Промежуточные опоры вл. Классификация воздушных линий электропередач

Электричество в наше время это основной вид энергии используемый повсюду. Повсеместное использование её стало возможным благодаря электрическим сетям , которые объединяют источники и потребителей электроэнергии. Линии электропередачи или сокращённо ЛЭП выполняют функцию транспортировки электричества. Они прокладываются либо над поверхностью земли и именуются «воздушными», либо заглубляются в землю и или под воду и именуются «кабельными».

Воздушные линии электропередачи, несмотря на их сложную инфраструктуру получаются более дешёвыми по сравнению с кабельными линиями. Сам по себе высоковольтный кабель является дорогим и сложным изделием. По этой причине этими кабелями прокладываются только некоторые участки на трассе воздушной ЛЭП в тех местах, где невозможно установить опоры с проводами, например через морские проливы, широкие реки и т.п. Кабелями прокладываются электрические сети в населённых пунктах, где сооружение опор также невозможно из-за городской инфраструктуры.

ЛЭП, несмотря на большую протяжённость это всё те же электрические цепи, для которых закон Ома применим так же, как и для остальных. Поэтому экономичность ЛЭП напрямую связана с увеличением напряжения в ней. Сила тока уменьшается, а вместе с ней и потери становятся меньше. По этой причине, чем дальше от электростанции расположены потребители, тем более высоковольтной должна быть ЛЭП. Современные сверхдальние ЛЭП передают электрическую энергию с напряжениями в миллионы вольт.

Но увеличение напряжения с целью уменьшения потерь имеет ограничения. Причиной их является коронный разряд. Это явление проявляется, вызывая ощутимые потери энергии, начиная с напряжений выше 100 киловольт. Жужжание и потрескивание высоковольтных проводов является следствием коронного разряда на них. По этой причине, с целью уменьшения потерь на коронный разряд, начиная с 220 киловольт, применяется два провода и более для каждой фазы воздушной ЛЭП.

Протяжённость линий электропередачи и рабочее напряжение их являются взаимосвязанными.

  • С напряжениями от 500 киловольт работают сверхдальние ЛЭП.
  • 220 и 330 киловольт это напряжения для магистральных линий электропередачи.
  • 150, 110, и 35 киловольт это напряжения распределительных ЛЭП.
  • Напряжения 20 киловольт и менее характерны для местных электросетей, по которым снабжаются электроэнергией конечные потребители.

Опоры для проводов

Кроме проводов в состав линий электропередачи в качестве главных конструктивных элементов входят опоры. Их назначение это удерживание проводов. В каждой ЛЭП есть несколько разновидностей опор, что показано на изображении ниже:

Анкерные опоры воспринимают большие нагрузки и поэтому имеют прочную жёсткую конструкцию, которая может быть весьма разнообразной. Все опоры соприкасаются со слабым или сырым грунтом через бетонный фундамент. В прочном грунте делаются скважины, в которые непосредственно погружаются опоры ЛЭП. Примеры конструкций металлических анкерных опор показаны на изображении далее:


Опоры также могут быть изготовлены с применением бетона или древесины. Деревянные опоры хотя и менее долговечные, но в полтора раза более дешёвые в сравнении с металлическими и бетонными конструкциями. Особенно оправдано их применение в регионах с сильными морозами и большими запасами древесины. Наиболее широкое распространение деревянные опоры получили в электросетях с напряжением до 1000 Вольт. Конструкция таких опор показана на изображении далее:


Провода линий электропередачи

Провода современных ЛЭП в основном изготовлены из алюминиевой проволоки. Для местных линий электропередачи применяются провода из чистого алюминия. Ограничением является длина пролёта между опорами в 100 – 120 метров. Для более протяжённых пролётов применяются провода из алюминия и стали. Такой провод имеет внутри стальной трос, охваченный алюминиевыми жилами. Трос воспринимает механическую нагрузку, алюминий – электрическую.

Полностью стальные провода применяются только на непротяжённых участках, где необходима максимальная прочность при минимальном весе провода. Все линии электропередачи с напряжением выше 35 киловольт снабжены стальным тросом для защиты от удара молний. Провода из меди и бронзы в настоящее время применяются только в ЛЭП специального назначения. Медная и алюминиевая проволока используется для изготовления полых трубчатых проводов. Это делается для уменьшения потерь в коронном разряде и для уменьшения радиопомех. Изображения проводов различной конструкции показаны далее:


Провод для линий электропередачи выбирается с учётом условий работы и возникающих при этом механических нагрузок. В тёплое время года это ветер, который раскачивает провода и увеличивает нагрузку на разрыв. Зимой к ветру добавляется гололёд. Слой льда на проводах своим весом существенно увеличивает нагрузку на них. Тем более что понижение температуры приводит к уменьшению длины проводов и усиливает внутренне напряжение в их материале.

Изоляторы и арматура

Для безопасного соединения проводов с опорами используются изоляторы. Материалом для них служит либо электротехнический фарфор, либо закалённое стекло, либо полимер, как показано на изображении ниже:

Стеклянные изоляторы при одних и тех же условиях получаются меньше и легче, чем фарфоровые. Конструктивно изоляторы разделяют на штыревые и подвесные. Штыревая конструкция для ЛЭП с напряжением выше 35 киловольт не применяется. Механические нагрузки, воспринимаемые подвесными изоляторами больше, нежели у штыревых изоляторов. По этой причине подвесная конструкция может применяться и на более низких напряжениях вместо штыревых изоляторов.

Подвесной изолятор состоит из отдельных чашек, соединённых в гирлянду. Число чашек зависит от напряжения ЛЭП. Для соединения чашек в гирлянду и всех остальных креплений проводов и изоляторов применяется специальная арматура. Надёжность, прочность и долговечность в условиях открытой среды определяют такие материалы для изготовления арматуры как сталь и чугун. При необходимости получения повышенной стойкости к коррозии выполняется покрытие деталей цинком.

К арматуре относятся различные зажимы, распорки, гасители вибрации, сцепные соединители, промежуточные звенья изоляторов, коромысла. Общее представление об арматуре даёт изображение ниже:


Защитные приспособления

Ещё одним компонентом устройства линий электропередачи являются конструкции защищающие оборудование, присоединённое к ЛЭП от атмосферных и коммутационных перенапряжений. От ударов молний защитой являются трос, протянутый выше всех проводов линии электропередачи и молниеотводы, которые обычно устанавливаются вблизи подстанций. Защитные промежутки располагаются на опорах ЛЭП. Пример такого промежутка показан на изображении слева. Вблизи подстанций устанавливаются трубчатые разрядники, в которых внутри есть искровой промежуток. Если он пробивается и при этом возникает дуга питаемая током короткого замыкания, выделяется газ, который гасит эту дугу.

Все технические и организационные нюансы по устройству линий электропередачи регулируются Правилами устройства электроустановок (ПУЭ). Какие – либо отступления от этих правил категорически запрещаются и могут рассматриваться как преступление той или иной тяжести в зависимости от последствий оного.

427kb. 20.11.2011 20:38

1.doc

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

КУРСОВАЯ РАБОТА

по дисциплине Электроснабжение отрасли

Тема: « Воздушные линии электропередачи»

Выполнил ___________________________________ Студент группы ЭМ-041

Принял ________________________________________ преподаватель

Мартынков А.И.

Оценка _________________________
ВОРОНЕЖ 2008


Введение……………………………………………………………..

4

I.

Теоретическая часть.

1.1.

Общие сведения о воздушных линиях электропередачи………….

5

1.2.

Подготовительные работы при строительстве ВЛ…………………

8

1.3.

Основные строительно-монтажные работы при сооружении ВЛ...

9

1.3.1. Разбивка и рытье котлованов…………………………………

9

1.3.2. Антисептическая обработка опор…………………………….

10

1.3.3. Изготовление и установка опор………………………………

10

1.3.4. Раскатка проводов. ……………………………………………

11

1.3.5. Соединение проводов. ………………………………………..

13

1.3.6. Натяжка и закрепление проводов. …………………………...

14

1.4.

Особенности монтажа ВЛ напряжением до 1000 В……………….

17

1.5.

Защитное заземление………………………………………………..

18

1.6.

Техника безопасности…………………………………………….....

20

2.

Расчетная часть

2.1.

Расчет линий 6 – 35 кВ………………………………………………

21

2.2.

Расчет линий 110 кВ и выше………………………………………...

24

Заключение……………………………………………………………

28

Список литературы…………………………………………………..

29

ПРИЛОЖЕНИЕ

Вступление

Электрическая энергия универсальна: она удобна для дальних передач, легко распределяется по отдель­ным потребителям и с помощью сравнительно не­сложных устройств преобразуется в другие виды энер­гии.

Эти задачи решает энергетическая система, где осуществляются преобразование энергии топлива или падающей воды в электрическую энергию, трансфор­мация токов и напряжений, распределение и передача электрической энергии потребителям.

Часть энергетической системы, включающую трансформаторные подстанции (ТП) и линии электро­передачи (ЛЭП), называют электрической сетью. Таким образом, электрическая сеть служит для передачи электрической энергии от мест произ­водства к местам потребления и для распределения ее по группам и отдельным потребителям.

Электрические сети классифицируют по различным признакам.

В зависимости от напряжения между проводами линии различают сети напряжением до 1000 и свыше 1000 В.

По роду тока различают электрические сети пос­тоянного, однофазного и трехфазного токов.

В зависимости от конструктивных особенностей бывают воздушные и кабельные сети, а также сети внутри зданий и объектов.

Основные требования, предъявляемые к электри­ческим сетям, сводятся к экономии электротехнических материалов и снижению первоначальных затрат при гарантированной надежности электросети и высоком качестве электроэнергии. Для удовлетворения этих требований разработан ряд мероприятий, к которым относятся, в частности, применение повышенных на­пряжений] стальных проводов, регулирование напря­жения.
^ I. Теоретическая часть.
1.1. Общие сведения о воздушных линиях электропередачи
Устройство для передачи или распределения электроэнергии по проводам, проложенным на открытом воздухе по деревянным, железо­бетонным или металлическим опорам, а также стойкам или кронштей­нам, установленным на мостах, эстакадах и других инженерных соо­ружениях и закрепленных на них при помощи изоляторов и арматуры, называется воздушной линией электропередачи (ВЛ). Полоса местнос­ти, по которой проходит ВЛ, называется трассой линии.

При строительстве ВЛ по населенной местности к ним предъявля­ют повышенные требования с точки зрения механической прочности и безопасности для населения. Трассу ВЛ разбивают на пикеты (точки, равномерно распределенные вдоль оси трассы), по которым размечают места установки опор в соответствии с указаниями проекта. Для огра­ничения несимметрии токов и напряжений на ВЛ длиной более 100 км и. напряжением 110 кВ применяют транспозицию проводов, т.е. пе­риодическое изменение взаиморасположения проводов различных фаз переменного тока в пространстве.

По рабочему напряжению ВЛ делят на линии напряжением до 1000 В и выше. Последние в России строят на напряжения 3, 6, 10, 35, ПО, 150, 220, 330, 500 и 750 кВ.

В зависимости от того, по населенной или ненаселенной местности проходит ВЛ, усилие, с которым натягивают провода или тросы на опорах (тяжение), принимают равным не более половины минимальной разрушающей нагрузки (нормальное тяжение) и с трехкратным запа­сом (ослабленное тяжение). Ослабленное тяжение применяют на пере­ходах и в населенной местности. Ветер, дующий равномерно с неболь­шой скоростью длительное время, может вызвать колебания провода в вертикальной плоскости и их вибрацию, поэтому на выходе проводов из зажимов устанавливают гасители вибраций. Конструктивно ВЛ состоит из фундаментов, опор, изоляторов, линейной арматуры, про­водов, грозозащитных тросов и устройств для заземления. В качестве фундаментов для ВЛ применяют деревянные или железобетонные па­сынки и сваи, сборные и монолитные железобетонные фундаменты и очень редко металлические подножники.

Пасынки применяют для того, чтобы часть опоры, находящуюся в земле, сделать легко заменимой в случае ее загнивания (деревянные пасынки, пропитанные антисептиком) или сделать эту часть опоры неподверженной загниванию (железобетонные пасынки). Применяют также сваи-пасынки как деревянные, так и железобетонные. Сборные железобетонные фундаменты представляют собой грибовидные железо­бетонные конструкции, имеющие в верхней своей части болты для креп­ления ноги металлической или железобетонной опоры к фундаменту.

Монолитные железобетонные фундаменты делают только для опор, на­ходящихся под большими механическими нагрузками. Изготовляют их в опалубке непосредственно в котловане на месте установки опоры.

Опоры ВЛ различают по материалу, из которого они изготовлены (деревянные, железобетонные, металлические), по назначению (проме­жуточные, анкерные, концевые, угловые, ответвительные, транспозиционные и др.), по рабочему напряжению и по конструктивному испол­нению (одностоечные, А-образные, П-образные, АП-образные, узкобазные и широкобазные, одноцепные, двухцепные).

Деревянные опоры изготовляют из бревен сосны, лиственницы или ели II и III сорта длиной 9, 11 и 13 м и диаметром в верхнем отрубе не менее 16-18 см в зависимости от их назначения. Ель легко загнивает, поэтому ее применяют при условии, что опора будет иметь металличес­кие, железобетонные или деревянные (из сосны или лиственницы) па­сынки и траверсы. Лес для изготовления опор отбирают на минимум сучковатости, кривизны, косослоя, червоточины, гнили. Бревна посту­пают на монтаж очищенные от сучьев и коры с опиленными торцами, с маркировкой, указывающей на назначение бревна, сорт, диаметр верхнего отруба, и с клеймом лесозаготовителя.

В зависимости от назначения ВЛ, ее напряжения, количества про­водов и тросов, подвешиваемых на опоре, их расположения, климати­ческих и других условий применяют различные конструкции деревян­ных опор. Конструкции для каждого конкретного случая определяют­ся проектам. Простейшая конструкция деревянной опоры - одиноч­ный столб («свечка»). На ВЛ напряжением выше 1000 В, кроме «свеч­ки», применяют более сложные опоры: А-образные, треноги, П-образ­ные и АП-образные. Все они могут быть либо нормального исполне­ния, либо иметь приспособления для подвески на них грозозащитных тросов.

В настоящее время при строительстве ВЛ все больше применяют железобетонные опоры, представляющие собой металлическую сетку (арматуру), заполненную в форме (опалубке) бетонным раствором. По способу изготовления железобетонные опоры делят на вибрированные и центрифугированные. При изготовлении вибрированных опор бетон­ный раствор после заполнения им формы уплотняется вибраторами, а при изготовлении центрифугированных опор - путем вращения формы вокруг ее оси.

Опоры изготовляют как с обычной, так и с предварительно напря­женной арматурой. Конструкции опор с предварительно напряженной арматурой получаются более легкими (меньший расход металла на арматуру) при сохранении необходимой механической прочности. Де­ревянные и железобетонные опоры могут быть промежуточными, угло­выми и анкерными. Угловые опоры устанавливают в точках поворота трассы.

Стандартная линейная арматура, применяемая при монтаже ВЛ, в зависимости от назначения делится на натяжную - клиновые, бол­товые и прессуемые зажимы, которые служат для закрепления прово­дов (или тросов) на анкерных опорах к натяжным гирляндам; поддер­живающую - глухие, качающиеся, выпускающие и скользящие зажимы, служащие для крепления проводов или тросов к гирляндам про­межуточных опор; сцепную - скобы х серьги, пестики, ушки, промежу­точные звенья и коромысла, служащие для сцепления элементов гирлянд изоляторов между собой и крепления гирлянд и тросов к опоре; соединительную - зажимы (монтируемые обжатием или прессованием), служащие для соединения проводов и тросов в местах, подверженных тяжению (в пролете); антивибрационную - виброгасители, служащие для защиты провода от повреждения при вибрациях; защитную - рога, кольца, служащие для защиты изоляторов от разрушения, а про­водов от пережога в случаях образования дуги короткого замыкания; контактную - зажимы (в петлях анкерных опор, плашечные ответ­вительные), служащие для соединения и ответвления проводов и тро­сов в местах, не находящихся подтяжением.

В зависимости от напряжения и назначения применяют подвес­ные или штыревые изоляторы: подвесные фарфоровые и стеклянные изоляторы типов ПМ-4,5 и П-7 (для районов с нормальными атмосфер­ными условиями) и ПР-3,5, НС-2 и НЗ-Ь (для районов с загрязненной атмосферой) для ВЛ напряжением 35 и ПО кВ, штыревые изоляторы типа ШД-35 - для ВЛ напряжением 35 кВ. При монтаже ВЛ напря­жением до 10 кВ подвесные изоляторы используют крайне редко (большие переходы через водные преграды и др.), а провода подвешивают на штыревых изоляторах типов ТС, ТФ, ШО, АИК, ШС.

Крепят изоляторы к опорам и соединяют отдельные детали опор металлическими деталями, которые называют поковками (чаще всего их изготовляют путем ковки). Поковки изготовляют в мастерских или заводах электромонтажных организаций. Изоляторы непосредствен­но на опорах крепят с помощью крюков, а на траверсах - с помощью штырей.

На ВЛ применяют голые провода: алюминиевые (марки А), стале-алюминиевые (марки АС), сталеалюминиевые усиленные (АСУ), стале-алюминиевые облегченные (АСО), стальные многопроволочные (марок ПС и ПМС), стальные однопроволочные (ПСО), специальные алюминие­вые и сталеалюминиевые с защитой от коррозии для прокладки вбли­зи морского побережья; провода с атмосферной изоляцией (марки АСВ), защитный трос марки СТ для защиты ВЛ от атмосферных перена­пряжений.

^ 1.2. Подготовительные работы при строительстве ВЛ.
В подготовительный период строительства ВЛ обеспечивают бес­перебойное и рационально организованное выполнение работ по устройству фундаментов, установке опор и натяжке проводов. К подгото­вительным относят следующие работы: устройство подъездов к трассе ВЛ и временных полигонов для изготовления и сборки деревянных опор, рубку просеки и очистку трассы от пней и кустарника, размеще­ние заказов на изготовление деталей, комплектацию материалов, обо­рудования, механизмов, инструмента, приспособлений, комплектацию бригад, составление графиков производства работ. Работы непосредственно на трассе начинают с приемки от проект­ной организации и заказчика производственного пикетажа трассы ВЛ, т.е. с разметки расположения всех опор на местности. Затем прорубают просеку (если ВЛ или отдельные ее участки проходят по лесистой мест­ности). Ширину просеки между кронами деревьев в лесных массивах и зеленых насаждениях принимают:

1) в насаждениях высотой до 4 м - не менее расстояния между крайними проводами ВЛ плюс по 3 м в каждую сторону от крайних проводов;

2) в насаждениях высотой более 4м - не менее расстояния между крайними проводами ВЛ плюс по расстоянию, равному средней высоте деревьев основного лесного массива на каждую сторону от крайних проводов. При этом отдельные деревья или их группы, растущие по краям просеки, вырубают, если их высота больше высоты деревьев ос­новного массива Совершенно нецелесообразно сооружать ВЛ в насаж­дениях, идущих узкой полосой вдоль трассы линии;

3} на косогорах и в оврагах просеки прорубают с учетом высоты деревьев, имея в виду, что если расстояние по вертикали от верхушки дерева до проводов ВЛ более 8 м, то просеку прорубают только ши­риной, равной расстоянию между крайними проводами плюс по 2 м на каждую сторону.

В парках, заповедниках, лесах зеленых зон вокруг населенных пунктов, цепных лесных массивах, защитных полосах вдоль железных и шоссейных дорог, по берегам рек и озер ширину просеки ВЛ уста­навливают организации, в ведении которых находятся подобные на­саждения, с обязательным условием, чтобы расстояния от проводов до кроны были не менее 2 м для ВЛ напряжением до 20 кВ и 3 м - для ВЛ напряжением ПО кВ. При прохождении ВЛ по территории фруктовых садов с высотой деревьев не более 4 м вырубка просеки не обязательна. Все деревья, находящиеся внутри границ просеки, выру­бают так, чтобы высота пней после рубки деревьев была не более их диаметра. Для проезда транспорта и механизмов по середине просеки на ширине не менее 2,5 м деревья вырубают вровень с землей. Зимой при рубке леса снег вокруг каждого дерева расчищают до уровня земли. Древесину, получаемую при рубке деревьев, сортируют, разде­лывают и укладывают в штабеля вдоль просеки. Сучья складывают в кучи для вывоза или сжигания.

^ 1.3. Основные строительно-монтажные работы при сооружении ВЛ
Основные строительно-монтажные работы при сооружении ВЛ включают в себя изготовление деревянных опор, развозку опор или деталей опор по трассе, разбивку мест рытья котлованов под опоры, рытье котлованов, сборку и установку опор, развозку проводов и дру­гих материалов по трассе, монтаж проводов, монтаж защитного зазем­ления, установку трубчатых разрядников, установку плакатов, фазировку, нумерацию опор и др.
1.3.1. Разбивка и рытье котлованов

Разбивку одиночных котлованов под одностосчные деревянные и железобетонные опоры начинают с определения оси трассы ВЛ при помощи геодезических инструментов (теодолиты, буссоли и др.). Затем размечают линии, перпендикулярные к оси трассы в точках установки опор. На обеих этих линиях (рис. 1, а) на расстоянии 5-6 м от центра анкетного столба опоры забивают контрольные колышки «сторожки», по которым разбивают котлован, а в дальнейшем выверяют точность установки опоры по оси трассы.


При разбивка двух котлованов под анкерные А-образные опоры от центра пикетного столба опоры в обе стороны вдоль оси трассы разме­чают оси котлованов, а затем и контуры котлованов. Для разбивки двух котлованов под угловую А-образную опору в точке поворота трассы при помощи геодезического инструмента восстанавливают биссектри­су угла этого поворота и линию, ей перпендикулярную (рис.1, б), и вдоль линии биссектрисы по обе стороны от указанного перпендику­ляра размечают оси котлованов, а затем и сами котлованы. Аналогич­но делают разметку под опоры с оттяжками и подкосами, а также под узкобазные и широкобазные металлические опоры.

При рытье котлованов бурильными машинами вместо разметки кот­лованов производят только разбивку их центров. Котлованы роют землеройными механизмами (ямобурами на автомобильном или трак­торном ходу) или одноковшовыми экскаваторами, а в скальных поро­дах грунт вынимают при помощи взрыва. Вручную грунт вынимают только в исключительных случаях, где по условиям местности на пи­кет не может подойти землеройный механизм. В мерзлых грунтах котло­ваны бурят при помощи бурильных головок особой конструкции, на режущие кромки которых наварены пластины из твердых сплавов. Глубина котлованов для установки опор в зависимости от грунта и ме­ханических нагрузок на опоры определяется проектом. Для опор типа «свечка» глубина котлованов 1,7-2-,5 м.
1.3.2. Антисептическая обработка опор.

Детали деревянных опор, подвергаясь атмосферным воздействиям, загнивают, поражаются грибками. Эти явления начинаются в местах выхода деталей опор из земли, в местах, где может скапливаться вла­га, и в местах врубо.к и затесов. Для защиты от гниения всю деревянную опору ВЛ или только подверженные загниванию места пропиты­вают антисептиками.

В качестве антисептиков применяют креозотовое масло (продукт перегонки каменноугольной смолы), фтористый натрий, динитрофенол, а также битумное покрытие деталей опор или их отдельных час­тей, но это является не антисептированием древесины, а предохране­нием ее от проникновения влаги - гидроизоляцией.
1.3.3. Изготовление и установка опор.

Все детали деревянных опор изготовляют строго по рабочим чер­тежам, с применением шаблонов. Плоскости врубок подгоняют плотно друг к другу при помощи пропилов. Изготовление опор начинают с ос­новных элементов (стоек, пасынков, траверс), по которым затем подго­няют остальные детали (раскосы, ригели и др.). При сверлении от­верстий для крепления металлических деталей опор, служащих крепе­жом для изоляторов, строго выдерживают размеры этих отверстий. Это необходимо для того, чтобы опоры не загорелись от токов утечки.

Деревянные опоры изготовляют на специальных полигонах или в мастерских, железобетонные и металлические - на заводах и в со­бранном виде или частями развозят по трассе к местам установки, где их собирают.

Заготовленные на полигоне или в мастерских монтажного загото­вительного участка одностоечные опоры в собранном виде развозят по трассе с навернутыми крючьями или штырями и закрепленными на них изоляторами. Сложные деревянные, а также металлические и же­лезобетонные опоры развозят (разобрав предварительно их на транс­портабельные узлы) по пикетам, где их собирают и устанавливают. В высокогорные и труднодоступные районы опоры доставляют на пикеты и устанавливают с помощью вертолетов.

Для подъема и установки опоры кран устанавливают у котлована на расстоянии 3-4 м от оси трассы, а опору в собранном виде уклады­вают над котлованом или фундаментом с таким расчетом, чтобы центр тяжести ее находился над центром котлована. Затем опору поднимают до вертикального положения и опускают пасынками или стойками в котлован или на фундамент. Опору устанавливают так, чтобы оси тра­верс опоры были расположены перпендикулярно к оси трассы, про­веряют, чтобы ось опоры была строго вертикальна и совпадала с осью трассы, затем засыпают котлован грунтом или закрепляют опору нз фундаменте. Только после этого снимают стропы, кран освобождают и переводят для установки следующей опоры. В жестких узлах опо­ры захватывают такелажными тросами, причем у стоек железобетон­ных опор захват производится в двух местах.

Тяжелые и сложные опоры ВЛ напряжением 110 кВ устанавлива­ют при помощи кранов с использованием трактора в качестве тяго­вого механизма (рис, 2, а) или с падающей стрелой (рис. 2, б). Натяж­ные и поддерживающие гирлянды линейных изоляторов собирают в мастерских в строгом соответствии с чертежами проекта; в собранном виде их подвозят к месту установки и там поднимают на опоры и за­крепляют.



1.3.4. Раскатка проводов.

Монтаж проводов на установленных опорах включает в себя рас­катку проводов, их соединение, подъем на опоры, натяжку и закрепление на изоляторах. После того как выполнен монтаж проводов на магистральной части линии, делают отпайки для вводов в подстанции, распределительные устройства, в здания и к токоприемникам.

Прежде чем приступить к раскатке проводов, барабаны с проводами развозят по трассе в пункты, удобные для рас­катки и определенные проектом производства работ. Погружают и разгружают барабаны с проводом при помощи автомобильных кранов, а в случае их отсутствия - при помощи наклонных брусьев. Сбра­сывать барабаны с автомашины на землю нельзя. В зависимости от конкретных условий монтажа (протяженность линии, характер местности, сечение проводов и др.) раскатку проводов по трассе производят или с неподвижных раскаточных устройств в виде домкратов, специальных козел, станков, (рис. 3, а ), установленных в начале монтируемого участка ВЛ, или с помощью специальных раскаточных тележек, са­ней, транспортеров (рис. 3, б).




Второй способ раскатки проводов обеспечивает более высокую про­изводительность труда, гарантирует сохранность провода при раскат­ке и высокое качество монтажа. Первый, способ не требует применения подвижных приспособлений, он может быть применен при любом рель­ефе местности вдоль трассы ВЛ. Но в этом случае не всегда обеспечи­вается сохранность проводов при их раскатке и производительность труда значительно ниже. Применяется этот способ при монтаже корот­ких воздушных линий электропередачи, проходящих по местности недоступной для перемещения вдоль трассы раскаточных средств. Про­вод к тяговому тросу крепят при помощи монтажного клинового за­жима и укладывают в монтажные ролики, закрепленные на опорах на время раскатки. На ВЛ напряжением до 1000 В расстояния между опорами и анкер­ные пролеты имеют небольшую протяженность (расстояние между опо­рами не более 50 м, а анкерный пролет 500-600 м); на таких линиях чаще подвешивают легкие провода. Провод с барабанов, установлен­ных па козлах или домкратах, раскатывают вдоль трассы при помощи автомашины, лебедки или вручную (при раскатке проводов малых се­чений при небольших протяженностях ВЛ). Затем при помощи блоков или вручную провода поднимают на опоры и укладывают на крючья или траверсы.





Рис. 4. Установка стрелы провеса проводов непосредственным визирова­нием

1.3.5. Соединение проводов.
При раскатке провода соединяют и ремон­тируют (если возникает в этом необходимость). Соединение проводов - одна из наиболее ответственных операций при сооружении ВЛ; поэто­му выполняют ее особенно тщательно.

Алюминиевые и сталеалюминиевые провода соединяют при помо­щи термитной сварки с дополнительной установкой овальных соеди­нителей для разгрузки св-фного соединения от механических напря­жений, если соединение проводов сделано в пролете (рис. 4).



Рис. 5. Соединение проводов в пролете:

^ 1 - овальный соединитель; 2 - концы провода; 3 - узел термитной сварки

Сталь­ные многопроволочные провода соединяют при помощи овальных сое­динителей путем их обжатия специальными клещами, стальные одно-проволочные провода сваривают электросваркой или при помощи тер­митных патронов. Ремонтируют поврежденный многожильный провод путем установки в месте повреждения ремонтной муфты.
1.3.6. Натяжка и закрепление проводов.

После окончания работ по рас­катке, соединению и ремонту на участке ВЛ, ограниченном анкерны­ми или угловыми опорами, провода поднимают и натягивают. Направ­ление натяжения должно совпадать с направлением трассы. Если из-за рельефа местности это условие выполнить трудно, то натяжку про­изводят через добавочные отводные ролики

Стрелу провеса проводов устанавливают непосредственным визи­рованием (рис. 6).



Для этого на соседних опорах прикрепляют ви­зирные рейки таким образом, чтобы отметки на этих рейках, соответ­ствующие размеру стрелы провеса, находились бы на одной горизон­тальной линии. Монтер, осуществляющий визирование, поднимается наодну из опор и, пользуясь биноклем, определяет момент, когда натяжку провода следует прекратить. Если натяжение провода отре­гулировано правильно, то низшая точка провеса будет находиться на прямой, соединяющей обе визирные точки. Провод при регулировке натяжения подгоняют под ли­нию визирования не снизу, а сверху. Команда о прекращении натяжки подается в тот момент, когда имеет место перетяжка провода на 0,3-0,5 м. После того как в этом положении про­вод оставался в течение 3- 5 мин, его опускают до линии визирования.

К проекту ВЛ прилагают кривые монтажных стрел про­веса проводов (рис. 7), а так­же ведомость пролетов, в соот­ветствии с которыми визируют провода.





Если отсутствует ведомостьвизируемых пролетов, или длина пролета по местным условиям существенно (более 5-7 м) отличается от запроектированной, то стрела провеса (м) будет:

Где f Х - фактическая длина визируемого пролета, м; f и l - соот­ветственно стрела провеса и длина пролета по таблицам или кривым монтажных стрел провеса, м.

После того как отрегулированы стрелы провеса, провода крепят к изоляторам сначала на анкерных, а затем на промежуточных опорах. Величина стрелы провеса после закрепления провода на анкерных опо­рах не должна отличаться от проектной больше, чем на ±5%, а рас­стояние проводов и тросов относительно друг друга не должны отли­чаться более чем на 10% от проектных расстояний между ними.

На анкерных опорах со штыревыми изоляторами провода крепят к шейке изолятора при помощи плашечных зажимов одинарным или двойным креплением, выбор последнего определяется величиной тяжения проводов, а также характером местности, по которой проходит ВЛ. Например, при переходе через дороги и при прохождении трас­сы ВЛ по населенной местности крепление проводов делают двойным.

При больших расчетных величинах тяжения на ВЛ 6 - 10 кВ (большие сечения проводов и пролеты через водные преграды, овраги и др.) наанкерных или переходных опорах провода крепят при помощи под­весных изоляторов. Провод к изолятору в этом случае крепят посред­ством натяжных зажимов. На промежуточных опорах в районах с силь­ными ветрами, а на угловых опорах во всех случаях провод к штыревым изоляторам крепят на шейке изолятора проволочной вязкой. На прямолинейных участках трассы при нормальных условиях окружаю­щей среды и рельефа местности провод крепят на головке изолятора. Монтаж проводов в пролетах, пересекающих инженерные соору­жения (дороги, воздушные линии электропередачи, линии связи)., вы­полняют в зависимости от местных условий с отключением пересекае­мых линий и прекращением движения по дорогам, каналам или без отключения и прекращения движения. Если переход монтируют без снятия напряжения на пересекаемых линиях или без прекращения движения по дорогам и каналам, то сооружают защиту перехода, ко­торую делают в виде временных стоек или П-образных опор (с натя­нутым тросом), на них укладывают разматываемый провод, не касаясь пересекаемых ВЛ и не препятствуя движению транспорта. Монтаж проводов на переходе может быть выполнен и без сооружения спе­циальных защит, при помощи легких стальных, а лучше нейлоновых или иных непроводящих канатов или веревок (рис. 8)


Рис.8. Схема

1 - лебедка; 2 - трос или канат; 3 -ролик; 4 -
Сроки монтажа переходов очень короткие, поэтому важно, чтобы организация работ была хорошо продумана.

При переходе через инженерные сооружения длина провода в про­лете

Где l - величина стрелы провеса при температуре окружающей среды в момент монтажа, м.

Расстояния между проводами, а также от проводов до опор и окру­жающих объектов определяют по данным проекта согласно требованиям ПУЭ.

Ветер, дующий длительное время с небольшой скоростью без по­рывов, может вызвать колебание провода в виде неподвижных верти­кальных волн, расположенных равномерно по длине провода. Такая вибрация вызывает повреждение проводов в местах выхода их из зажимов. Для гашения вибрации на провода у их выхода из зажимовустанавливают гасители вибрации.

^ 1.4. Особенности монтажа ВЛ напряжением до 1000 В
При сооружении ВЛ напряжением до 1000 В ответвления от линии для вводов в здания или к токоприемникам выполняют на ответвительных опорах. Ответвительные провода к изоляторам крепят наглу­хо. Если ввод делают во взрывоопасное или пожароопасное помещение, вводные предохранители устанавливают на ответвительной опоре ни­же проводов. При вводе проводов в помещение с нормальной средой для простоты обслуживания предохранители устанавливают в самом помещении.

Расположение проводов на опоре может быть любое при условии, что расстояние между проводами по вертикали будет 40-60 см и по горизонтали 20 40 см в зависимости от длины пролета и района гололедности. Нулевой провод располагают ниже фазовых проводов. На одной опоре можно подвешивать ВЛ разного назначения (линии си­ловые, наружного освещения, радиотрансляционной сети), при этом провода радиотрансляционной сети располагают ниже проводов ВЛ с расстоянием между ними на опоре не менее 1,5 м, в пролете - I м, на вводах в здания т- не менее 0,6 м. Пересечения ВЛ напряжением до 1000 В выполняют на перекрестных опорах.

Вводы в помещения через стены выполняют изолированными про­водами, для чего в стенах пробивают или высверливают отверстия. Че­рез кирпичные, железобетонные и подобные стены провода вводят в помещение через одно общее отверстие, но каждый провод заключают в отдельную изоляционную трубку. Через деревянные, стены каж­дый провод вводят в отдельное отверстие. На концах изоляционных трубок снаружи зданий устанавливают фарфоровые воронки, а внут­ри - изоляционные втулки (фарфоровые или пластмассовые). Выход­ные отверстия воронок уплотняют битумной массой. Если здание име­ет небольшую высоту, то провода вводят в него через крышу.

Если трасса ВЛ проходит по лесистой местности, то вырубка про­секи не обязательна, необходимо только, чтобы горизонтальное и вер­тикальное расстояния от крайнего провода до кроны деревьев и кустов -были не менее 1 м.

^ 1.5. Защитное заземление.

Крючья и штыри в сетях напряжением до 1000 В, на которых кре­пят изоляторы фазовых проводов, а также арматура железобетонных опор ВЛ подлежат заземлению. Крючья и штыри деревянных опор не заземляют, если это не требуется по условиям защиты от атмосфер­ных перенапряжений и если- на опорах не подвешено несколько про­водов на напряжение выше 1000 В. В сетях с заземленной нейтралью крючья и штыри соединяют с нулевым проводом, в сетях с изолированной нейтралью их присоединяют к заземляющему устройству. Прави­ла требуют выполнять повторное заземление нулевого провода на кон­цах линии, на концах ответвлений длиной более 200 м и через каждые 250 м.

Для защиты людей, находящихся в зданиях, от грозовых перена­пряжений в населенных местностях с одноэтажной застройкой на ВЛ, не экранированных высокими зданиями, сооружениями и деревья­ми, заземляющие устройства делают через 100 и 200 м в зависимости от количества грозовых часов в этом районе, а также на опорах, имею­щих ответвления к вводам в помещения, где может быть большое скоп­ление людей (школы, клубы, больницы и др.), или в помещения, кото­рые представляют собой большую хозяйственную ценность (склады, мастерские и др.). К таким заземляющим устройствам присоединяют крюки, штыри, арматуру железобетонных и деревянных опор, а также используют их для повторного заземления нулевого провода.

Для заземления крючьев и штырей на опоре вдоль установки изо­ляторов прокладывают стальную проволоку диаметром не менее 6 мм, которую затем спускают вниз и соединяют с заземляющим устройст­вом. У железобетонных опор в качестве заземляющего спуска исполь­зуют металлическую арматуру.

На ВЛ напряжением 3-20 кВ заземляют железобетонные опоры, находящиеся в населенной местности, а также железобетонные, метал­лические и деревянные опоры, на которых закреплены устройства гро-зозащиты (разрядники или искровые промежутки). В соответствии с ПУЭ трубчатые разрядники или искровые промежутки устанавлива­ют для защиты отдельных металлических и железобетонных опор, ли­ний с ослабленной изоляцией и мест пересечений воздушной линии электропередачи с воздушными линиями связи и сигнализации.

Для защиты от атмосферных перенапряжений кабельных вставок применяют трубчатые или вентильные разрядники. Искровые проме­жутки выполняют следующим образом: на расстоянии 750 мм от осно­вания крюка нижнего изолятора делают, бандаж из четырех витков стальной проволоки диаметром не менее 6 мм, дальше проволоку про­кладывают по опоре вниз и в виде луча в землю. Размер луча (его дли­на) определяется в зависимости от электрических качеств грунта.

Трубчатый разрядник представляет собой фибровую трубку, по­крытую бакелизированной бумагой. Внутри трубки расположены стерж­невой и плоский электроды, разделенные определенным промежутком. При возникновении электрической дуги фибра выделяет газы, которые тушат дугу. Трубчатые разрядники включают между проводом (че­рез внешний искровой промежуток) и заземляющим устройством и крепят на опоре при помощи хомутов и планок за любой конец трубки на высоте не менее 3 м от земли. Разрядники типа РТФ лучше закреп­лять за закрытый конец. Размещают трубчатый разрядник на опоре так, чтобы его выхлопные газы не вызывали между фазовых пробоев и зоны выхлопа различных разрядников не перекрывали друг друга. В зону выхлопа также не должны попадать элементы опоры, имеющие потенциал иной, чем открытый конец трубки разрядника в момент га­шения дуги На ВЛ напряжением ПО кВ с металлическими и железобетонными опорами вдоль всей линии подвешивают грозозащитный трос, который надежно заземляют. На анкерных опорах трос крепят к опоре на изоляторе; на промежуточных опорах - непосредственно к опоре.
^ 6. Техника безопасности.
При установке опор и натяжке проводов оттяжки закрепляют при помощи укрепленных в земле якорей. Кре­пить оттяжки к опорам монтируемой или действующей воздушной линии электропередачи нельзя. После установки и выверки опоры рабо­ту не прекращают до полной засыпки котлована. В городах и населен­ных пунктах при монтаже ВЛ устанавливают сигналы и сторожевые посты, предупреждающие о недопустимости прохода пешеходов и про­езда транспорта в пролетах во время подвески проводов.

При работе на угловой опоре следует находиться на стороне опо­ры, противоположной внутреннему углу, образованному проводами. При монтаже ВЛ отдельные смонтированные участки длиной 3-5 км закорачивают и заземляют. Во время грозы работы на монтаже ВЛ прекращают и людей удаляют на безопасное расстояние. Смонтирован­ные ВЛ и отдельные их участки, проходящие вблизи действующих ли­ний, а также переходы, пересекающие действующие ВЛ напряжением выше 1000 В, впредь до их присоединения к источнику напряжения за­корачивают и заземляют. При работе с автомобильным краном его ус­танавливают, отступив от бровки котлована на безопасное расстояние, под аутригеры подкладывают прочные и устойчивые подкладки и хо­довую часть крана надежно затормаживают ручным тормозом.

^ II.Расчетная часть.
2.1. Расчет линий 6 – 35 кВ.

Электрический расчет кабельной или воздушной линии пре­дусматривает выбор сечения по экономической плотности тока с последующей проверкой на нагрев длительным током на­грузки и на потерю напряжения. Расчет производится без учета трансформатора в схеме замещения. Потери мощности в транс­форматоре на приемном конце учитываются в нагрузке потре­бителя.

Активные и реактивные проводимости линии и потери мощ­ности в ней не учитываются, так как они малы и не влияют на результаты расчетов. Расчетные нагрузки потребителей могут быть заданы составляющими полной мощности Р и Q или ак­тивной мощности Р и соsф.

Рассмотрим на конкретном примере метод расчета сети 10 кВ, питающей потребителей электроэнергии с числом часов использования максимума нагрузки Г„=5500 ч. Расчетная схема линии приведена на рис. 9 На участке l 01 линия вы­полнена кабелем, па участке l 02 - воздушная.





Рис. 9. Расчетная сила сети 10кВ.

1. Определяем токи нагрузки на отдельных участках сети:

А) на участке 0 – 1



2. Выбираем сечение по экономической плотности тока.

А) Участок 0 - 1. Для кабеля марки ААБ-10 кВ по табл. 6.8 принимаем j эк =1,2 А/мм 2 ; тогда



Выбираем стандартное сечение 95 мм 2 . Намечаем к про­кладке кабель ААБ-10-3х95. I д = 205 А > I 01 = 116 А.
б) Участок 1 - 2.

Для голого провода марки АС принимаем по табл. 6.8 j эк = 1 А/мм 2 ; тогда

Выбираем стандартное сечение 70 мм 2 . Принимаем к про­кладке провод марки АС-70. По приложению 5, I д = 210 А > I 12 = 60 А.

3. Проверяем сеть на потерю напряжения:

А) на участке 1 - 0


или

Где



Б) На участке 1 – 2
или




Потеря напряжения в процентах составляет:


Суммарная потеря напряжения 3,23%, меньше допустимой потери напряжения.

^ 2.2. Расчет линий 110 кВ и выше
На промышленных предприятиях электроснабжение на на­пряжениях ПО-220 кВ осуществляется в основном по схеме блока линия - трансформатор. При расчетах наряду с актив­ными и индуктивными сопротивлениями нужно учитывать ем­костную проводимость линии, активную и индуктивную прово­димости трансформатора. Расчет ведется исходя из потребляе­мой мощности и напряжения источника питания. Расчетные мощности определяются последовательно для каждого звена электропередачи с учетом потерь активной и реактивной мощ­ностей в линии и трансформаторе.



Рис. 10. Блок линия - трансформатор и схема его замещения
Исходные данные: Потребляемая мощность Р 1 = 15 МВт при cosφ = 0,8 и Т м = 6000 ч. На подстанции уста­новлен силовой трансформатор ТРДН-25000/110 с номиналь­ными параметрами: S н =25000 кВ·А; ∆Р 0 = 36 кВт; I 0 = 0,8%; ∆Р к = 120 кВт; и к = 10,5%. Напряжение на шинах районной подстанции 115 кВ. Потребляемая мощность с шин 10 кВ со­ставляет:

Или

Расчет производим в комплексной форме

1. Активное сопротивление трансформатора


2. Индуктивное сопротивление трансформатора





3. Потери активной мощности в трансформаторе




Или
4. Потери реактивной мощности в трансформаторе



5. Намагничивающая мощность трансформатора


6. Мощность на обмотке 110 кВ трансформатора (мощность в начале звена 1

7. Мощность на шинах 110 кВт подстанции

8. Расчетный ток линии

I 3 = 20000 / (√3 ·110) = 105,1 А




10. Активное сопротивление линии
R = r 0 l = 0.33·25=8.25 Ом
11. Индуктивное сопротивление линии
Х=Х о l = 0,4·25= 10 Ом
12. Потери мощности обусловленные емкостью конца линии,


13. Полная мощность в конце линии (звена 2).

14. Потери активной мощности в линии




15. Потери реактивной мощности в линии


16. Полная мощность на шинах питающей подстанции (в начале звена)

17. Напряжение на шинах НО кВ подстанции предприятия





18. Напряжение на шинах 10 кВ подстанции


ЗАКЛЮЧЕНИЕ.
В данной курсовой работе проанализирован и обобщен опыт проектирования, монтажа и расчета отдельных элементов воздушных линий передачи электроэнергии. В курсовой работе я рассмотрел вопросы подготовительных работ при строительстве ВЛ, виды основных строительно-монтажных работ при строительстве ВЛ,особенности монтажа ВЛ напряжением до 1000 В, защитное заземление а также технику безопасности при сооружении ВЛ.

Опыт проектирования и эксплуатации воздушных линий показывает, что мероприятия по исключению и снижению влияния ВЛ на показатели качества электроэнергии могут быть весьма дорогими.

На этапе проектирования воздушной линии передачи электроэнергии при нормальных режимах ее работы необходимо рассчитывать показатели качества электроэнергии (ПКЭ) и выбирать наиболее экономичные средства приведения параметров режимов к допустимым пределам (нормам). В услови­ях эксплуатации в воздушной линии передачи электроэнергии должен осуществляться систематический контроль за ПКЭ и соответственно приниматься меры по приведению параметров к допустимым нормам.

^ СПИСОК ЛИТЕРАТУРЫ

1. Анастасиев П. И. и др. Электрические сети энергоемких предприятий. М., Энергия, 1971.

2. Бенерман В. И., Ловцкий Н. Н. Проектирование силового электрооборудования промышленных предприятий. Л., Госэнергоиздат, 1967.

3. Боровиков В. А, и др. Электрические сети энергетических систем. М., Энергия, 1977.

4. Бурденков Г. В., Малышев А. И. Автоматика, телемеханика и пере­дача данных в энергосистемах. М., Энергия, 1978.

5. Гельфанд Я. С. и др. Релейная защита и электроавтоматика на пере­менном оперативном токе. М., Энергия, 1966.

6. Грейсух М. В., Лазарев С. С. Расчеты по электроснабжению промыш­ленных предприятий. М., Энергия, 1977.

7. Дирацу В. С. и др. Электроснабжение промышленных предприятий. Киев, Вища школа, 1974.

8. Дмоховская Л. Ф. и др. Техника высоких напряжений. М., Энергия, 1976.

9. Ермилов А. А. Основы электроснабжения промышленных предприятий. М., Энергия, 1976.

10. Жежеленко И. В. Высшие гармоники в системах электроснабжения промышленных предприятий. М., Энергия, 1974.

11. Князевский Б. А., Липкин Ю, Б. Электроснабжение промышленных предприятий. М., Высшая школа, 1969.

12. Крупович В. И. и др. Проектирование промышленных электрических сетей. М, Энергия, 1979.

13. Куинджа В. Б. и др. Гибкие токопроводы в системах электроснаб­жения промпредприятий. М., Энергия, 1978.

14. Найфельд М. Р. Заземление, защитные меры электробезопасности. М., Энергия, 1971.

15. Правила устройства электроустановок. Изд. 4-е. М., Энергия, 1966.

16. Правила устройства электроустановок (ПУЭ-76). Изд. 5-е, М., Атом-издат, 1976-1978.

17. Руководящие указания по расчету коротких замыканий, выбору и проверке аппаратов и проводников по условиям короткого замыкания. М., МЭИ, 1975.

18. Семчинов А. М. Токопроводы промышленных предприятий. М., Энер­гия, 1972.

19. Справочная книга для проектирования электрического освещения. Под ред. Кнорринга Г. М. М., Энергия, 1976.

20. Справочник по проектированию электроснабжения. Под ред. Кру-повича В. И., Барыбина Ю. Г., Самовера М. Л., М.-Л., Энергия, 1980.

21. Справочник по электроснабжению промышленных предприятий. Под ред. Федорова А. А., Сербиновского Г. В., кн. 1 и 2, М., Энергия, 1973.

22. Труды института ВНИИпроектэлектромонтаж. Вып. 2-6, М., Энер­гия, 1975-1979.

23. Тяжпромэлектропроект. Инструктивные указания по проектированию электротехнических промышленных установок. М., Энергия, 1968-1978.

24. Указания по компенсации реактивной мощности в распределительных сетях. М., Энергия, 1974.

25. Фабрикант В. Л., Глухое В. П., Палерно Л. Б. Элементы устройств релейной защиты и автоматики энергосистем и их проектирование. М., Высшая школа, 1974.

26. Федоров А. А. Основы электроснабжения промышленных предприятий. М., Энергия, 1972.

27. Чернобровое Н. В. Релейная защита. М., Энергия, 1974.

28. Шабад М. А. Расчеты релейной защиты. Л., Энергия, 1972.

ПРИЛОЖЕНИЕ

Рис. 1. Схема разметки котлованов пол опоры

Рис. 2. Установка опоры ВЛ напряжением свыше 110 кВ




Рис. 3. Схема раскатки провода

Рис. 4. Соединение проводов в пролете:

1 - овальный соединитель; 2 - концы провода; 3 - узел термитной сварки



Рис. 5. Установка стрелы провеса проводов непосредственным визирова­нием

Рис. 6. Установка стрелы провеса проводов непосредственным визирова­нием



Рис. 7. Кривые монтажных стрел провеса провода. марки Л-70, район гололедности.

Рис.8. Схема раскатки и натяжки проводов на переходах:

1 - лебедка; 2 - трос или канат; 3 -ролик; 4 - место соединения провода с ка­натом (тросом)

Как можно обозначит значение линий электропередач? Есть ли точное определение проводам, по которым передается электроэнергия? В межотраслевых правилах технической эксплуатации электроустановок потребителей есть точное определение. Итак, ЛЭП – это, во-первых, электрическая линия. Во-вторых, это участки проводов, которые выходят за пределы подстанций и электрических станций. В-третьих, основное назначение линий электропередач – это передача электрического тока на расстоянии.

По тем же правилам МПТЭЭП производится разделение ЛЭП на воздушные и кабельные. Но необходимо отметить, что по линиям электропередач производится также передача высокочастотных сигналов, которые используются для передачи телеметрических данных, для диспетчерского управления различными отраслями, для сигналов противоаварийной автоматики и релейной защиты. Как утверждает статистика, 60000 высокочастотных каналов сегодня проходят по линиям электропередач. Скажем прямо, показатель значительный.

Воздушные ЛЭП

Воздушные линии электропередач, их обычно обозначают буквами «ВЛ» — это устройства, которые располагаются на открытом воздухе. То есть, сами провода прокладываются по воздуху и закрепляются на специальной арматуре (кронштейны, изоляторы). При этом их установка может проводиться и по столбам, и по мостам, и по путепроводам. Не обязательно считать «ВЛ» те линии, которые проложены только по высоковольтным столбам.


Что входит в состав воздушных линий электропередач:

  • Основное – это провода.
  • Траверсы, с помощью которых создаются условия невозможности соприкосновения проводов с другими элементами опор.
  • Изоляторы.
  • Сами опоры.
  • Контур заземления.
  • Молниеотводчики.
  • Разрядники.

То есть, линия электропередач – это не просто провода и опоры, как видите, это достаточно внушительный список различных элементов, каждый из которых несет свои определенные нагрузки. Сюда же можно добавить оптоволоконные кабели, и вспомогательное к ним оборудование. Конечно, если по опорам ЛЭП проводятся высокочастотные каналы связи.

Строительство ЛЭП, а также ее проектирование, плюс конструктивные особенности опор определяются правилами устройства электроустановок, то есть ПУЭ, а также различными строительными правилами и нормами, то есть СНиП. Вообще, строительство линий электропередач – дело непростое и очень ответственное. Поэтому их возведением занимаются специализированные организации и компании, где в штате есть высококвалифицированные специалисты.


Классификация воздушных линий электропередач

Сами воздушные высоковольтные линии электропередач делятся на несколько классов.

По роду тока:

  • Переменного,
  • Постоянного.

В основе своей воздушные ВЛ служат для передачи переменного тока. Редко можно встретить второй вариант. Обычно он используется для питания сети контактной или связной для обеспечения связью несколько энергосистем, есть и другие виды.

По напряжению воздушные ЛЭП делятся по номиналу этого показателя. Для информации перечислим их:

  • для переменного тока: 0,4; 6; 10; 35; 110; 150; 220; 330; 400; 500; 750; 1150 киловольт (кВ);
  • для постоянного используется всего один вид напряжение – 400 кВ.

При этом линии электропередач напряжением до 1,0 кВ считаются низшего класса, от 1,0 до 35 кВ – среднего, от 110 до 220 кВ – высокого, от 330 до 500 кВ – сверхвысокого, выше 750 кВ ультравысокого. Необходимо отметить, что все эти группы отличаются друг от друга лишь требованиями к расчетным условиям и конструктивным особенностям. Во всем остальном – это обычные высоковольтные линии электропередач.



Напряжение ЛЭП соответствует их назначению.

  • Высоковольтная линия напряжением свыше 500 кВ считаются сверхдальними, они предназначаются для соединения отдельных энергосистем.
  • Высоковольтная линия напряжением 220, 330 кВ считаются магистральными. Их основное назначение – соединить между собой мощные электростанции, отдельные энергосистемы, а также электростанции внутри данных систем.
  • Воздушные ЛЭП напряжением 35-150 кВ устанавливаются между потребителями (большими предприятиями или населенными пунктами) и распределительными пунктами.
  • ВЛ до 20 кВ используются в качестве линий электропередач, которые непосредственно подводят электрический ток к потребителю.

Классификация ЛЭП по нейтрале

  • Трехфазные сети, в которых нейтраль не заземлена. Обычно такая схема используется в сетях напряжением 3-35 кВ, где протекают малые токи.
  • Трехфазные сети, в которых нейтраль заземлена через индуктивность. Это так называемый резонансно-заземленный тип. В таких ВЛ используется напряжение 3-35 кВ, в которых протекают токи большой величины.
  • Трехфазные сети, в которых нейтральная шина полностью заземлена (эффективно-заземленная). Этот режим работы нейтрали используется в ВЛ со средним и сверхвысоким напряжением. Обратите внимание, что в таких сетях необходимо использовать трансформаторы, а не автотрансформаторы, в которых нейтраль заземлена наглухо.
  • И, конечно, сети с глухозаземленной нейтралью. В таком режиме работают ВЛ напряжением ниже 1,0 кВ и выше 220 кВ.

К сожалению, существует и такое разделения линий электропередач, где учитывается эксплуатационное состояние всех элементов ЛЭП. Это ЛЭП в нормальном состоянии, где провода, опоры и другие составляющие находятся в приличном состоянии. В основном упор делается на качество проводов и тросов, они не должны быть оборваны. Аварийное состояние, где качество проводов и тросов оставляет желать лучшего. И монтажное состояние, когда производится ремонт или замена проводов, изоляторов, кронштейнов и других компонентов ЛЭП.



Элементы воздушной ЛЭП

Между специалистами всегда происходят разговоры, в которых применяются специальные термины, касающиеся линий электропередач. Непосвященному в тонкости сленга понять этот разговор достаточно сложно. Поэтому предлагаем расшифровку этих терминов.

  • Трасса – это ось прокладки ЛЭП, которая проходит по поверхности земли.
  • ПК – пикеты. По сути, это отрезки трассы ЛЭП. Их длина зависит от рельефа местности и от номинального напряжения трассы. Нулевой пикет – это начало трассы.
  • Строительство опоры обозначается центровым знаком. Это центр установки опоры.
  • Пикетаж – по сути, это простая установка пикетов.
  • Пролет – это расстояние между опорами, а точнее, между их центрами.
  • Стрела провеса – это дельта между самой низшей точкой провеса провода и строго натянутой линией между опорами.
  • Габарит провода – это опять-таки расстояние между самой низшей точкой провеса и самой высшей точкой пролегаемых под проводами инженерных сооружений.
  • Петля или шлейф. Это часть провода, которая соединяет на анкерной опоре провода соседних пролетов.

Кабельные ЛЭП

Итак, переходим к рассмотрению такого понятия, как кабельные линии электропередач. Начнем с того, что это не голые провода, которые используются в воздушных линиях электропередач, это закрытые в изоляцию кабели. Обычно кабельные ЛЭП представляют собой несколько линий, установленные рядом друг с другом в параллельном направлении. Длины кабеля для этого бывает недостаточно, поэтому между участками устанавливаются соединительные муфты. Кстати, нередко можно встретить кабельные линии электропередач с маслонаполнением, поэтому такие сети часто укомплектовываются специальной малонаполнительной аппаратурой и системой сигнализации, которая реагирует на давление масла внутри кабеля.

Если говорить о классификации кабельных линий, то они идентичны классификации линий воздушных. Отличительные особенности есть, но их не так много. В основном эти две категории отличаются между собой способом прокладки, а также конструктивными особенностями. К примеру, по типу прокладки кабельные ЛЭП делятся на подземные, подводные и по сооружениям.



Две первые позиции понятны, а что относится к позиции «по сооружениям»?

  • Кабельные туннели. Это специальные закрытые коридоры, в которых производится прокладка кабеля по установленным опорным конструкциям. В таких туннелях можно свободно ходить, проводя монтаж, ремонт и обслуживание электролинии.
  • Кабельные каналы. Чаще всего они являются заглубленными или частично заглубленными каналами. Их прокладка может производиться в земле, под напольным основанием, под перекрытиями. Это небольшие каналы, в которых ходить невозможно. Чтобы проверить или установить кабель, придется демонтировать перекрытие.
  • Кабельная шахта. Это вертикальный коридор с прямоугольным сечением. Шахта может быть проходной, то есть, с возможностью помещаться в нее человеку, для чего она снабжается лестницей. Или непроходной. В данном случае добраться до кабельной линии можно, только сняв одну из стенок сооружения.
  • Кабельный этаж. Это техническое пространство, обычно высотою 1,8 м, оснащенное снизу и сверху плитами перекрытия.
  • Укладывать кабельные линии электропередач можно и в зазор между плитами перекрытия и полом помещения.
  • Блок для кабеля – это сложное сооружение, состоящее из труб прокладки и нескольких колодцев.
  • Камера – это подземное сооружение, закрытое сверху железобетонной или плитой. В такой камере производится соединение муфтами участков кабельной ЛЭП.
  • Эстакада – это горизонтальное или наклонное сооружение открытого типа. Она может быть надземной или наземной, проходной или непроходной.
  • Галерея – это практически то же самое, что и эстакада, только закрытого типа.

И последняя классификация в кабельных ЛЭП – это тип изоляции. В принципе, основных видов два: твердая изоляция и жидкостная. К первой относятся изоляционные оплетки из полимеров (поливинилхлорид, сшитый полиэтилен, этилен-пропиленовая резина), а также другие виды, к примеру, промасленная бумага, резино-бумажная оплетка. К жидкостным изоляторам относится нефтяное масло. Есть и другие виды изоляции, к примеру, специальными газами или другими видами твердых материалов. Но их используют сегодня очень редко.