворения атмосферной С02, взаимодействия воды с находящимися в прилегающих грунтах известняками и, конечно, протекающими в воде жизненными процессами дыхания всех водных организмов.

Определение карбонат - и гидрокарбонат-анионов является титриметрическим и основано на их реакции с водородными ионами в присутствии фенолфталеина (при определении карбонат-анионов) или метилового оранжевого (при определении гидро-карбонат-анионов) в качестве индикаторов. Используя эти два индикатора, удается наблюдать две точки эквивалентности: в первой точке (рН 8,0-8,2) в присутствии фенолфталеина полностью завершается титрование карбонат-анионов, а во второй (рН 4,1-4,5) — гидрокарбонат-анионов. По результатам титрования можно определить концентрации в анализируемом растворе основных ионных форм, обуславливающих потребление кислоты (гидроксо-, карбонат- и гидрокарбонат-анионов), а также величины свободной и общей щелочности воды, т.к. они нахо¬дятся в стехиометрической зависимости от содержания гидроксил-, карбонат- и гидрокарбонат-анионов

Определение карбонат-анионов основано на реакции:

СО32-+H+=HСОз-

Присутствие карбонат-аниона в концентрациях, определяемых аналитически, возможно лишь в водах, рН которых более 8,0-8,2. В случае присутствия в анализируемой воде гидроксо-анионов при определении карбонатов протекает также реакция нейтрализации:

OH-+H+=H2О

Определение гидрокарбонат-анионов основано на реакции:

НСО3-+H+=СO2+Н20

Таким образом, при титровании по фенолфталеину в ре¬акции с кислотой участвуют анионы ОН- и СOз2- , а при титро¬вании по метиловому оранжевому — ОН-, СОз2- и НСОз-.
Величина карбонатной жесткости рассчитывается с уче¬том эквивалентных масс участвующих в реакциях карбонат- и гидрокарбонат-анионов.

Следует иметь в виду, что при определении потребления кислоты на титрование по метилоранжу (Vмо) происходит последовательное титрование и карбонатов, и гидрокарбонатов. По этой причине получаемый объем кислоты VMO содержит соответствующую долю, обусловленную присутствием в исходной пробе карбонатов, перешедших после реакции с катионом водорода в гидрокарбонаты, и не характеризует полностью концентрацию гидрокарбонатов в исходной пробе. Следовательно, при расчете концентраций основных ионных форм, обуславливающих потребление кислоты, необходимо учесть относительное потребление кислоты при титровании по фенолфталеину (Vф) и мети-лоранжу (Vмо). Рассмотрим несколько возможных вариантов, сопоставляя величины Vo и VMO.

1. Vф=0. Карбонаты, а также гидроксо-анионы в пробе отсутствуют , и потребление кислоты при титровании по метилоранжу может быть обусловлено только присутствием гидрокарбонатов.
2. Vф?0, причем 2Vф причем доля последних эквивалентно оценивается как Vк=2Vф, а гидрокарбонатов — как Vгк=Vмо-2Vф.
3. 2Vф=Vмо. Гидрокарбонаты в исходной пробе отсутст¬вуют, и потребление кислоты обусловлено содержанием прак¬тически только карбонатов , которые количественно переходят в гидрокарбонаты. Именно этим объясняется удвоенное, по сравнению с Vф, потребление кислоты VMO.
4. 2Vф>Vмо. В данном случае в исходной пробе гидро¬карбонаты отсутствуют, но присутствуют не только карбонаты, но и другие потребляющие кислоту анионы, а именно — гид¬роксо-анионы. При этом содержание последних эквивалентно составляет Vон =2Vф - Vмо. Содержание карбонатов можно рассчитать, составив и решив систему уравнений:

Vк + Vон = Vмо )

Vон + 2Vф = Vмо

}Vк = 2(Vмо - Vф)

5. Vф = Vмо. В исходной пробе отсутствуют и карбонаты, и гидрокарбонаты, и потребление кислоты обусловлено при¬сутствием сильных щелочей, содержащих гидроксо-анионы.
Присутствие свободных гидроксо-анионов в заметных количествах (случаи 4 и 5) возможно только в сточных водах.
Результаты титрования по фенолфталеину и метилоран¬жу позволяют рассчитать показатель щелочности воды, кото¬рый численно равен количеству эквивалентов кислоты, израсходованной на титрование пробы объемом 1 л.
При этом потребление кислоты при титровании по фенолфталеину ха-рактеризует свободную щелочность, а по метилоранжу — общую щелочность, которая измеряется в мг-экв/л. Показатель щелочности используется в России, как правило, при исследовании сточных вод. В некоторых других странах (США, Канаде, Швеции и др.) щелочность определяется при оценке качества природных вод и выражается массовой концентрацией в эквиваленте СаСОз.

Следует иметь в виду, что, при анализе сточных и загрязненных природных вод, получаемые результаты не всегда корректно отражают величины свободной и общей щелочности, т.к. в воде, кроме карбонатов и гидрокарбонатов, могут присутствовать соединения некоторых других групп (см. «Щелочность и кислотность»).

5.2. Сульфаты

Сульфаты, — распространенные компоненты природных вод . Их присутствие в воде обусловлено растворением некоторых минералов — природных сульфатов (гипс), а также переносом с дождями содержащихся в воздухе сульфатов. Последние образуются при реакциях окисления в атмосфере оксида серы (IV) до оксида серы (VI), образования серной кислоты и ее нейтрализации (полной или частичной):

2SO2+О2=2SOз
SOз+H2O=H2SO4

Наличие сульфатов в промышленных сточных водах обычно обусловлено технологическими процессами, проте¬кающими с использованием серной кислоты (производство минеральных удобрений, производства химических веществ). Сульфаты в питьевой воде не оказывают токсического эффекта для человека, однако ухудшают вкус воды: ощущение вкуса сульфатов возникает при их концентрации 250-400 мг/л. Сульфаты могут вызывать отложение осадков в трубопроводах при смешении двух вод с разным минеральным составом, например, сульфатных и кальциевых (в осадок выпадает CaS04).

ПДК сульфатов в воде водоемов хозяйственно-питьевого назначения составляет 500 мг/л, лимитирующий показатель вредности — органолептический.

5.3. Хлориды

Хлориды присутствуют практически во всех пресных поверхностных и грунтовых водах, а также в питьевой воде, в виде солей металлов. Если в воде присутствует хлорид на-трия, она имеет соленый вкус уже при концентрациях свыше 250 мг/л; в случае хлоридов кальция и магния соленость воды возникает при концентрациях свыше 1000 мг/л. Именно по органолептическому показателю — вкусу установлена ПДК для питьевой воды по хлоридам (350 мг/л), лимитирующий показатель вредности — органолептический.
Большие количества хлоридов могут образовываться в промышленных процессах концентрирования растворов, ионного обмена, высоливания и т.д., образуя сточные воды с высоким содержанием хлорид-аниона.
Высокие концентрации хлоридов в питьевой воде не оказывают токсических эффектов на людей, хотя соленые воды очень коррозионно активны по отношению к металлам, пагубно влияют на рост растений, вызывают засоление почв.

6. Сухой остаток

Сухой остаток характеризует содержание в воде нелету¬чих растворенных веществ (главным образом минеральных) и органических веществ, температура кипения которых превы¬шает 105-110 °С.

Величину сухого остатка можно также оценить расчетным методом. При этом надо суммировать полученные в ре¬зультате анализов концентрации растворенных в воде минеральных солей, а также органических веществ (гидрокарбонат суммируется в количестве 50 %). Для питьевой и природной воды величина сухого остатка практически равна сумме массовых концентраций анионов (карбоната, гидрокарбоната, хлорида, сульфата) и катионов (кальция и магния, а также определяемых расчетным методом натрия и калия).

Величина сухого остатка для поверхностных вод водоемов хозяйственно-питьевого и культурно-бытового водопользования не должна превышать 1000 мг/л (в отдельных случаях допускается до 1500 мг/л).

7. Общая жесткость, кальций и магний

Жесткость воды — одно из важнейших свойств, имеющее большое значение при водопользовании. Если в воде находятся ионы металлов, образующие с мылом нерастворимые соли жирных кислот, то в такой воде затрудняется образование пены при стирке белья или мытье рук, в результате чего возникает ощущение жесткости. Жесткость воды пагубно сказывает¬ся на трубопроводах при использовании воды в тепловых сетях, приводя к образованию накипи. По этой причине в воду приходится добавлять специальные «смягчающие» химикаты.Жесткость воды обусловлена присутствием растворимых и малорастворимых солей-минералов, главным образом кальция (Са2+") и магния (Mg2+).

Величина жесткости воды может варьироваться в широких пределах в зависимости от типа пород и почв, слагающих бассейн водосбора, а также от сезона года, погодных условий. Общая жесткость воды в озерах и реках тундры, например, составляет 0,1-0,2 мг-экв/л, а в морях, океанах, подземных водах достигает 80-100 мг-экв/л и даже больше (Мертвое море). В табл. 11 приведены значения общей жесткости воды некоторых рек и водоемов России.

Значения общей жесткости воды некоторых рек и водоемов России

Море, озеро

Сухой остаток,
мг/л

Общая жест-кость, мг-экв/л

Река

Сухой остаток,
мг/л

Общая жест-кость, мг-экв/л

Каспий-ское море

Дон
Черное море
Волга
Балтий-ское море
Москва
Белое море
Иртыш
Оз.Балхаш
Оз.Байкал
Нева
Оз. Ладож-ское
Днепр

Из всех солей, относящихся к солям жесткости, выделяют гидрокарбонаты, сульфаты и хлориды. Содержание других растворимых солей кальция и магния в природных водах обычно очень мало. Жесткость, придаваемая воде гидрокарбонатами, называется гидрокарбонатной, или временной, т.к. гид¬рокарбонаты при кипячении воды (точнее, при температуре более 60 °С) разлагаются с образованием малорастворимых карбонатов (Mg(HC03)2 в природных водах встречается реже, чем Са(НСОз)2, т.к. магнезитовые породы мало распространены. Поэтому в пресных водах преобладает так называемая кальциевая жесткость):

СаНСОз> СаСОзv+Н2О+СO2

В природных условиях приведенная выше реакция обратима, однако при выходе на поверхность подземных (грунтовых) вод, обладающих значительной временной жесткостью, равновесие сдвигается в сторону образования СO2, который удаляется в атмосферу. Этот процесс приводит к разложению гидрокарбонатов и выпадению в осадок СаСОз и MgCO3. Таким путем образуются разновидности карбонатных пород, называемые известковыми туфами.
В присутствии растворенного в воде углекислого газа протекает и обратная реакция. Так происходит растворение, или вымывание, карбонатных пород в природных условиях.

Жесткость, обусловленная хлоридами или сульфатами, называется постоянной, т.к. эти соли устойчивы при нагревании и кипячении воды.
Суммарная жесткость воды, т.е. общее содержание растворимых солей кальция и магния, получила название «общей жесткости».

Ввиду того, что солями жесткости являются соли разных катионов, имеющие разную молекулярную массу, концентрация солей жесткости, или жесткость воды, измеряется в единицах эквивалентной концентрации — количеством г-экв/л или мг-экв/л. При жесткости до 4 мг-экв/л вода считается мягкой; от 4 до 8 мг-экв/л — средней жесткости; от 8 до 12 мг-экв/л — жесткой; более 12 мг-экв/л — очень жесткой (встречается и другая классификация воды по степеням жесткости)Допустимая величина общей жесткости для питьевой воды и источников централизованного водоснабжения составляет не более 7 мг-экв/л (в отдельных случаях — до 10 мг-экв/л), лимитирующий показатель вредности — органолептический.

Допустимая величина общей жесткости для питьевой воды и источников централизованного водоснабжения составляет не более 7 мг-экв/л (в отдельных случаях — до 10 мг-экв/л), лимитирующий показатель вредности — органолептический.

8. Общее солесодержание

Для расчета общего солесодержания по сумме массовых концентраций главных анионов в миллиграмм-эквивалентной форме их массовые концентрации, определенные при анализе и выраженные в мг/л, умножают на коэффициенты, указанные в табл. 12, после чего суммируют.

Коэффициенты пересчета концентраций

Концентрацию катиона калия в данном расчете (для при¬родных вод) условно учитывают в виде концентрации катиона натрия. Полученный результат округляют до целых чисел (мг/л)


9. Растворенный кислород

Кислород постоянно присутствует в растворенном виде в поверхностных водах. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки экологического и санитарного состояния водоема. Кислород должен содержаться в воде в достаточном количестве, обеспечивая условия для дыхания гидробионтов. Он также необходим для самоочищения водоемов, т. к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов.
Поступление кислорода в водоем происходит путем растворения его при контакте с воздухом (абсорбции), а также в результате фотосинтеза водными растениями", т.е. в результате физико-химических и биохимических процессов. Кислород также поступает в водные объекты с дождевыми и снеговыми водами. Поэтому существует много причин, вызывающих повышение или снижение концентрации в воде растворенного кислорода.
Растворенный в воде кислород находится в виде гидратированных молекул О2. Содержание РК зависит от температу¬ры, атмосферного давления, степени турбулизации воды, количества осадков, минерализации воды др. При каждом значении температуры существует равновесная концентрация кислорода, которую можно определить по специальным справочным таблицам, составленным для нормального атмосферного давления. Степень насыщения воды кислородом, соответствующая равновесной концентрации, принимается равной 100 %. Растворимость кислорода возрастает с уменьшением температуры и ми¬нерализации, и с увеличением атмосферного давления.
В поверхностных водах содержание растворенного кислорода может колебаться от 0 до 14 мг/л и подвержено значительным сезонным и суточным колебаниям. В эвтрофированных и сильно загрязненных органическими соединениями водных объектах может иметь место значительный дефицит кислорода. Уменьшение концентрации РК до 2 мг/л вызывает массовую гибель рыб и других гидробионтов.

В воде водоемов в любой период года до 12 часов дня концентрация РК должна быть не менее 4 мг/л. ПДК растворенного в воде кислорода для рыбохозяйственных водоемов установлена 6 мг/л (для ценных пород рыбы), либо 4 мг/л (для остальных пород).
Растворенный кислород является весьма неустойчивым компонентом химического состава вод. При его определении особо тщательно следует проводить отбор проб: необходимо избегать контакта воды с воздухом до фиксации кислорода (связывания его в нерастворимое соединение).
В ходе анализа воды определяют концентрацию РК (в мг/л) и степень насыщения им воды (в %) по отношению к равновесному содержанию при данных температуре и атмо-сферном давлении.
Контроль содержания кислорода в воде — чрезвычайно важная проблема, в решении которой заинтересованы практически все отрасли народного хозяйства, включая черную и цветную металлургию, химическую промышленность, сельское хозяйство, медицину, биологию, рыбную и пищевую промышленность, службы охраны окружающей среды. Содержание РК определяют как в незагрязненных природных водах, так и в сточных водах после очистки. Процессы очистки сточных вод всегда сопровождаются контролем содержания кислорода. Определение РК является частью анализа при определении другого важнейшего показателя качества воды — биохимического потребления кислорода (БПК).

10. Биохимическое потребление кислорода (БПК)
В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов и т.п. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главньм образом со сточными водами и дождевыми поверхностными смывами с почвы.
В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием двуокиси углерода. При этом на окисление потребляется растворенный в воде кислород. В водоемах с большим содержанием органических веществ большая часть РК потребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. При этом увеличивается количество организмов, более устойчивых к низкому содержанию РК, исчезают кислородолюбивые виды и появляются виды, терпимые к дефициту кислорода. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации РК, и эта убыль косвенно является мерой содержания в воде орга¬нических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органи¬ческих веществ, называется биохимическим потреблением кислорода (БПК).
Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (т.е. в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления.
Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5) (Может определяться также БПК10 за 10 суток и БПКполн за 20 суток (при этом окисляется около 90 и 99 % органических веществ соответственно)), однако содержание некоторых соединений более информативно характеризуется величиной БПК за 10 суток или за период полного окисления (БПК10 или БПКполн. соответственно). Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света (в темном месте).
Величина БПК увеличивается со временем, достигая некоторого максимального значения — БПКполн.; причем загрязнители различной природы могут повышать (понижать) значение БПК. Динамика биохимического потребления кислорода при окислении органических веществ в воде приведена на рис.8.

Рис. 8. Динамика биохимического потребления кислорода:

а — легкоокисляющиеся («биологически мягкие») вещества — сахара, формаль¬дегид, спирты, фенолы и т.п.;
в — нормально окисляющиеся вещества — нафтолы, крезолы, анионогенные ПАВ, сульфанол и т.п.;
с — тяжело окисляющиеся («биологически жесткие») вещества — неионогенные ПАВ, гидрохинон и т.п.


Таким образом, БПК — количество кислорода в (мг), требуемое для окисления находящихся в 1 л воды органических вещества в аэробных условиях, без доступа света, при 20°С, за определенный период в результате протекающих в воде, биохимических процессов.
Ориентировочно принимают, что БПК5 составляет около 70 % БПКполн., но может составлять от 10 до 90 % в зависимости от окисляющегося вещества.
Особенностью биохимического окисления органических веществ в воде является сопутствующий ему процесс нитрификации, искажающий характер потребления кислорода



2NH4++ЗO2=2HNО2+2H2О+2Н++Q
2HNO2+O2=2HNOз+Q
где: Q — энергия, высвобождающаяся при реакциях
.


Рис. 9. Изменение характера потребления кислорода при нитрификации.

Нитрификация протекает под воздействием особых нитрифицирующих бактерий — Nitrozomonas, Nitrobacter и др. Эти бактерии обеспечивают окисление азотсодержащих соединений, которые обычно присутствуют в загрязненных природных и некоторых сточных водах, и тем самым способствуют превращению азота сначала из аммонийной в нитритную, а затем и нитратную формы

Процесс нитрификации происходит и при инкубации пробы в кислородных склянках. Количество кислорода, по¬шедшее на нитрификацию, может в несколько раз превышать количество кислорода, требуемое для биохимического окисления органических углеродсодержащих соединений. Начало нитрификации можно зафиксировать по минимуму на графике суточных приращений БПК за период инкубации. Нитрификация начинается приблизительно на 7-е сутки инкубации (см. рис. 9), поэтому при определении БПК за 10 и более суток необходимо вводить в пробу специальные вещества — ингибиторы, подавляющие жизнедеятельность нитрифицирующих бактерий, но не влияющие на обычную микрофлору (т.е. на бактерии — окислители органических соединений). В качестве ингибитора применяют тиомочевину (тиокарбамид), который вводят в пробу либо в разбавляющую воду в концентрации 0,5 мг/мл.

В то время как, и природные, и хозяйственно-бытовые сточные воды содержат большое количество микроорганизмов, способных развиваться за счет содержащихся в воде органических веществ, многие виды промышленных сточных вод стерильны, или содержат микроорганизмы, которые не способны к аэробной переработке органических веществ. Однако микрбы можно адаптировать (приспособить) к присутствию различных соединений, в том числе токсичных. Поэтому при анализе таких сточных вод (для них характерно, как правило, повышенное содержание органических веществ) обычно применяют разбавление водой, насыщенной кислородом и содержащей добавки адаптированных микроорганизмов. При определении БПКполн промышленных сточных вод предварительная адаптация микрофлоры имеет решающее значение для получения правильных результатов анализа, т.к. в состав таких вод часто входят вещества, которые сильно замедляют процесс биохимического окисления, а иногда оказывают токсическое действие на бактериальную микрофлору.
Для исследования различных промышленных сточных вод, которые трудно подвергаются биохимическому окислению, используемый метод может применяться в варианте определения «полного» БПК (БПКполн.).
Если в пробе очень много органических веществ, к ней добавляют разбавляющую воду. Для достижения максимальной точности анализа БПК анализируемая проба или смесь пробы с разбавляющей водой должна содержать такое количество кислорода, чтобы во время инкубационного периода произошло снижение его концентрации на 2 мг/л и более, причем остающаяся концентрация кислорода спустя 5 суток инкубации должна составлять не менее 3 мг/л. Если же содержание РК в воде недостаточно, то пробу воды предварительно аэрируют для насыщения кислородом воздуха. Наиболее правильным (точным) считается результат такого определения, при котором израсходовано около 50 % первоначально присутствующего в пробе кислорода.
В поверхностных водах величина БПК5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК5 природных водоемов при загрязнении сточными водами.

Норматив на БПКполн. не должен превышать: для водоемов хозяйственно-питьевого водопользования — 3 мг/л для водоемов культурно-бытового водопользования — 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК5 для тех же водоемов, равные примерно 2 мг/л и 4 мг/л.

11. Биогенные элементы

Биогенными элементами (биогенами) традиционно считаются элементы, входящие, в значительных количествах, в состав живых организмов . Круг элементов, относимых к биогенным, достаточно широк, это — азот, фосфор, сера, железо, кальций, магний, калий и др.
Вопросы контроля качества воды и экологической оценки водоемов внесли в понятие биогенных элементов более широкий смысл: к ним относят соединения (точнее, компоненты воды), которые, во-первых, являются продуктами жизнедеятельности различных организмов, и во-вторых, являются «строительным материалом» для живых организмов. В первую очередь к ним относятся соединения азота (нитраты, нитриты, органические и неорганические аммонийные соединения), а также фосфора (ортофосфаты, полифосфаты, органические эфиры фосфорной кислоты и др.). Соединения серы нас интересуют в этой связи, в меньшей степени, так как сульфаты мы рассматривали в аспекте компонента минерального состава воды, а сульфиды и гидросульфиты, если присутствуют в природных водах, то в очень малых концентрациях, и могут быть обнаружены по запаху.

11.1. Нитраты
Нитраты являются солями азотной кислоты и обычно присутствуют в воде . Нитрат-анион содержит атом азота в максимальной степени окисления «+5». Нитратобразующие (нитратфиксирующие) бактерии превращают нитриты в нитраты в аэробных условиях. Под влиянием солнечного излучения атмосферный азот (N2) превращается также преимущественно в нитраты посредством образования оксидов азота. Многие минеральные удобрения содержат нитраты, которые при избыточном или нерациональном внесении в почву приводят к загрязнению водоемов. Источниками загрязнения нитратами являются также поверхностные стоки с пастбищ, скотных дворов, молочных ферм и т.п.
Повышенное содержание нитратов в воде может служить индикатором загрязнения водоема в результате распростране¬ния фекальных либо химических загрязнений (сельскохозяйст¬венных, промышленных). Богатые нитратными водами сточные канавы ухудшают качество воды в водоеме, стимулируя массовое развитие водной растительности (в первую очередь — сине-зеленых водорослей) и ускоряя эвтрофикацию водоемов. Питьевая вода и продукты питания, содержащие повы¬шенное количество нитратов, также могут вызывать заболевания, и в первую очередь у младенцев (так называемая метгемоглобинемия). Вследствие этого расстройства ухудшается транспортировка кислорода с клетками крови и возникает синдром «голубого младенца» (гипоксия). Вместе с тем, растения не так чувствительны к увеличению содержания в воде азота, как фосфора.

11.2. Фосфаты и общий фосфор
В природных и сточных водах фосфор может присутствовать в разных видах. В растворенном состоянии (иногда говорят — в жидкой фазе анализируемой воды) он может находиться в виде ортофосфорной кислоты (Н3Р04) и ее анионов (Н2Р04-, НР042-, Р043-), в виде мета-, пиро- и полифосфатов (эти вещества используют для предупреждения образования накипи, они входят также в состав моющих средств). Кроме того, существуют разнообразные фосфорорганические соединения — нуклеиновые кислоты, нуклеопротеиды, фосфолипиды и др., которые также могут присутствовать в воде, являясь продуктами жизнедеятельности или разложения организмов. К фосфорорганическим соединениям относятся также некоторые пестициды.
Фосфор может содержаться и в нерастворенном состоянии (в твердой фазе воды), присутствуя в виде взвешенных в воде труднорастворимых фосфатов, включая природные минералы, белковые, органические фосфорсодержащие соединения, остатки умерших организмов и др. Фосфор в твердой фазе в природных водоемах обычно находится в донных отложениях, однако может встречаться, и в больших количествах, в сточных и загрязненных природных водах.
Фосфор является необходимым элементом для жизни, однако его избыток приводит к ускоренной эвтрофикации во¬доемов. Большие количества фосфора могут попадать в водоемы в результате естественных и антропогенных процессов — поверхностной эрозии почв, неправильного или избыточного применения минеральных удобрений и др.
ПДК полифосфатов (триполифосфат и гексаметафосфат) в воде водоемов составляет 3,5 мг/л в пересчете на ортофосфат-анион РО43-, лимитирующий показатель вредности — органолептический.

11.3. Аммоний

Соединения аммония содержат атом азота в минимальной степени окисления «-З».
Катионы аммония являются продуктом микробиологического разложения белков животного и растительного происхождения.
Образовавшийся таким образом аммоний вновь вовлекается в процесс синтеза белков, участвуя тем самым в биологическом круговороте веществ (цикле азота). По этой причине аммоний и его соединения в небольших концентрациях обычно присутствуют в природных водах.
Существуют два основных источника загрязнения окружающей среды аммонийными соединениями. Аммонийные соединения в больших количествах входят в состав минеральных и органических удобрений, избыточное и неправильное применение которых приводит к соответствующему загрязнению водоемов. Кроме того, аммонийные соединения в значительных количествах присутствуют в нечистотах (фекалиях). Не утилизированные должным образом нечистоты могут проникать в грунтовые воды или смываться поверхностными стоками в водоемы. Стоки с пастбищ и мест скопления скота, сточные воды от животноводческих комплексов, а также бытовые и хозяйственно-фекальные стоки всегда содержат большие количества аммонийных соединений. Опасное загрязнение грунтовых вод хозяйственно-фекальными и бытовыми сточными водами происходит при разгерметизации системы канализации. По этим причинам повышенное содержание аммонийного азота в поверхностных водах обычно является признаком хозяйственно-фекальных загрязнений.
ПДК аммиака и ионов аммония в воде водоемов состав¬ляет 2,6 мг/л (или 2,0 мг/л по аммонийному азоту). Лимитирующий показатель вредности — общесанитарный.

11.4. Нитриты

Нитритами называются соли азотистой кислоты.
Нитрит-анионы являются промежуточными продуктами биологического разложения азотсодержащих органических соединений
и содержат атомы азота в промежуточной степени окисления «+3». Нитрифицирующие бактерии превращают аммонийные соединения в нитриты в аэробных условиях. Некоторые виды бактерий в процессе своей жизнедеятельности также могут восстанавливать нитраты до нитритов, однако это происходит уже в анаэробных условиях. Нитриты часто используются в промышленности как ингибиторы коррозии, в пищевой промышленности как консерванты.
Благодаря способности превращаться в нитраты, нитриты, как правило, отсутствуют в поверхностных водах. Поэтому наличие в анализируемой воде повышенного содержания нитритов свидетельствует о загрязнении воды, причем с учетом частично прошедшей трансформацию азотистых соединений из одних форм в другие.
ПДК нитритов (по N02-) в воде водоемов составляет 3,3 мг/л (или 1 мг/л нитритного азота), лимитирующий показатель вредности — санитарно-токсикологический.

12. Фтор (фториды)

Фтор в виде фторидов может содержаться в природных и грунтовых водах, что обусловлено его присутствием в составе некоторых почвообразующих (материнских) пород и минералов. Этот элемент может добавляться в питьевую воду в целях профилактики заболеваний кариесом. Однако избыточные количества фтора оказывают вредное воздействие на человека, вызывают разрушение зубной эмали. Кроме того, избыток фтора в организме осаждает кальций, что приводит к нарушениям кальциевого и фосфорного обмена. По этим причинам определение фтора в питьевой воде, а также грунтовых водах (например, воде колодцев и артезианских скважин) и воде водоемов хозяйственно-питьевого назначения, является очень важным.
ПДК фтора в питьевой воде для разных климатических районов составляет от 0,7 до 1,5 мг/л, лимитирующий показатель вредности — санитарно-токсический.

13. Металлы

13.1. Железо общее

Железо — один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.
Известно свыше 300 минералов, содержащих соединения железа. Среди них — магнитный железняк α-FeO(OH), бурый железняк FeзО4x H2O, гематит (красный железняк), гемит (бурый железняк), гидрогетит, сидерит FeСОз, магнитный колчедан FeSx, (х=1-1,4), железомарганцевые конкреции и др. Железо также является жизненно важным микроэлементом для живых организмов и растений, т.е. элементом, необходимым для жизнедеятельности в малых количествах.
В малых концентрациях железо всегда встречается практически во всех природных водах (до 1 мг/л при ПДК на сумму железа 0,3 мг/л) и особенно — в сточных водах. В последние железо может попадать из отходов (сточных вод) травильных и гальванических цехов, участков подготовки металлических поверхностей, стоков при крашении тканей и др.
Железо образует 2 рода растворимых солей, образующих катионы Fe2+ и Fe3+, однако в растворе железо может находиться и во многих других формах, в частности:
1) в виде истинных растворов (аквакомплексов) 2+, содержащих железо (II). На воздухе железо (II) быстро окисляется до железа (III), растворы которого имеют бурую окраску из-за быстрого образования гидроксосоединений (сами растворы Fe2+ и Fe3+ практически бесцветны);
2) в виде коллоидных растворов из-за пептизации (распада агрегированных частиц) гидроксида железа под воздействием органических соединений;
3) в виде комплексных соединений с органическими и неорганическими лигандами. К ним относятся карбонилы, ареновые комплексы (с нефтепродуктами и др. углеводородами), гексацианоферраты 4- и др.

В нерастворимой форме железо может быть представлено в виде различных взвешенных в воде твердых минеральных частиц различного состава.
При рН>3,5 железо (Ш) существует в водном растворе только в виде комплекса, постепенно переходящего в гидроксид. При рН>8 железо (П) тоже существует в виде аквакомплекса, претерпевая окисление через стадию образования железа (Ш):

Fe (II) >Fe (III) >FeO (ОН) х Н2О

Таким образом, поскольку соединения железа в воде могут существовать в различных формах, как в растворе, так и во взвешенных частицах, точные результаты могут быть получены только при определении суммарного железа во всех его формах, так называемого «общего железа».
Раздельное определение железа (II) и (III), их нерастворимых и растворимых форм, дает менее достоверные результаты относительно загрязнения воды соединениями железа, хотя иногда возникает необходимость определить железо в его индивидуальных формах.
Перевод железа в растворимую форму, пригодную для анализа, проводят, добавляя к пробе определенное количество сильной кислоты (азотной, соляной, серной) до рН 1-2.
Диапазон определяемых концентраций железа в воде — от 0,1 до 1,5 мг/л. Определение возможно и при концентрации железа более 1,5 мг/л после соответствующего разбавления пробы чистой водой.

ПДК общего железа в воде водоемов составляет 0,3 мг/л, лимитирующий показатель вредности — органолептический.

13.2. Сумма тяжелых металлов
Говоря о повышенной концентрации в воде металлов, как правило, подразумевают ее загрязнение тяжелыми металлами (Cad, Pb, Zn, Cr, Ni, Co, Hg и др.). Тяжелые металлы, попадая в воду, могут существовать в виде растворимых токсичных солей и комплексных соединений (иногда очень устойчивых), коллоидных частиц, осадков (свободных металлов, оксидов, гидроксидов и др.). Главными источниками загрязнения воды тяжелыми металлами являются гальванические производства, предприятия горнорудной, черной и цветной металлургии, машиностроительные заводы и др. Тяжелые металлы в водоеме вызывают целый ряд негативных последствий: попадая в пищевые цепи и нарушая элементный состав биологических тканей, они оказывают тем самым прямое или косвенное токсическое воздействие на водные организмы. Тяжелые металлы по пищевым цепям попадают в организм человека.
Тяжелые металлы по характеру биологического воздействия можно подразделить на токсиканты и микроэлементы, имеющие принципиально различный характер влияния на живые организмы. Характер зависимости эффекта, оказываемого элементом на организмы, в зависимости от его концентрации в воде (и, следовательно, как правило, в тканях организма), приведен на рис. 10.

Как видно из рис. 10, токсиканты оказывают отрицательное воздействие на организмы при любой концентрации, в то время как микроэлементы имеют область недостаточности, вызывающей отрицательный эффект (менее Ci), и область необходимых для жизни концентраций, при превышении которых снова возникает отрицательный эффект (более С2). Типичными токсикантами являются кадмий, свинец, ртуть; микроэлеметами — марганец, медь, кобальт.
Ниже мы приводим краткие сведения о физиологической (в том числе токсической) некоторых металлов, обычно относимых к тяжелым.

Медь. Медь является микроэлементом, содержится в организме человека, главным образом, в виде комплексных органических соединений и играет важную роль в процессах кроветворения. Во вредном воздействии избытка меди решающую роль играет реакция катионов Сu2+ с SH-группами ферментов. Изменения содержания меди в сыворотке и коже обуславливают явления депигментации кожи (витилиго). Отравление соединениями меди могут приводить к расстройствам нервной системы, нарушению функций печени и почек и др. ПДК меди в воде водоемов хозяйственно-питьевого и культурно-бытового назначения составляет 1,0 мг/л, лимитирующий показатель вредности —органолептический.

Цинк. Цинк является микроэлементом и входит с состав некоторых ферментов. Он содержится в крови (0,5-0,6), мягких тканях(0,7-5,4), кос¬тях (10-18), волосах (16-22 мг %), (единица измерения малых концентраций, 1 мг %=10-3) т.е., в основном, в костях и волосах. Находится в организме в динамическом равновесии, которое сдвигается в условиях повышенных концентраций в окружающей среде. Отрицательное воздействие соединений цинка может выражаться в ослаблении организма, повышенной заболеваемости, астмоподобных явлениях и др. ПДК цинка в воде водоемов составляет 1,0 мг/л, лимитирующий показатель вредности — общесанитарный.

Кадмий . Соединения кадмия очень ядовиты. Действуют на многие системы организма — органы дыхания и желудочно-кишечный тракт, центральную и периферическую нервные системы. Механизм действия соединений кадмия заключается в угнетении активности ряда ферментов, нарушении фосфорно-кальциевого обмена, нарушений метаболизма микроэлементов (Zn, Сu, Ре, Mn, Se). ПДК кадмия в воде водоемов составляет 0,001 мг/л, лимитирующий показатель вредности — санитарно-токсикологический.

Ртуть . Ртуть относится к ультрамикроэлементам и постоянно присутствует в организме, поступая с пищей. Неорганические соединения ртути (в первую очередь катионы Hg реагируют с SH-группами белков («тиоловые яды»), а также с карбоксильными и аминными группами тканевых белков, образуя прочные комплексные соединения — металлопротеиды. В результате возникают глубокие нарушения функций централь¬ной нервной системы, особенно высших ее отделов. Из органических соединений ртути наибольшее значение играет метилртуть, которая хорошо растворима в липидных тканях и быстро проникает в жизненно важные органы, и в том числе в мозг. В результате возникают изменения в вегетативной нервной системе, периферических нервных образованиях, в сердце, сосудах, кроветворных органах, печени и др., нарушения в иммунобиологическом состоянии организма. Соединения ртути обладают также эмбриотоксическим действием (приводят к поражению плода у беременных). ПДК ртути в воде водоемов составляет 0,0005 мг/л, лимитирующий показатель вредности — санитарно-токсикологический.

Свинец . Соединения свинца — яды, действующие на все живое, но вызывающие изменения особенно в нервной системе, крови и сосудах. Подавляют многие ферментативные процессы. Дети более восприимчивы к воздействию соединений свинца, чем взрослые. Обладают эмбриотоксическим и тератогенным действием, приводят к энцефалопатии и поражениям печени, угнетают иммунитет. Органические соединения свинца (тетраметилсвинец, тетраэтилсвинец) — сильные нервные яды, летучие жидкости. Являются активными ингибиторами обменных процессов. Для всех соединений свинца характерно кумулятивное действие. ПДК свинца в воде водоемов составляет 0,03 мг/л, лимитирующий показатель — сани¬тарно-токсикологический.
Ориентировочное предельно-допустимое значение содержания в водах суммы металлов составляет 0,001 ммоль/л (ГОСТ 24902). Значения ПДК для воды водоемов по отдельным металлам приведены ранее при описании их физиологического воздействия.

14. Активный хлор

Хлор может существовать в воде не только в составе хлоридов, но и в составе других соединений, обладающих сильными окислительными свойствами . К таким соединениям хлора относятся свободный хлор (CL2), гапохлорит-анион (СlO-), хлорноватистая кислота (НСlO), хлорамины (вещества, при растворении в воде которых образуются монохлорамин NH2Cl, дихлорамин NHCl2, трихлорамин NCl3). Суммарное содержа¬ние этих соединений называют термином «активный хлор».
Содержащие активный хлор вещества подразделяют на две группы: сильные окислители — хлор, гипохлориты и хлорноватистая кислота — содержат так называемый «свободный активный хлор», и относительно менее слабые окислители — хлорамины — «связанный активный хлор». Благодаря сильным окислительным свойствам соединения, имеющие активный хлор, используются для обеззараживания (дезинфекции) питьевой воды и воды в бассейнах, а также для химической очистки некоторых сточных вод. Кроме того, некоторые содержащие активный хлор соединения (например, хлорная известь) широко используются для ликвидации очагов распространения инфекционных загрязнений.
Наиболее широко для дезинфекции питьевой воды используется свободный хлор, который при растворении в воде диспропорционирует по реакции:

Сl2+Н2О=Н++Сl-+НОСl

В природной воде содержание активного хлора не допускается; в питьевой воде его содержание установлено в пересчете на хлор на уровне 0,3-0,5 мг/л в свободном виде и на уровне 0,8-1,2 мг/л в связанном виде (В данном случае приведен диапазон концентраций активного хлора, т.к. при меньших его концентрациях возможна неблагоприятная ситуация по микробиологическим показателям, а при больших — превышение непосредственно по активному хлору.). Активный хлор в указанных концентрациях присутствует в питьевой воде непродолжительное время (не более нескольких десятков минут) и нацело удаляется даже при кратковременном кипячении воды. По этой причине анализ отобранной пробы на содержание активного хлора следует проводить немедленно.
Интерес к контролю содержания хлора в воде, особенно в питьевой воде, возрос после осознания того факта, что хлорирование воды приводит к образованию заметных количеств хлоруглеводородов, вредных для здоровья населения. Особую опасность представляет хлорирование питьевой воды, загрязненной фенолом. ПДК для фенолов в питьевой воде при отсутствии хлорирования питьевой воды установлено 0,1 мг/л, а в условиях хлорирования (при этом образуются гораздо более токсичные и имеющие резкий характерный запах хлорфенолы) — 0,001 мг/л. Аналогичные химические реакции могут протекать с участием органических соединений природного или техногенного происхождения, приводя к различным токсичным хлорорганическим соединениям — ксенобиотикам.
Лимитирующий показатель вредности для активного хлора — общесанитарный.

15. Интегральная и комплексная оценка качества воды

Каждый из показателей качества воды в отдельности, хотя и несет информацию о качестве воды, все же не может служить мерой качества воды, т.к. не позволяет судить о значениях других показателей, хотя иногда косвенно бывает, связан с некоторыми из них. Например, увеличенное, по сравнению с нормой, значение БПК5 косвенно свидетельствует о повышенном содержании в воде легкоокисляющихся органических веществ, увеличенное значение электропроводности — о повышенном солесодержании и др. Вместе с тем, результатом оценки качества воды должны быть некоторые интегральные показатели, которые охватывали бы основные показатели качества воды (либо те из них, по которым зафиксировано неблагополучие).
В простейшем случае, при наличии результатов по нескольким оцениваемым показателям, может быть рассчитана сумма приведенных концентраций компонентов, т.е. отношение их фактических концентраций к ПДК (правило суммации). Критерием качества воды при использовании правила суммации является выполнение неравенства:

Следует отметить, что сумма приведенных концентраций согласно ГОСТ 2874 может рассчитываться только для химических веществ с одинаковым лимитирующим показателем вредности — органолептическим и санитарно-токсикологическим.
При наличии результатов анализов по достаточному количеству показателей можно определять классы качества воды, которые являются интегральной характеристикой загрязненности поверхностных вод. Классы качества определяются по индексу загрязненности воды (ИЗВ), который рассчитывается как сумма приведенных к ПДК фактических значений 6 основных показателей качества воды по формуле:

Значение ИЗВ рассчитывают для каждого пункта отбора проб (створа). Далее по табл. 14 в зависимости от значения ИЗВ определяют класс качества воды.

Характеристики интегральной оценки качества воды

Класс качества воды

Оценка качества (характе-ристика) воды

Менее и равно 0,2

Очень чистые

Более 0,2-1

Умеренно загрязненные

Загрязненные

Более 4—6

Очень грязные

Чрезвычайно грязные

В число 6 основных, так называемых «лимитируемых» показателей, при расчете ИЗВ входят, в обязательном порядке, концентрация растворенного кислорода и значение БПК5, а также значения еще 4 показателей, являющихся для данного водоема (воды) наиболее неблагополучными, или которые имеют наибольшие приведенные концентрации (отношение Сi/ПДКi). Такими показателями, по опыту гидрохимического мониторинга водоемов, нередко бывают следующие: содержание нитратов, нитритов, аммонийного азота (в форме органических и неорганических аммонийных соединений), тяжелых металлов —меди, марганца, кадмия и др., фенолов, пестицидов, нефтепродуктов, СПАВ (СПАВ — синтетические поверхностно-активных вещества. Различают неионогенные, а также катионоактивные и анионоактивные СПАВ.), лигносульфонатов. Для расчета ИЗВ показатели выбираются независимо от лимитирующего признака вредности, однако при равенстве приведенных концентраций предпочтение отдается веществам, имеющим санитарно-токсикологический признак вредности (как правило, такие вещества обладают относительно большей вредностью).

Очевидно, не все из перечисленных показателей качества воды могут быть определены полевыми методами. Задачи интегральной оценки осложняются еще и тем обстоятельством, что для получения данных при расчете ИЗВ необходимо проводить анализ по широкому кругу показателей, с выделением из их числа тех, по которым наблюдаются наибольшие приведенные концентрации. При невозможности проведения гидрохимического обследования водоема по всем интересующим показателям целесообразно определить, какие же компоненты могут быть загрязнителями. Это делают на основе анализа доступных результатов гидрохимических исследований прошлых лет, а также сведений и предположений о вероятных источниках загрязнений воды. При невозможности выполнения анализов по данному компоненту полевыми методами (СПАВ, пестициды, нефтепродукты и др.), следует произвести отбор проб и их консервацию с соблюдением необходимых условий (см. главу 5), после чего доставить пробы в требуемые сроки для анализа в лабораторию.

Таким образом, задачи интегральной оценки качества воды практически совпадают с задачами гидрохимического мониторинга, т.к. для окончательного вывода о классе качества воды необходимы результаты анализов по целому ряду показа¬телей в течение продолжительного периода .

Интересным является подход к оценке качества воды, разработанный в США. Национальный Санитарный Фонд этой страны в 1970 г. разработал стандартный обобщенный показатель качества воды (ПКВ), получивший широкое распространение в Америке и некоторых других странах. При разработке ПКВ использовались экспертные оценки на основе большого опыта оценки качества воды при ее использовании для целей бытового и промышленного водопотребления, отдыха на воде (плавания и водных развлечений, рыбалки), охраны водных животных и рыб, сельскохозяйственного использования (водопоя, орошения), коммерческого использования (судоходства, гидроэнергетики, теплоэнергетики) и др. ПКВ является безразмерной величиной, которая может принимать значения от 0 до 100. В зависимости от значения ПКВ возможны следующие оценки качества воды: 100-90 — превосходное; 90-70 — хорошее; 70-50 — посредственное; 50-25 — плохое; 25-0 — очень плохое. Установлено, что минимальное значение ПКВ, при котором удовлетворяется большинство государственных стандартов качества воды, составляет 50—58. Однако вода в водоеме может иметь значение ПКВ больше указанного, и в то же время не соответствовать стандартам по каким-либо отдельным показателям.

ПКВ рассчитывается по результатам определения 9 важнейших характеристик воды — частных показателей, причем каждый из них имеет собственный весовой коэффициент, характеризующий приоритетность данного показателя в оценке качества воды. Частные показатели качества воды, используемые при расчете ПКВ, и их весовые коэффициенты приведены в табл. 15.

Весовые коэффициенты показателей при расчете ПКВ по данным Национального Санитарного Фонда США

Наименование показателя

Значение весового коэффициента

Растворенный кислород

Количество кишечных палочек

Водородный показатель (рН)

Биохимическое потребление кислорода (БПК5)

Температура (Δt, тепловое за-грязнение)

Общий фосфор

Мутность

Сухой остаток

Как следует из приведенных в табл. 15 данных, наиболее весомыми показателями являются растворенный кислород и количество кишечных палочек, что вполне понятно, если вспомнить важнейшую экологическую роль растворенного в воде кислорода и опасность для человека, обусловленную кон¬тактом с загрязненной фекалиями водой.

Кроме весовых коэффициентов, имеющих постоянное значение, для каждого отдельного показателя разработаны весовые кривые, характеризующие уровень качества воды (Q) по каждому показателю в зависимости от его фактического значения, определяемого при анализе. Графики весовых кривых приведены на рис. 11. Имея результаты анализов по частным показателям, по весовым кривым определяют численные значения оценки для каждого из них. Последние умножаются на соответствующий весовой коэффициент, и получают оценку качества по каждому из показателей. Суммируя оценки по всем определенным показателям, получают значение обобщенного ПКВ.

Обобщенный ПКВ в значительной степени устраняет недостатки интегральной оценки качества воды с расчетом ИЗВ, т.к. содержит группу конкретных приоритетных показателей, в число которых входит показатель микробного загрязнения.
При оценке качества воды, кроме интегральной оценки, в результате которой устанавливается класс качества воды, а также гидробиологической оценки методами биоиндикации, в результате которой устанавливается класс чистоты, иногда встречается также так называемая комплексная оценка, основу которой составляют методы биотестирования.

Последние относятся также к гидробиологическим методам, но отличаются тем, что позволяют определить реакцию водной биоты на загрязнения по различным тестовым организмам — как простейшим (инфузориям, дафниям), так и высшим — рыбам (гуппиям). Такая реакция иногда считается наиболее показательной, особенно применительно к оценке качества загрязненных вод (природных и сточных) и позволяет определять даже количественно концентрации отдельных соединений.

Показатели

Единицы измерения

Нормативы

Термотолерантные колиформные бактерии

Число бактерий в 100 мл.

Отсутствие

Общие колиформные бактерии

Число бактерий в 100 мл.

Отсутствие

Общее микробное число

Число образующих колоний бактерий в 1 мл.

Не более 50

Колифаги

Число бляшкообразующих единиц (БОЕ) в 100 мл.

Отсутствие

Споры сульфитредуцирующих клостридий

Число спор в 20 мл.

Отсутствие

Цисты лямблий

Число цист в 50 мл.

Отсутствие

Безвредность питьевой воды по химическому составу определяется ее соответствием следующим нормативам:

Показатели

Единица измерения

Нормативы (ПДК) не более

Показатель вредности

Класс опасности

Обобщенные показатели

Водородный показатель

единицы рН

в пределах 6-9

Общая минерализация (сухой остаток)

Жесткость общая

Окисляемость перманганатная

Нефтепродукты, суммарно

Поверхностно-активные вещества (ПАВ), анионоактивные

Фенольный индекс

Неорганические вещества

Алюминий (Al3+)

Санит.-токсиколог.

Барий(Ba2+)

Санит.-токсиколог.

Бериллий(Be2+)

Санит.-токсиколог.

Бор(B, суммарно)

Санит.-токсиколог.

Железо (Fe, суммарно)

Органолептический

Кадмий (Cd, суммарно)

Санит.-токсиколог.

Марганец (Mn, суммарно)

Органолептический

Медь (Cu, суммарно)

Органолептический

Молибден (Mo, суммарно)

Санит.-токсиколог.

Мышьяк (As, суммарно)

Санит.-токсиколог.

Никель (Ni, суммарно)

Санит.-токсиколог.

Нитраты (по NO3)

Органолептический

Ртуть (Hg, суммарно)

Санит.-токсиколог.

Свинец (Pb, суммарно)

Санит.-токсиколог.

Селен (Se, суммарно)

Санит.-токсиколог.

Стронций(Sr2+)

Санит.-токсиколог.

Сульфаты (SO42_)

Органолептический

Фториды (F) для климатических районов
- I и II
- III

мг/л
мг/л

Санит.-токсиколог.
Санит.-токсиколог.

Органолептический

Санит.-токсиколог.

Санит.-токсиколог.

Органолептический

Органические вещества

γ - ГХЦГ (линдан)

Санит.-токсиколог.

ДДТ (сумма изомеров)

Санит.-токсиколог.

Санит.-токсиколог.

Химические вещества

  • остаточный свободный
  • остаточный связанный

мг/л
мг/л

в пределах 0,3-0,5
в пределах 0,8-1,2

Органолептический
Органолептический

Хлороформ (при хлорировании воды)

Санит.-токсиколог.

Озон остаточный

Органолептический

Формальдегид (при озонировании воды)

Санит.-токсиколог.

Полиакрил-амид

Санит.-токсиколог.

Активированная кремнекислота (пр Si)

Санит.-токсиколог.

Полифосфаты (по РО43_)

Органолептический

Остаточные количества алюминий- и железосодержащих коагулянтов

См. показатели «Алюминий», «Железо»

Органолептические свойства

Не более 2

Не более 2

Цветность

Не более 20 (35)

Мутность

ЕМФ (единицы мутности по формазину) или
мг/л (по каолину)

2,6 (3,5)
1,5 (2)

Перечень вредных веществ, которые могут содержаться в питьевой воде, их источников и характер воздействия на организм человека.


Группы веществ

Вещества

Источники

Воздействие на организм

Неорганические компоненты

Алюминий

Водоочистные сооружения, цветная металлургия

Нейротоксическое действие, болезнь Альцгеймера

Производство пигментов, эпоксидных смол, обогащение каменного угля

Воздействие на сердечно-сосудистую и кроветворную (лейкозы) системы

Цветная металлургия

Снижение репродуктивной функции у мужчин, нарушение овариально - менструального цикла у женщин (ОМЦ), углеводного обмена, активности ферментов

Коррозия труб с гальваническим покрытием, красильная промышленность

Болезнь “итай-итай”, увеличение кардио-васкулярной заболеваемости (КВЗ), почечной, онкологической (ОЗ), нарушение ОМЦ, течения беременности и родов, мертворождаемость, повреждение костной ткани.

Молибден

Горнодобывающая промышленность, цветная металлургия

Увеличение КВЗ, подагра, эпидемический зоб, нарушение ОМЦ,

Плавильная, стекольная, электронная промышленности, фруктовое садоводство

Нейротоксическое действие, поражения кожи, ОЗ

Шахтные, ливневые воды

Гипертензия, гипертония

Гальваника, химическая промышленность, металлургия

Поражение сердца, печени, ОЗ, кератиты

Нитраты, нитриты

Животноводство, удобрения, сточные воды

Метгемоглобинемия, рак желудка

Протравка зерна, гальваника, электродетали

Нарушение функции почек, нервной системы,

Тяжелая промышленность, пайки, водопроводы

Поражение почек. нервной системы, органов кроветворения, КВЗ, авитаминозы С и В

Стронций

Естественный фон

Стронциевый рахит

Горнорудная промышленность, гальваника, электроды, пигменты

Нарушение функции печени. почек

Пластики, электроды, горнорудная промышленность, удобрения

Поражение нервной системы, щитовидной железы

Соли кальция и магния

Природный фон

Мочекаменная и слюнно-каменная болезнь, склероз, гипертония.

Естественный фон

Нарушение функции почек, печени, снижение калия

Природная вода

Флюороз скелета и зубов, остеохондроз

Цветная металлургия

Гепатит, анемия, заболевание печени

Органические токсиканты

Четыреххлористый углерод

Растворители, побочный продукт хлорирования воды (ППХВ)

ОЗ, мутагенное действие

Тригалометаны (хлороформ, бромоформ,)

ППХВ, медицинская промышленность

Мутагенное действие, частично ОЗ

1,2-ди-хлорэтан

ППХВ, производство сжиженного газа, красок, фумигантов

Хлориро-ванные этилены

ППХВ, текстильная, клеевая промышленность, обезжириватели металлов, химчистка, растворители,

Мутагенное действие, ОЗ

Ароматические углеводороды:
- бензол

Бенз(а)-пирен

Пентахлор- фенол

Производство продуктов питания, лекарств. пестицидов, красок. пластиков, газов

Каменноугольные смолы, горючие органические вещества, вулканизация
- лесозащита, гербициды

Воздействие на печень и почки

Воздействие на печень и почки, ОЗ

Пестициды:
- линдан

Гексахлор-бензол

Атразин - 2,4-
дихлор-феноуксусная кислота

Симазин

Инсектицид для рогатого скота, леса, овощей

Пестицид (запрещен для использования)

Производство пестицидов

Гербицид для зерновых культур

Протравление гербицидами пшеницы, кукурузы, корнеплодов, почвы, газонов

Гербицид для зерновых и водорослей

Поражение печени, почек, нервной, иммунной, сердечно-сосудистой систем

ОЗ, поражение нервной системы и печени

Опухоли молочной железы

Повреждение печени, почек

Химические вещества, влияющие на органолепти-ческие
свойства воды

Поступление из водопроводной сети, природный фон

Аллергические реакции. болезни крови

Сульфаты

Природный фон

Диарея, увеличение числа гипоацидных состояний желудка, желчно- и мочекаменная болезнь.

Природный фон

Гипертензия, гипертоническая болезнь, заболевания сердечно-сосудистой системы.

Хлорированные фенолы

Марганец

Природный фон

Оказывает элебриотоксическое и гонадотоксическое действие

Отбор проб воды и их консервация

Отбор проб — операция , от правильного выполнения которой во многом зависит точность получаемых результатов. Отбор проб при полевых анализах необходимо планировать, намечая точки и глубины отбора, перечень определяемых показателей, количество воды, отбираемой для анализа, совместимость способов консервации проб для их последующего анализа. Чаще всего на водоеме отбираются так называемые разовые пробы. Однако при обследовании водоема может возникнуть необходимость отбора и серий периодических и регулярных проб — из поверхностного, глубинного, придонного слоев вод и т.д. Пробы могут быть отобраны также из подзем¬ных источников, водопровода и т.п. Усредненные данные о составе вод дают смешанные пробы.
В нормативных документах (ГОСТ 24481, ГОСТ 17.1.5.05, ИСО 5667-2 и др.) определены основные правила и рекомендации, которые следует использовать для получения репрезентативных10 проб. Различные виды водоемов (водоисточников) обуславливают некоторые особенности отбора проб в каждом случае. Рассмотрим основные из них.
Пробы из рек и водных потоков отбирают для определения качества воды в бассейне реки, пригодности воды для пищевого использования, орошения, для водопоя скота, рыборазведения, купания и водного спорта, установления источников загрязнения.
Для определения влияния места сброса сточных вод и вод притоков, пробы отбирают выше по течению и точке, где произошло полное смешение вод. Следует иметь в виду, что загрязнения могут быть неравномерно распространены по потоку реки, поэтому обычно пробы отбирают в местах максимально бурного течения, где потоки хорошо перемешиваются. Пробоотборники помещают вниз по течению потока, располагая на нужной глубине.
Пробы из природных и искусственных озер (прудов ) отбирают с теми же целями, что и пробы воды из рек. Однако, учитывая длительность существования озер, на первый план выступает мониторинг качества воды в течение длительного периода времени (несколько лет), в том числе в местах, предполагаемых к использованию человеком, а также установление последствий антропогенных загрязнений воды (мониторинг ее состава и свойств). Отбор проб из озер должен быть тщательно спланирован для получения информации, к которой можно было бы применять статистическую оценку. Слабопроточные водоемы имеют значительную неоднородность воды в горизонтальном направлении. Качество воды в озерах часто сильно различается по глубине из-за термальной стратификации, причиной которой является фотосинтез в поверхностной зоне, подогрев воды, воздействие донных отложений и др. В больших глубоких водоемах может появляться также внутренняя циркуляция.
Следует отметить, что качество воды в водоемах (как озерах, так и реках) носит циклический характер, причем наблюдается суточная и сезонная цикличность. По этой причине ежедневные пробы следует отбирать в одно и тоже время суток (например, в 12 часов), а продолжительность сезонных исследований должна быть не менее 1 года, включая исследования серий проб, отобранных в течение каждого времени года. Это особенно важно для определения качества воды в реках, имеющих резко отличающиеся режимы — межень и паводок.
Пробы влажных осадков (дождя и снега) чрезвычайно чувствительны к загрязнениям, которые могут возникнуть в пробе при использовании недостаточно чистой посуды, попадании инородных (не атмосферного происхождения) частиц и др. Считается, что пробы влажных осадков не следует отбирать вблизи источников значительных загрязнений атмосферы — например, котельных или ТЭЦ, открытых складов материалов и удобрений, транспортных узлов и др. В подобных случаях проба осадков будет испытывать значительное влияние указанных локальных источников антропогенных загрязнений.
Образцы осадков собирают в специальные емкости, приготовленные из нейтральных материалов. Дождевая вода собирается при помощи воронки (диаметром не менее. 20 см) в мерный цилиндр (или непосредственно в ведро) и хранится в них до анализа.
Отбор проб снега обычно проводят, вырезая керны на всю глубину (до земли), причем делать это целесообразно в конце периода обильных снегопадов (в начале марта). Объем снега в переводе на воду можно также вычислить по вышеприведенной формуле, где D — диаметр керна.
Пробы грунтовых вод отбирают для определения пригодности грунтовых вод в качестве источника питьевой воды, для технических или сельскохозяйственных целей, определение влияния на качество грунтовых вод потенциально опасных хозяйственных объектов, при проведении мониторинга загрязнителей грунтовых вод.
Грунтовые воды изучают, отбирая пробы из артезианских скважин, колодцев, родников. Следует иметь в виду, что качество воды в различных водоносных горизонтах может значительно различаться, поэтому при отборе пробы грунтовых вод следует оценить доступными способами глубину горизонта, из которого отобрана проба, возможные градиенты подземных потоков, информацию о составе подземных пород, через которые пролегает горизонт. Поскольку в точке отбора пробы может создаться концентрация различных примесей, отличная от всего водоносного слоя, необходимо откачивать из скважины (или из родника, делая в нем углубление) воду в количестве, достаточном для обновления воды в скважине, водопроводе, углублении и т.п.
Пробы воды из водопроводных сетей отбирают в целях определения общего уровня качества водопроводной воды, поиска причин загрязнения распределительной системы, контроля степени возможного загрязнения питьевой воды продуктами коррозии и др.
Для получения репрезентативных проб при отборе воды из водопроводных сетей соблюдают следующие правила;
— отбор проб проводят после спуска воды в течение 10-15 мин — времени, обычно достаточного для обновления воды с накопившимися загрязнителями;
— для отбора не используют концевые участки водопроводных сетей, а также участки с трубами малого диаметра (менее 1,2см);
— для отбора используют по возможности участки с турбулентным потоком — краны вблизи клапанов, изгибов;
— при отборе проб вода должна медленно течь в пробоотборную емкость до ее переполнения.
Отбор проб с целью определения состава воды (но не качества!) проводится также при изучении сточных вод, вод и пара котельных установок и др. Подобные работы имеют, как правило, технологические цели, требуют от персонала специальной подготовки и соблюдения, дополнительных правил безопасности. Полевые методы вполне (и часто весьма эффективно) могут быть использованы специалистами и в этих случаях, однако, по указанным причинам, мы не будем рекомендовать их к работе образовательных учреждений, населения и общественности, и описывать соответствующие методики отбора проб.
При отборе проб следует обращать внимание (и фиксировать в протоколе) на сопровождавшие отбор проб гидрологические и климатические условия, такие как осадки и их обилие, паводки, межень и застойность водоема и др.
Пробы воды для анализа могут отбираться как непосредственно перед анализом, так и заблаговременно. Для отбора проб специалисты используют стандартные батометры либо бутыли вместимостью не менее 1 л, открывающиеся и наполняющиеся на требуемой глубине. В связи с тем, что для анализа полевыми методами по какому-либо одному показателю (за исключением растворенного кислорода и БПК) обычно достаточно 30-50 мл воды, отбор проб непосредственно перед анализом может быть выполнен в колбу вместимостью 250-500 мл (например, из состава комплекта-лаборатории, измерительного комплекта и т.п.).
Понятно, что посуда для отбора проб должна быть чистой. Чистота посуды обеспечивается предварительным мытьем ее горячей мыльной водой (стиральные порошки и хромовую смесь не использовать!), многократным споласкиванием чистой теплой водой. В дальнейшем для отбора проб желательно использовать одну и ту же посуду. Сосуды, предназначенные для отбора проб, предварительно тщательно моют, ополаскивают не менее трех раз отбираемой водой и закупоривают стеклянными или пластмассовыми пробками, прокипяченными в дистиллированной воде. Между пробкой и отобранной пробой в сосуде оставляют воздух объемом 5-10 мл. В общую посуду отбирают пробу на анализ только тех компонентов, которые имеют одинаковые условия консервации и хранения.
Отбор проб, не предназначенных для анализа сразу же (т.е. отбираемых заблаговременно), производится в герметично закрывающуюся стеклянную или пластмассовую (желательно фторопластовую) посуду вместимостью не менее 1 л.
Для получения достоверных результатов анализ воды сле¬дует выполнять, по возможности, скорее. В воде протекают процессы окисления-восстановления, сорбции, седиментации, биохимические процессы, вызванные жизнедеятельностью микроорганизмов и др. В результате некоторые компоненты могут окисляться или восстанавливаться: нитраты — до нитритов или ионов аммония, сульфаты — до сульфитов; кислород может расходоваться на окисление органических веществ и т.п. Соответственно могут изменяться и органолептические свойства воды — запах, привкус, цвет, мутность. Биохимические процессы можно замедлить, охладив воду до температуры 4-5 °С (в холодильнике).
Однако, даже владея полевыми методами анализа, не всегда есть возможность выполнить анализ сразу же после отбора пробы. В зависимости от предполагаемой продолжительности хранения отобранных проб может возникнуть необходимость в их консервации. Универсального консервирующего средства не существует, поэтому пробы для анализа отбирают в несколько бутылей. В каждой из них воду консервируют, добавляя соответствующие химикаты в зависимости от определяемых компонентов.
В табл. приведены способы консервации, а также особенности отбора и хранения проб. При анализе воды на некоторые показатели (например, растворенный кислород, фенолы, нефтепродукты) к отбору проб предъявляются особые требования. Так, при определении растворенного кислорода и сероводорода важно исключить контакт пробы с атмосферным воздухом, поэтому бутыли необходимо заполнять при помощи сифона — резиновой трубки, опущенной до дна склянки, обеспечивая переливание воды через край при переполнении склянки. Подробно особые условия при отборе проб (если они существуют) приводятся при описании соответствующих анализов.

Способы консервации, особенности отбора и хранения проб

Анализируе-мый показа-тель

Способ консервации и количество консер-ванта на 1 л воды

Максимальное время хране-ния пробы

Особенности отбора и хра-нения проб

1. Активный хлор

Не консервируют

Несколько минут

2. Аммиак и
ионы аммония

Не консервируют

Хранить при 4°С

2-4 мл хлороформа или 1 мл концентри-рованной серной ки-слоты

3.Биохимиче-ское потребле-ние кислорода (БПК)

Не консервируют

Хранить при 4°С

4.Взвешенные вещества

Не консервируют

Перед анали-зом взболтать

5. Вкус и прив-кус

Не консервируют

Отбирать толь-ко в стеклян-ные бутыли

6.Водородный показатель (РН)

Не консервируют

При отборе пробы

В бутыли не оставлять пу-зырьков воз-духа, предо-хранять от нагревания

7. Гидрокарбо-наты

Не консервируют

8. Железо об-щее

Не консервируют

2-4 мл хлороформа или 3 мл концентри-рованной азотной (соляной) кислоты (дорН2)

9. Жесткость общая

Не консервируют

10.Запах (без
нагревания)

Не консервируют

Отбирать толь-ко в стеклян-ные бутыли

11. Кальций

Не консервируют

12. Карбонаты

Не консервируют

13. Металлы тяжелые (медь, свинец, цинк)

Не консервируют

В день отбора

3 мл азотной или со-ляной кислоты (до рН2)

Хранить при 4°С

14. Мутность

Не консервируют

Перед анали-зом взболтать

Следует иметь в виду, что ни консервация, ни фиксация не обеспечивают постоянства состава воды неограниченно долго. Они лишь сохраняют на определенное время соответствующий компонент в воде, что позволяет доставить пробы к месту анализа, — например, в полевой лагерь, а при необходимости — и в специализированную лабораторию. В протоколах отбора и анализа проб обязательно указываются даты отбора и анализа проб.

Долгое время проблема загрязнения воды не была острой для большинства стран. Имеющихся ресурсов хватало для того, чтобы удовлетворять потребности местного населения. По мере роста промышленности, увеличения количества используемой воды человеком ситуация кардинально изменилась. Теперь вопросами её очистки и сохранения качества занимаются на международном уровне.

Способы определения степени загрязнения

Под загрязнением воды принято понимать изменение её химического или физического состава, биологических характеристик. Это определяет ограничения при дальнейшем использовании ресурса. Большого внимания заслуживает загрязнение пресных вод, потому что их чистота неразрывно связана с качеством жизни и здоровьем человека.

Для того чтобы определить состояние воды, измеряется целый ряд показателей. Среди них:

  • цветность;
  • степень мутности;
  • запах;
  • pH уровень;
  • содержание тяжёлых металлов, микроэлементов и органических веществ;
  • титр кишечной палочки;
  • гидробиологические показатели;
  • количество растворённого в воде кислорода;
  • окисляемость;
  • наличие патогенной микрофлоры;
  • химическое потребление кислорода и др.

Практически во всех странах существуют надзорные органы, которые должны с определённой периодичностью в зависимости от степени важности пруда, озера, реки и пр. определять качество из содержимого. В случае обнаружения отклонений выявляются причины, которые могли спровоцировать загрязнение воды. Затем принимаются меры к их устранению.

Что провоцирует загрязнение ресурсов?

Причин, которые могут вызвать загрязнение воды, очень много. Это не всегда связано с деятельностью человека или промышленных предприятий. Природные катаклизмы, которые происходят периодически на различных территориях, также могут нарушить условия среды. Наиболее распространёнными причинами принято считать:

  • Бытовые и промышленные сточные воды. Если они не проходят систему очистки от синтетических, химических элементов и органических веществ, то, попадая в водоёмы, способны провоцировать водно-экологическую катастрофу.
  • Кислотные дожди. Об этой проблеме говорят не так часто, чтобы не провоцировать социальную напряжённость. Но отработанные газы, попадающие в атмосферу после выбросов автомобильного транспорта, промышленных предприятий, вместе с дождями оказываются на земле, загрязняя окружающую среду.
  • Твёрдые отходы, которые способны не только изменить состояние биосреды в водоёме, но и само течение. Часто это приводит к разливам рек и озёр, затруднению течения.
  • Органические загрязнения, связанные с деятельностью человека, естественным разложением умерших животных, растений и т. д.
  • Промышленные аварии и техногенные катастрофы.
  • Наводнения.
  • Тепловое загрязнение, связанное с производством электрической и прочей энергии. В некоторых случаях происходит нагрев воды до 7 градусов, что вызывает гибель микроорганизмов, растений и рыб, для которых нужен иной температурный режим.
  • Сходы лавин, селей и т. д.

В некоторых случаях природа способна сама со временем произвести очистку водных ресурсов. Но период химических реакций будет большим. Чаще всего гибель жителей водоёмов и загрязнение пресных вод невозможно предотвратить без вмешательства человека.

Процесс перемещения загрязнителей в воде

Если речь не идёт о твёрдых отходах, то во всех остальных случаях загрязнители могут существовать:

  • в растворённом состоянии;
  • во взвешенном состоянии.

Они могут представлять собой капельки или мелкие частицы. Биозагрязнители наблюдаются в виде живых микроорганизмов или вирусов.

Если в воду попадают твёрдые частицы, то необязательно они осядут на дне. В зависимости от течения, штормовых явлений они способны подниматься на поверхность. Дополнительным фактором является состав воды. В морской подобным частицам опуститься на дно практически невозможно. В результате течения они легко перемещаются на большие расстояния.

Эксперты обращают внимание на то, что из-за смены направлений течения в прибрежных зонах традиционно уровень загрязнения выше.

Независимо от типа загрязнителя, он способен попасть в организм рыб, которые обитают в водоёме, или птиц, ищущих себе пропитание в воде. Если это не приводит к прямой гибели существа, то способно сказаться на дальнейшей пищевой цепочке. Существует высокая вероятность того, что именно так загрязнение воды отравляет людей и ухудшает состояние их здоровья.

Основные результаты влияния загрязнённости на окружающую среду

Независимо от того, попадает ли загрязнитель в организм человека, рыбы, животного, срабатывает защитная реакция. Некоторые виды токсинов могут быть обезврежены иммунными клетками. В большинстве случаев живому организму требуется помощь в виде лечения, чтобы процессы не приняли серьёзный характер и не привели к гибели.

Учёные определяют в зависимости от источника загрязнения и его влияния следующие показатели отравления:

  • Генотоксичность. Тяжёлые металлы и другие микроэлементы способы повредить и изменить структуру ДНК. В результате наблюдаются серьёзные проблемы в развитии живого организма, повышается риск заболеваний и т. д.
  • Канцерогенность. Проблемы онкологии тесно связаны с тем, какую воду употребляет человек или животные. Опасность заключается в том, что клетка, превратившись в раковую, способна быстро переродить остальные в организме.
  • Нейротоксичность. Многие металлы, химические вещества способны влиять на нервную систему. Всем известно явление выброса китов, которое провоцируется подобными загрязнениями. Поведение морских и речных обитателей становится неадекватным. Они не только способны убить себя, но и начать пожирать тех, кто раньше им был неинтересен. Попадая с водой или пищей из таких рыб и животных в организм человека, химические вещества могут провоцировать замедление реакции мозга, разрушение нервных клеток и т.д.
  • Нарушение энергообмена. Воздействуя на клетки митохондрии, загрязнители способны изменять процессы выработки энергии. В результате организм перестаёт осуществлять активные действия. Недостаток энергии может вызвать смерть.
  • Репродуктивная недостаточность. Если гибель живых организмов загрязнение воды вызывает не так часто, то повлиять на состояние здоровья оно способно в 100 процентах случаев. Учёные особенно озабочены тем, что утрачивается их способность воспроизводить новое поколение. Решить эту генетическую проблему бывает непросто. Требуется искусственное обновление водной среды.

Как работает контроль и очистка вод?

Понимая, что загрязнение пресных вод ставит под угрозу существование человека, государственные органы на национальном и международном уровне создают требования к осуществлению деятельности предприятий и поведению людей. Эти рамки находят отражение в документах, регламентирующих процедуры контроля воды и работы систем очистки.

Выделяют следующие способы очистки:

  • Механическая или первичная. Её задача – предотвратить попадание в водоёмы крупных предметов. Для этого на трубах, по которым идут стоки, устанавливают специальные решётки и фильтры, задерживающие их. Требуется своевременно проводить очистку труб, иначе засор может стать причиной аварии.
  • Специализированная. Призвана улавливать загрязнители какого-то одного типа. Например, существуют ловушки для жиров, нефтяных пятен, хлопьевидных частиц, которые осаждаются с помощью коагулянтов.
  • Химическая. Подразумевает, что сточные воды будут использованы повторно в замкнутом цикле. Поэтому, зная их состав на выходе, подбирают химические вещества, которые способны вернуть воду в первоначальное состояние. Обычно это техническая вода, а не питьевая.
  • Третичная очистка. Чтобы воду можно было использовать в быту, сельском хозяйстве, в пищевой промышленности, её качество должно стать безупречным. Для этого её обрабатывают специальными составами или порошками, способными в процессе многоэтапной фильтрации задержать тяжёлые металлы, вредные микроорганизмы и другие вещества.

В быту всё больше людей старается устанавливать мощные фильтры, которые избавляют от загрязнения, причиной которого становятся старые коммуникации и трубы.

Болезни, которые может провоцировать грязная вода

Пока не стало понятно, что с водой в организм могут попадать возбудители инфекций и бактерии, человечество сталкивалось с глобальными проблемами. Ведь эпидемии, наблюдавшиеся периодически в той или иной стране, уносили жизни сотен тысяч людей.

К наиболее распространённым заболеваниям, к которым может привести плохая вода, относятся:

  • холера;
  • энтеровирус;
  • лямблиоз;
  • шистосомоз;
  • амебиаз;
  • врождённые уродства;
  • психические аномалии;
  • кишечные расстройства;
  • гастрит;
  • поражение кожи;
  • ожоги слизистых;
  • онкологические заболевания;
  • снижение репродуктивной функции;
  • эндокринные нарушения.

Приобретение бутилированной воды и установка фильтров является средством профилактики заболеваний. Некоторые используют серебряные предметы, которые также частично обеззараживают воду.

Загрязнение воды способно изменить планету и сделать качество жизни совершенно другим. Именно поэтому вопрос сохранения водоёмов постоянно поднимается экологическими организациями и научно-исследовательскими центрами. Это позволяет привлечь внимание предприятий, общественности, государственных органов к существующим проблемам и простимулировать начало активных действий по предотвращению катастрофы.

Технологии очистки

Направления деятельности

Применяемое оборудование

Задать вопрос специалисту

Традиционно показатели качества воды подразделяют на физические (температура, цветность, вкус, запах, мутность и т.д.), химические (водородный показатель воды pH, щелочность, жесткость, окисляемость, общая минерализация (сухой остаток) и т.д.) и санитарно-бактериологические (общая бактериальная загрязненность воды, коли-индекс, содержание в воде токсичных и радиоактивных компонентов и др.).

Для определения, насколько вода соответствует требуемым нормам, документально устанавливаются численные значения показателей качества воды, с которыми производится сравнение измеренных показателей.

Нормативно-техническая литература, составляющая водно-санитарное законодательство, предъявляет конкретные требования к качеству воды - в зависимости от ее назначения. К таким документам относятся ГОСТ 2874-82 «Вода питьевая», СанПиН 2.1.4.559-96 «Питьевая вода», «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения», СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества», СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Согласно требованиям СанПин питьевая вода должна быть безвредной по своему химическому составу, безопасной в радиационном и эпидемиологическом отношении, а также обладать приятным вкусом и запахом. Поэтому для сохранения собственного здоровья так важно знать, что за воду вы пьете. Для этого ее надо сдать на анализ – проверить, насколько вода соответствует требованиям санитарных норм и правил.

Рассмотрим подробно параметры, по которым оценивается качество воды.

Физические показатели качества воды

Температура воды поверхностных источников определяется температурой воздуха, его влажностью, скоростью и характером движения воды (а также рядом других факторов). В зависимости от времени года она может претерпевать значительные изменения (от 0,1 до 30º С). Для подземных источников температура воды отличается большей стабильностью (8-12 º С).

Оптимальная температура воды для питьевых целей составляет 7-11 ºС.

Стоит отметить, что этот параметр воды имеет большое значение для некоторых производств (например, для систем охлаждения и конденсации пара).

Мутность – показатель содержания в воде различных взвешенных веществ (минерального происхождения – частиц глины, песка, ила; неорганического происхождения – карбонатов различных металлов, гидроокиси железа; органического происхождения - планктона, водорослей и др.). Попадание взвешенных веществ в воду происходит вследствие размыва берегов и дна реки, поступления их с талыми, дождевыми и сточными водами.

Подземные источники имеют, как правило, небольшую мутность воды за счет наличия в ней взвеси гидрооксида железа. Для поверхностных вод мутность чаще обуславливается присутствием зоо- и фитопланктона, илистых или глинистых частиц; ее величина колеблется в течение года.

Мутность воды обычно выражается в миллиграммах на литр (мг/л); ее величина для питьевой воды по нормам СанПиН 2.1.4.559-96 не должна превышать 1,5 мг/л. Для ряда производств пищевой, медицинской, химической, электронной промышленности используется вода такого же или более высокого качества. В то же время во многих производственных процессах допустимо использование воды с повышенным содержанием взвешенных веществ.

Цветность воды - показатель, характеризующий интенсивность окраски воды. Он измеряется в градусах по платиново-кобальтовой шкале, при этом исследуемая проба воды сравнивается по окраске с эталонными растворами. Цветность воды обуславливается присутствием в ней примесей как органической, так и неорганической природы. Сильно влияет на эту характеристику наличие в воде вымываемых из почвы органических веществ (гуминовых и фульвовых кислот, в основном); железа и других металлов; техногенных загрязнений из промышленных сточных вод. Требование СанПиН 2.1.4.559-96 – цветность питьевой воды должна быть не более 20º. Отдельные виды промышленности ужесточают требования к величине цветности воды.

Запах и привкус воды – эта характеристика определяется органолептически (с помощью органов чувств), поэтому она достаточно субъективна.

Запахи и привкус, которыми может обладать вода, появляются за счет присутствия в ней растворенных газов, органических веществ, минеральных солей, химических техногенных загрязнений. Интенсивность запахов и привкусов определяются по пятибалльной шкале или по «порогу разбавления» испытуемой пробы воды дистиллированной водой. При этом устанавливается кратность разбавления, необходимая для исчезновения запаха или привкуса. Определение запаха и вкуса происходит с помощью непосредственного дегустирования при комнатной температуре, а также при температуре 60º С, вызывающей их усиление. Питьевая вода при 60º С не должна иметь привкус и запах более 2-х баллов (требования ГОСТ 2874-82).

В соответствии с 5-ти бальной шкалой: при 0 баллов - запах и привкус не обнаруживается;

при 1 балле вода имеет очень слабые запах или привкус, обнаруживаемые только опытным исследователем;

при 2-х баллах имеются слабые запах или привкус, очевидные и для неспециалиста;

при 3-х баллах легко обнаруживаются заметные запах или привкус (что и является причиной жалоб на качество воды);

при 4-х баллах различаются отчётливые запах или привкус, могущие заставить воздержаться от употребления воды;

при 5-ти баллах вода имеет такие сильные запах или привкус, что становится совершенно непригодной для питья.

Вкус воды обусловлен наличием в ней растворенных веществ, придающий ей определенный привкус, который может быть солоноватым, горьковатым, сладковатым и кисловатым. Природные воды имеют, как правило, только солоноватый и горьковатый привкус. Причем солоноватый привкус появляется у воды, содержащей хлорид натрия, а горьковатый привкус дает избыток сульфата магния. Вода с большим количеством растворённой углекислоты (т.н. минеральные воды) имеет кислый вкус. Вода с чернильным или железистым привкусом насыщена солями железа и марганца; вяжущий привкус ей придает сульфат кальция, перманганат калия; щелочной привкус вызывается содержанием в воде соды, поташи, щелочи. Привкус может иметь естественное происхождение (присутствие марганца, железа, метана, сероводорода и т.д.) и искусственное происхождение (при сбросе промышленных стоков). Требования СанПиН 2.1.4.559-9 к питьевой воде - привкус не более 2 баллов.

Запахи воде придают различные живущие и отмершие организмы, растительные остатки, специфические веществами, выделяемые некоторыми водорослями и микроорганизмами, а также присутствие в воде растворенных газов, таких как хлор, аммиак, сероводород, меркаптаны или органических и хлорорганических загрязнений. Запахи бывают природного (естественного) и искусственного происхождения. К первым относятся такие запахи, как древесный, ароматический, землистый, болотный, плесневый, гнилостный, травянистый, рыбный, неопределённый и сероводородный и др. Запахи искусственного происхождения получают свое название по определяющим их веществам: камфорный, фенольный, хлорный, смолистый, аптечный, хлор-фенольный, запах нефтепродуктов и т. д.

Требования СанПиН 2.1.4.559-9 к питьевой воде - запах не более 2 баллов.

Химические показатели качества воды

Общая минерализация (сухой остаток). Общая минерализация - количественный показатель растворенных в 1 л воды веществ (неорганических солей, органических веществ - кроме газов). Этот показатель также называют общим солесодержанием. Его характеристикой является сухой остаток, получаемый в результате выпаривания профильтрованной воды и высушивании задержанного остатка до постоянной массы. Российскими нормативами допускается минерализация воды, используемой для хозяйственно-питьевых целей, не более 1000 - 1500 мг/л. Сухой остаток для питьевой воды не должен превышать 1000 мг/л.

Активная реакция воды (степень её кислотности или щёлочности) определяется соотношением существующих в ней кислых (водородных) и щелочных (гидроксильных) ионов. При ее характеристике пользуются рН – водородным и гидроксильным показателями, определяющими, соответственно, кислотность и щелочность воды. Величина водородного показателя pH равна отрицательному десятичному логарифму концентрации водородных ионов в воде. При равном количестве кислотных и щелочных ионов, реакция воды нейтральная, а значение pH=7. При рН<7,0 вода имеет кислую реакцию; при рН>7,0 – щелочную. Нормы СанПиН 2.1.4.559-96 требуют, чтобы значение рН питьевой воды находилось в пределах 6,0...9,0. Большинство природных источников имеют значение рН в указанных пределах. Однако может вызвать существенное изменение значения рН. Правильная оценка качества воды и точный выбор способа ее очистки предполагает знание рН воды источников в различные периоды года. Вода с низкими значениями рН оказывает сильное коррозирующее воздействие на сталь и бетон.

Часто качество воды описывается через такой термин, как жесткость. Требования к качеству воды по показателю жесткости в России и Европе очень сильно различаются: 7 мг-экв/л (по российским нормам) и 1 мг-экв/л (директива Совета ЕС). Повышенная жесткость представляет собой самую распространенную проблему качества воды.

Жесткость воды – показатель, характеризующий содержание в воде солей жесткости (главным образом, кальция и магния). Он измеряется в миллиграмм-эквивалентах на литр (мг-экв/л). Различают такие понятия как карбонатная (временная) жесткость, некарбонатная (постоянная) жесткость и общая жесткость воды.

Карбонатная жесткость (устранимая) – показатель наличия в воде гидрокарбоната кальция и магния. При кипячении воды происходит его разложение с образованием малорастворимых солей и углекислого газа.

Некарбонатная или постоянная жесткость определяется содержанием в воде некарбонатных солей кальция и магния - сульфатов, хлоридов, нитратов. При кипячении воды они не выпадают в осадок и остаются в растворе.

Общая жесткость – суммарная величина содержания в воде солей кальция и магния; представляет собой сумму карбонатной и некарбонатной жесткости.

В зависимости от величины жесткости вода характеризуется как:

Величина жесткости воды значительно варьирует в зависимости от того, какие типы пород и почв слагают бассейн водосбора; от погодных условий и сезона года. Так, в поверхностных источниках вода, как правило, относительно мягкая (3...6 мг-экв/л) и зависит от расположения - чем южнее, тем выше жесткость воды. Жесткость подземных вод меняется в зависимости от глубины и расположения горизонта водоносного слоя и величины годового объема осадков. В слое известняка жесткость воды обычно составляет 6 мг-экв/л и более.

Жесткость питьевой воды (по нормам СанПиН 2.1.4.559-96) не должна превышать 7,0 мг-экв/л.

Жесткая вода из-за избытка кальция обладает неприятным вкусом. Опасность постоянного употребления воды с повышенной жесткостью - в снижении моторики желудка, накоплении солей в организме, риске заболевания суставов (артриты, полиартриты) и образования камней в почках и желчных путях. Правда, очень мягкая вода также не полезна. Мягкая вода, обладающая большой активностью, способна вымывать кальций из костей, что ведет к их ломкости; развитию рахита у детей. Еще одним неприятным свойством мягкой воды является ее способность при прохождении через пищеварительный тракт вымывать также полезные органические вещества, в том числе и полезные бактерии. Оптимальный вариант - вода жесткостью 1,5-2 мг-экв/л.

Уже общеизвестно, что нежелательно использовать жесткую воду для хозяйственных целей. Такие последствия, как налет на сантехнических приборах и арматуре, образование накипи в водонагревательных системах и приборах – очевидны! Образование осадка кальциевых и магниевых солей жирных кислот при хозяйственно-бытовом использовании жесткой воды приводит к значительному росту расхода моющих средств и замедлению процесса приготовления пищи, что проблемно для пищевой промышленности. В ряде случаев использование жесткой воды в производственных целях (в текстильной бумажной промышленности, на предприятиях искусственного волокна, для питания паровых котлов и др.) запрещается из-за нежелательных последствий.

Использование жесткой воды уменьшает срок службы водонагревательной техники (бойлеров, батарей центрального водоснабжения и др.). Отложение солей жесткости (гидрокарбонатов Ca и Mg) на внутренних стенках труб, накипные отложения в водонагревательных и охлаждающих системах уменьшают проходное сечение, снижают теплоотдачу. В системах оборотного водоснабжения не допускается использовать воду с высокой карбонатной жесткостью.

Щёлочность воды . Общая щёлочность воды – это сумма содержащихся в ней гидратов и анионов слабых кислот (кремниевой, угольной, фосфорной и т.д.). При характеристике подземных вод в подавляющем большинстве случаев используют гидрокарбонатную щёлочность, то есть содержание в воде гидрокарбонатов. Формы щелочности: бикарбонатная, карбонатная и гидратная. Определение щелочности (мг-экв/л) производится в целях контроля качества питьевой воды; для определения пригодности воды для полива; для расчета содержания карбонатов, для последующей очистки сточных вод.

ПДК по щелочности 0,5 - 6,5 ммоль / дм3.

Хлориды – их присутствие наблюдается практически во всех водах. Их наличие в воде объясняется вымыванием из горных пород хлорида натрия (поваренной соли), очень распространённой на Земле соли. Значительное количество хлоридов натрия содержится в морской воде, а также в воде некоторых озер и подземных источников.

В зависимости от стандарта ПДК хлоридов в питьевой воде равняется 300...350 мг/л.

Повышенное содержание хлоридов с одновременным присутствием в воде нитритов, нитратов и аммиака встречается в случае загрязнённости источника бытовыми сточными водами.

Сульфаты наличествуют в подземных водах, как результат растворения гипса, имеющегося в пластах. При избыточном содержании сульфатов в воде у человека возникает расстройство желудочно-кишечного тракта (эти соли обладают слабящим эффектом).

ПДК сульфатов в питьевой воде составляет 500 мг/л.

Содержание кремниевых кислот . Кремниевые кислоты различной формы (от коллоидной до ионодисперсной) встречаются в воде подземных и поверхностных источников. Кремний имеет малую растворимость, и его содержание в воде, как правило, невелико. Попадание кремния в воду происходит также с промышленными стоками предприятий, осуществляющих производство керамики, цемента, стекольных изделий, силикатных красок.

ПДК кремния составляет 10 мг/л. Использование воды, содержащей кремниевые кислоты, запрещено для питания котлов высокого давления – из-за образования силикатной накипи на стенках.

Фосфатов в воде обычно немного, поэтому их повышенное содержание сигналит о возможном загрязнении промышленными стоками или стоками с сельскохозяйственных полей. При повышенном содержании фосфатов усиленно развиваются сине-зелёные водоросли, выделяющие токсины в воду при отмирании.

ПДК соединений фосфора в питьевой воде - 3,5 мг/л.

Фториды и йодиды . Фториды и йодиды имеют некоторую схожесть. Недостаток или избыток этих элементов в организме человека приводит к серьёзным заболеваниям. Например, недостаток (избыток) йода провоцирует заболевания щитовидной железы ("зоб"), развивающиеся, когда суточный рацион йода менее 0,003 мг или более 0,01 мг. Фториды содержатся в минералах - солях фтора. Содержание фтора в питьевой воде для сохранения здоровья человека должно находиться в пределах 0,7 - 1,5 мг/л (зависит от климата).

Поверхностные источники имеют, преимущественно, низкое содержание фтора (0,3-0,4 мг/л). Содержание фтора в поверхностных водах повышается следствие сброса промышленных фторсодержащих сточных вод или при контакте вод с почвами, насыщенными соединениями фтора. Так, артезианские и минеральные воды, контактирующие со фторсодержащими водовмещающими породами, имеют максимальную концентрацию фтора 5-27 мг/л и более. Важной характеристикой для здоровья человека является количество фтора в его суточном рационе. Обычно содержание фтора в суточном рационе составляет от 0,54 до 1,6 мг фтора (усреднено - 0,81 мг). Стоит отметить, что в организм человека с пищевыми продуктами поступает в 4-6 раз меньше фтора, чем с питьевой водой, имеющей оптимальное его содержание (1 мг/л).

При повышенном содержании фтора в воде (более 1,5 мг/л) появляется опасность развития у населения эндемического флюороза (т.н. "пятнистой эмали зубов"), рахита и малокровия. Эти заболевания сопровождаются характерным поражением зубов, нарушением процессов окостенения скелета, истощением организма. Поэтому в питьевой воде содержание фтора лимитируется. Фактом является и то, некоторое содержание фтора в воде необходимо для снижения уровня заболеваний, определяемых последствиями одонтогенной инфекции (сердечно-сосудистая патология, ревматизм, заболевания почек и др.). При употреблении воды с содержанием фтора менее 0,5 мг/л развивается кариес зубов, поэтому в таких случаях врачи рекомендуют пользоваться фторсодержащей зубной пастой. Фтор лучше усваивается организмом из воды. Исходя из вышеизложенного, оптимальной дозой фтора в питьевой воде является величина 0,7...1,2 мг/л.

ПДК фтора - 1,5 мг/л.

Окисляемость перманганатная – параметр, обусловленный присутствием в воде органических веществ; отчасти он может сигнализировать о загрязнённости источника сточными водами. В зависимости от того, какой окислитель используется при , различается окисляемость перманганатная и окисляемость бихроматная (или ХПК - химическая потребность в кислороде). Перманганатная окисляемость является характеристикой содержания легкоокисляемой органики, бихроматная - общего содержания органических веществ в воде. Количественное значение этих показателей и их соотношение позволяет косвенно судить о природе присутствующих в воде органических веществ, а также о способах и эффективности очистки воды.

По требованиям СанПиН: величина перманганатной окисляемости воды не должна превышать 5,0 мг О 2 /л. Вода с перманганатной окисляемостью менее 5 мг О 2 /л считается чистой, более 5 мг О 2 /л - грязной.

В истинно растворённом виде (двухвалентное железо Fe2+). Содержится обычно в артезианских скважинах (отсутствует растворенный кислород). Вода прозрачная бесцветная. Если содержание такого железа в ней высокое, то при отстаивании или нагреве вода становится желтовато-бурой;

В нерастворённом виде (трёхвалентное железо Fe3+) содержится в поверхностных источниках водоснабжения. Вода прозрачная - с коричневато-бурым осадком или ярко выраженными хлопьями;

В коллоидном состоянии или виде тонкодисперсной взвеси. Вода мутная, окрашенная, желтовато-коричневая опалесцирующая. Коллоидные частицы, находясь во взвешенном состоянии, не выпадают в осадок даже при длительном отстаивании;

В виде так называемой железоорганики - солей железа и гуминовых и фульвокислот. Вода прозрачная, желтовато-коричневая;

Железобактерии, образующие коричневую слизь на водопроводных трубах.

Содержание железа в поверхностных водах средней полосы России - от 0,1 до 1,0 мг/дм 3 железа; в подземных водах эта величина достигает 15-20 мг/дм 3 и более. Важно проведение анализа на содержание железа в сточных водах. Особенно «засоряют» водоемы железом сточные воды предприятий металлообрабатывающей, металлургической, лакокрасочной промышленности, текстильной, а также сельскохозяйственные стоки. На концентрацию железа в воде влияют величина рН и содержание кислорода в воде. В колодезной и скважинной воде железо может находиться в окисленной и в восстановленной форме, однако при отстаивании воды оно всегда окисляется и может выпадать в осадок.

СанПиН 2.1.4.559-96 допускают общее содержание железа не более 0,3 мг/л.

Считается, что железо не токсично для человеческого организма, но при длительном употреблении воды с избыточным содержанием железа может произойти отложение его соединений в тканях и органах человека. Вода, загрязненная железом, имеет неприятный вкус, приносит неудобства в быту. На ряде промышленных предприятий, использующих воду для промывки продукта при его изготовлении, например, в текстильной промышленности, даже небольшое содержание железа в воде значительно снижает качество продукции.

Марганец встречается в воде в аналогичных модификациях. Марганец – это металл, активизирующий ряд ферментов, участвующий в процессах дыхания, фотосинтеза, влияющий на кроветворение и минеральный обмен. При недостатке марганца в почве у растений наблюдаются хлорозы, некрозы, пятнистости. Поэтому почвы, бедные марганцем (карбонатные и переизвесткованные), обогащаются марганцевыми удобрениями. Для животных недостаток этого элемента в кормах приводит к замедлению роста и развития, нарушению минерального обмена, развитию анемии. Человек страдает как от недостатка, так и от переизбытка марганца.

Нормы СанПиН 2.1.4.559-96 допускают содержание марганца в питьевой воде не более 0,1 мг/л.

Переизбыток марганца в воде может вызвать заболевание костной системы человека. Такая вода имеет неприятный металлический привкус. Ее длительное употребление приводит к отложению марганца в печени. Присутствие в воде марганца и железа способствует образованию железистых и марганцевых бактерий, продукты жизнедеятельности которых в трубах и теплообменных аппаратах вызывают уменьшение их сечения, иногда и полную их закупорку. Вода, используемая в пищевой, текстильной промышленности, при производстве пластмасс и др., должна содержать строго ограниченное количество железа и марганца.

Также переизбыток марганца приводит к окрашиванию белья при стирке, образованию черных пятен на сантехнике и посуде.

Натрий и калий - попадание этих элементов в подземные воды происходит в процессе растворения коренных пород. Основной источник натрия в природных водах - залежи поваренной соли NaCl, возникшие в местах нахождения древних морей. Калий в водах встречается реже – из-за его поглощения почвой и растениями.

Натрий играет важную биологическую роль для большинства форм жизни на Земле, в том числе и для человека. Человеческий организм содержит примерно 100 г натрия. Ионами натрия выполняется задача активизации ферментативного обмена в организме человека.

По нормам СанПиН 2.1.4.559-96 ПДК натрия - 200 мг/л. Избыток натрия в воде и пище провоцирует у человека развитие гипертензии и гипертонии.

Калий способствует усилению выведения воды из организма. Это его свойство используется для облегчения функционирования сердечно-сосудистой системы при ее недостаточности, исчезновения или существенного уменьшения отеков. Недостаток калия в организме приводит к нарушениям функций нервно-мышечной (параличи и парезы) и сердечно-сосудистой систем и способствует депрессии, дискоординации движений, мышечной гипотонии, судорогам, артериальной гипотонии, изменениям на ЭКГ, нефритам, энтеритам и др. ПДК калия - 20 мг/л.

Медь, цинк, кадмий, мышьяк, свинец, никель, хром и ртуть – попадание этих элементов в источники водоснабжения происходит преимущественно с промышленными стоками. Рост содержания меди и цинка может также являться следствием коррозии оцинкованных и медных водопроводных труб в случае повышенного содержания агрессивной углекислоты.

По нормам СанПиН ПДК этих элементов составляет: для меди - 1,0 мг/л; цинка - 5,0 мг/л; свинца - 0,03 мг/л; кадмия - 0,001 мг/л; никеля - 0,1 мг/л (в странах ЕС - 0,05 мг/л), мышьяка - 0,05 мг/л; хрома Cr3+ - 0,5 мг/л, ртути - 0,0005 мг/л; хрома Cr4+ - 0,05 мг/л.

Все эти соединения - тяжёлые металлы, обладающие кумулятивным действием, то есть они имеют свойство накапливаться в организме.

Кадмий очень токсичен. Накопление кадмия в организме может приводить к таким заболеваниям, как анемия, поражение печени, почек и легких, кардиопатия, эмфизема легких, остеопороз, деформация скелета, гипертония. Избыток этого элемента провоцирует и усиливает дефицит Se и Zn. Симптомами кадмиевого отравления являются поражение центральной нервной системы, белок в моче, острые костные боли, дисфункция половых органов. Все химические формы кадмия представляют опасность.

Алюминий – легкий металл серебристо-белого цвета. В первую очередь его попадание в воду происходит в процессе водоподготовки - в составе коагулянтов и при сбросе сточных вод переработки бокситов.

В воде ПДК солей алюминия составляет 0,5 мг/л.

При избытке алюминия в воде происходит повреждение центральной нервной системы человека.

Бор и селен – присутствие этих элементов в некоторых природных водах обнаруживается в весьма незначительной концентрации. Необходимо помнить, что их повышенная концентрация приводит к серьёзному отравлению.

Кислород пребывает в воде в растворенном виде. В подземных водах растворенный кислород отсутствует. Его содержание в поверхностных водах зависит от температуры воды, а также определяется интенсивностью процессов обогащения или обеднения воды кислородом, достигая до 14 мг/л.

Даже значительное содержание кислорода и двуокиси углерода не ухудшает качество питьевой воды, способствуя, в то же время, росту коррозии металла. Повышение температуры воды, а также ее подвижность усиливают процесс коррозии. Повышенное содержание в воде агрессивной двуокиси углерода делает подверженными коррозии также стенки бетонных труб и резервуаров. Присутствие кислорода не допустимо в питательной воде паровых котлов среднего и высокого давления. Сероводород имеет свойство придавать воде характерный неприятный запах и вызывать коррозию металлических стенок котлов, баков и труб. Из-за этого не допускается присутствие сероводорода в воде хозяйственно-питьевого назначения и в воде для большинства производственных нужд.

Соединения азота. К азотосодержащим веществам относятся нитриты NO 2 - , нитраты NO 3 - и аммонийные соли NH 4 + , почти всегда присутствующие во всех водах, в том числе подземных. Их наличие свидетельствует о том, что в воде имеются органические вещества животного происхождения. Эти вещества образуются в результате распада органических примесей, преимущественно - мочевины и белков, которые попадают в воду с бытовыми сточными водами. Рассматриваемая группа ионов находится в тесной взаимосвязи.

Первый продукт распада - аммиак (аммонийный азот) , образуется в результате распада белков и является показателем свежего фекального загрязнения. Окисление ионов аммония до нитратов и нитритов в природной воде осуществляется бактериями Nitrobacter и Nitrosomonas. Нитриты - лучший показатель свежего фекального загрязнения воды, особенно если одновременно повышенно содержание аммиака и нитритов. Нитраты -показатель более давнего органического фекального загрязнения воды. Содержание нитратов вместе с аммиаком и нитритами недопустимо.

Таким образом, наличие, количество и соотношение в воде азотсодержащих соединений позволяет судить о том, как сильно и как давно вода заражена продуктами жизнедеятельности человека. При отсутствии в воде аммиака и, в то же время, наличии нитритов и особенно нитратов можно сделать вывод, что водоем подвергся загрязнению давно, и за это время произошло самоочищение воды. Если в водоеме присутствует аммиак и нет нитратов, значит, загрязнение воды органическими веществами случилось недавно. В питьевой воде не допускается содержание аммиака и нитритов.

ПДК в воде: аммоний - 2,0 мг/л; нитриты - 3,0 мг/л; нитраты - 45,0 мг/л.

Если концентрация иона аммония в воде превышает фоновые значения, значит, загрязнение произошло недавно, а источник загрязнения находится близко. Это могут быть животноводческие фермы, коммунальные очистные сооружения, скопления азотных удобрений, навоза, поселения, отстойники промышленных отходов и др.

При употреблении воды с повышенным содержанием нитратов и нитритов у человека нарушается окислительная функция крови.

Хлор вводится в питьевую воду при её . Обеззараживающее действие хлор проявляет, окисляя или хлорируя (замещая) молекулы веществ, входящие в состав цитоплазмы клеток бактерий, в результате чего бактерии гибнут. Чрезвычайно чувствительными к хлору являются возбудители дизентерии, брюшного тифа, холеры и паратифов. Сравнительно малые дозы хлора дезинфицируют даже сильно заражённую бактериями воду. Однако не происходит полной стерилизации воды из-за сохраняющих жизнеспособность отдельных хлоррезистентных особей.

Свободный хлор - вредное для здоровья человека вещество, поэтому в питьевой воде централизованного водоснабжения гигиеническими нормами СанПиН строго регламентируется содержание остаточного свободного хлора. СанПиН устанавливает верхнюю и минимально-допустимую границы содержания свободного остаточного хлора. Проблема в том, что, хотя воду и обеззараживают на станции водоочистки, на пути к потребителю она подвергается риску вторичного заражения. Например, в стальной подземной магистрали могут быть свищи, через которые в магистральную воду попадают почвенные загрязнения.

Поэтому нормы СанПиН 2.1.4.559-96 предусматривают содержание остаточного хлора в водопроводной воде не менее 0,3 мг/л и не более 0,5 мг/л.

Хлор токсичен и является сильным аллергиком, поэтому хлорированная вода оказывает неблагоприятное воздействие на кожу и слизистые оболочки. Это и покраснения различных участков кожи, и проявления аллергического конъюктевита (отек век, жжение, слезотечение, болевые ощущения в области глаз). Хлор также вредно воздействует на дыхательную систему: в результате пребывания в бассейне с хлорированной водой в течение нескольких минут у 60% пловцов наблюдается проявление бронхоспазма.

Около 10% хлора, применяющегося при хлорировании воды, образуют хлорсодержащие соединения, такие как хлороформ, дихлорэтан, четырёххлористый углерод, тетрахлоэтилен, трихлорэтан. 70 - 90 % образующихся при водоподготовке хлорсодержащих веществ составляет хлороформ. Хлороформ способствует профессиональным хроническим отравлениям с преимущественным поражением печени и центральной нервной системы.

Также при хлорировании существует вероятность образования диоксинов, являющихся чрезвычайно токсичными соединениями. Высокая степень токсичности хлорированной воды многократно увеличивает риск развития онкологии. Так, американские эксперты считают хлорсодержащие вещества в питьевой воде косвенно или непосредственно виновными в 20 онкозаболеваниях на 1 млн. жителей.

Сероводород встречается в подземных водах и имеет преимущественно неорганическое происхождение.

В природе происходит постоянное образование этого газа при разложении белковых веществ. Он имеет характерный неприятный запах; провоцирует коррозию металлических стенок баков, котлов и труб; является общеклеточным и каталитическим ядом. При соединении с железом образует черный осадок сернистого железа FeS. Все вышесказанное является основанием для полного удаления сероводорода из воды хозяйственно-питьевого назначения (см. ГОСТ 2874-82 "Вода питьевая").

Стоит отметить, что СанПиН 2.1.4.559-96 допускает присутствие сероводорода в воде до 0,003 мг/л. Вопрос – не опечатка ли это в нормативном документе?!

Микробиологические показатели. Общее микробное число (ОМЧ) определяется количеством бактерий, содержащихся в 1 мл воды. Согласно требованиям ГОСТ, в питьевой воде не должно содержаться более 100 бактерий в 1 мл.

Количество бактерий группы кишечной палочки представляет особую важность для санитарной оценки воды. Наличие в воде кишечной палочки - свидетельство загрязнении ее фекальными стоками и, как следствие, риска попадания в нее болезнетворных бактерий. Определение наличия патогенных бактерий при биологическом анализе воды затруднено, и бактериологические исследования сводятся к определению общего числа бактерий в 1 мл воды, растущих при 37ºС, и кишечной палочки - бактерии коли. Наличие последней сигнализирует о загрязнении воды выделениями людей, животных и т.п. Минимальный объем испытуемой воды, мл, приходящейся на одну кишечную палочку, называется колититром, а количество кишечных палочек в 1 л воды - коли-индексом. По ГОСТ 2874-82 допускается коли-индекс до 3, колититр - не менее 300, а общее число бактерий в 1 мл - до 100.

По нормам СанПиН 2.1.4.559-96 допустимо общее микробное число 50 КОЕ/мл, общие колиформные бактерии (ОКБ) КОЕ/100мл и термотолетарные колиформные бактерии (ТКБ) КОЕ/100мл - не допускаются.

Патогенные бактерии и вирусы, находящиеся в воде, могут вызвать заболевания дизентерией, брюшным тифом, парафитом, амебиазом, холерой, диареей, бруцеллезом, инфекционным гепатитом, туберкулезом, острым гастроэнтеритом, сибирской язвой, полиомиелитом, туляремией и др.

КомпанияWaterman предлагает Вам профессиональное решение задачи очистки воды от соединений, содержание которых в воде выше нормативного. Наши специалисты проконсультируют по возникшим вопросам и помогут в выборе и внедренииоптимальной схемы водоочистки, исходя из конкретных исходных данных.