Что понимают под измерением сопротивления. Введение, методы измерения сопротивления, методы непосредственной оценки, метод преобразования сопротивления в интервал времени, методы преобразования сопротивления в ток, методы преобразования сопротивления в на

Основными методами измерения сопротивления постоянному току являются:

  • косвенный метод;
  • метод непосредственной оценки;
  • мостовой метод.

Рис. 1.7. Схема включения испытательного трансформатора при измерении tgδ.
1 - рубильник; 2 - регулировочный автотрансформатор; 3 - вольтметр; 4-переключатель полярности выводов испытательного трансформатора 5.

Рис. 1.8. Схема расположения аппаратов при измерении.
ОИ - объект измерения; С - образцовый конденсатор; Т - испытательный трансформатор; М - мост; РАТ-регулировочный автотрансформатор; 0 - переносное ограждение.

Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности.
Наиболее универсальным из косвенных методов является метод амперметравольтметра.
Метод амперметра-вольтметра. Основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (рис. 1.9,а) и измерение малых сопротивлений (рис. 1.9,б). По результатам измерения тока и напряжения определяют искомое сопротивление.
Для схемы рис. 1.9,а искомое сопротивление и относительная методическая погрешность измерения определяются

где RХ - измеряемое сопротивление; Rа - сопротивление амперметра.

Для схемы рис. 1.9,6 искомое сопротивление и относительная методическая погрешность измерения определяются

где Rв -сопротивление вольтметра.

Из определения относительных методических погрешностей следует, что измерение по схеме рис. 1.9,а обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме рис. 1.9,6 - при измерении малых сопротивлений.
Погрешность измерения по данному методу рассчитывается по выражению

где γв, γа, - классы точности вольтметра и амперметра; U„, I пределы измерения вольтметра и амперметра.

Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежании нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального.


Рис. 1.9. Схема измерения больших (а) и малых (б) сопротивлений методом амперметра-вольтметра.

При измерениях сопротивления в цепях, обладающих большой индуктивностью, вольтметр следует подключать после того как ток в цепи установится, а отключать до разрыва цепи тока. Это необходимо делать для того, чтобы исключить возможность повреждения вольтметра от ЭДС самоиндукции цепи измерения.

Метод непосредственной оценки. Предполагает измерение сопротивления постоянному току с помощью омметра. Измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации. На практике применяют омметры типа М57Д, М4125, Ф410 и др. Диапазон измеряемых сопротивлений данных приборов лежит в пределах от 0,1 Ом до 1000 кОм.

Для измерения малых сопротивлений, например сопротивление паек якорных обмоток машин постоянного тока, применяют микроомметры типа М246. Это приборы логометрического типа с оптическим указателем, снабженные специальными самозачищающими щупами.

Также для измерения малых сопротивлений, например переходных сопротивлений контактов выключателей, нашли применение контактомеры. Контактомеры Мосэнерго имеют пределы измерения 0 - 50000 мкОм с погрешностью менее 1,5%. Контактомеры КМС-68, КМС-63 позволяют производить измерения в пределах 500-2500 мкОм с погрешностью менее 5%.

Для измерения сопротивления обмоток силовых трансформаторов, генераторов с достаточно большой точностью применяют потенциометры постоянного тока типа ПП-63, КП-59. Данные приборы используют принцип компенсационного измерения, т. е. падение напряжения на измеряемом сопротивлении уравновешивается известным падением напряжения.

Мостовой метод. Применяют две схемы измерения - схема одинарного моста и схема двойного моста. Соответствующие схемы измерения представлены на рис. 1.10.

Для измерения сопротивлений в диапазоне от 1 Ом до 1 МОм применяют одинарные мосты постоянного тока типа ММВ, Р333, МО-62 и др. Погрешность измерений данными мостами достигает 15% (мост ММВ). В одинарных мостах результат измерения учитывает сопротивление соединительных проводов между мостом и измеряемым сопротивлением. Поэтому сопротивления меньше 1 Ом такими мостами измерить нельзя из-за существенной погрешности. Исключение составляет мост P333, с помощью которого можно производить измерение больших сопротивлений по двухзажимной схеме и малых сопротивлений (до 5 10 Ом) по четырехзажимной схеме. В последней почти исключается влияние сопротивления соединительных проводов, т. к. два из них входят в цепь гальванометра, а два других - в цепь сопротивления плеч моста, имеющих сравнительно большие сопротивления.


Рис. 1.10. Схемы измерительных мостов.
а - одинарного моста; б - двойного моста.

Плечи одинарных мостов выполняют из магазинов сопротивлений, а в ряде случаев (например, мост ММВ) плечи R2, R3 могут быть выполнены из калиброванной проволоки (реохорда), по которой перемещается движок, соединенный с гальванометром. Условие равновесия моста определяется выражением Rх = R3 (R1/R2). С помощью R1 устанавливают отношение R1/R2, обычно кратное 10, а с помощью R3 уравновешивают мост. В мостах с реохордом уравновешивания достигается плавным изменением отношения R3/R2 при фиксированных значениях R1.

В двойных мостах сопротивления соединительных проводов при измерениях неучитываются, что представляет возможность измерять сопротивления до 10-6 Ом. На практике применяют одинарно-двойные мосты типа P329, P3009, МОД-61 и др. с диапазоном измерений от 10-8 Ом до 104 МОм с погрешностью измерения 0,01 - 2%.

В этих мостах равновесие достигается изменением сопротивлений R1, R2, R3 и R4. При этом достигается равенства R1 = R3 и R2 = R4. Условие равновесия моста определяется выражением Rх= RN (R1/R2). Здесь сопротивление RN - образцовое сопротивление, составная часть моста. К измеряемому сопротивлению Rх подсоединяют четыре провода: провод 2 - продолжение цепи питания моста, его сопротивление не отражается на точности измерений; провода 3 и 4 включены последовательно с сопротивлениями R1 и R2 величиной больше 10 Ом, так что их влияние ограничено; провод 1 является составной частью моста и его следует выбирать как можно короче и толще.

При измерениях сопротивления в цепях, обладающих большой индуктивностью, во избежание ошибок и для предотвращения повреждений гальванометра необходимо производить измерения при установившемся токе, а отключение - до разрыва цепи тока.

Измерение сопротивления постоянному току независимо от метода измерения производят при установившемся тепловом режиме, при котором температура окружающей среды отличается от температуры измеряемого объекта не более чем на ±3°С. Для перевода измеренного сопротивления к другой температуре (например, с целью сравнения, к 15°С) применяют формулы пересчета.

ЛЕКЦИЯ 13.

Измерение параметров элементов электрических цепей

Электрические цепи представляют собой совокупность соединенных друг с другом элементов – источников электрической энергии и нагрузок в виде резисторов, катушек индуктивности, конденсаторов. При определенных допущениях эти нагрузки можно рассматривать как линейные пассивные двухполюсники с сосредоточенными постоянными, характеризуемые некими идеальными параметрами – сопротивлением R , индуктивностью L , емкостью С .

С учетом остаточных параметров конденсатор, катушку индуктивности или резистор можно характеризовать некоторым эффективным значением емкости, индуктивности, сопротивления, которые зависят от частоты. Поэтому эффективные параметры компонентов необходимо измерять на рабочих частотах, если их влиянием на результат измерения нельзя пренебречь.

В зависимости от объекта измерений, требуемой точности результата, диапазона рабочих частот и других условий для измерения параметров двухполюсников применяют различные методы и средства измерений. Наиболее распространенными являются следующие методы измерения: амперметра – вольтметра, непосредственной оценки, мостовой, резонансный и дискретного счета.

Метод амперметра – вольтметра

Измерение методом амперметра – вольтметра сводится к измерению тока и напряжения в цепи с измеряемым двухполюсником и последующему расчету его параметров по закону Ома. Метод может быть использован для измерения активного и полного сопротивления, индуктивности и емкости.

Измерение активных сопротивлений производится на постоянном токе, при этом включение резистора R Х в измерительную цепь возможно по схемам, представленным на рис. 13.1, а и б.

Достоинство метода заключается в простоте его реа­лизации, недостаток - в сравнительно невысокой точно­сти результата измерения, которая ограничена классом точности применяемых измерительных приборов и мето­дической погрешностью. Последняя обусловлена влияни­ем мощности, потребляемой измерительными приборами в процессе измерения, другими словами - конечным значением собственных сопротивлений амперметра R A и вольтметра R V . Выразим методическую погрешность че­рез параметры схемы.


В схеме рис. 13.1,а вольтметр показывает значение напряжения на зажимах R Х , а амперметр - сумму токов I V +I.

Следовательно, результат измерения R , вы­численный по показаниям приборов, будет отличаться от R Х :

Относительная погрешность измерения в процентах

Здесь приближенное равенство справедливо, так как при правильной организации эксперимента предполагается выполнение условия R V >>R Х.

В схеме рис.13.1,б амперметр показывает значение тока в цепи с R Х , а вольтметр - сумму падений напря­жений на R Х U и амперметре U A . Учитывая это, можно по показаниям приборов вычислить результат измере­ния:

Относительная погрешность измерения в процентах в данном случае равна:

Сравнивая полученные выражения относительных по­грешностей, приходим к выводу: в схеме рис. 13.1,а на методическую погрешность результата измерения оказы­вает влияние только сопротивление R V ; для снижения этой погрешности необходимо обеспечить условие ; в схеме рис. 13.1,б на методическую погрешность результата измерения оказывает влияние только R A ; снижение этой погрешности достигается выполнением условия Таким образом, при практическом ис­пользовании данного метода можно рекомендовать пра­вило: измерение малых сопротивлений следует произво­дить по схеме рис. 13.1,а; при измерении больших сопротивлений предпочтение следует отдавать схеме рис. 13.1, б .

Измерение полного сопротивления Z X выполняется на переменном токе частотой f (рис. 13.2). По показаниям вольтметра и амперметра определяют модуль полного сопротивления

где - показания вольтметра и амперметра.

Выполнив аналогично предыдущему анализ методической погрешности, придем к выводу, что схему, представленную на рис. 13.2, а, целесообразно применять при , а на рис. 13.2, б – при .


Измерение емкости и индуктивности методом амперметра – вольтметра может быть выполнено по схемам, аналогичным рис. 13.2, только с заменой Z X , соответственно, на С или L .

Емкостное сопротивление конденсатора

,

При измерении емкости этим методом необходимо знать частоту источника питания. Для измерения больших емкостей рекомендуется схема а), а для малых емкостей – схема б ).

Измерение индуктивности катушки методом амперметра – вольтметра возможно, если ее сопротивление R L значительно меньше реактивного сопротивления X L . При этом

Откуда .

Если требуется получить более точный результат, то необходимо учесть сопротивление катушки. Так как

,

.

Погрешности измерения параметров элементов цепей методом амперметра – вольтметра на низких частотах составляют 0.5 … 10%. Погрешности измерения возрастают с увеличением частоты.

Мостовой метод .

Важным классом средств измерения, предназначенных для измерения параметров элементов электрических цепей методом сравнения, являются мосты. Сравнение измеряемой величины (сопротивления, емкости. Индуктивности) с образцовой мерой при помощи моста в процессе измерения может осуществляться вручную или автоматически, на постоянном или на переменном токе. Мостовые схемы обладают большой точностью, высокой чувствительностью, широким диапазоном измеряемых значений параметров. На основе мостовых методов измерения строятся средства измерения, предназначенные как для измерения какой-либо одной величины, так и универсальные аналоговые и цифровые приборы.

Одинарный мост постоянного тока .

Простейшая схема одинарного моста представлена на рис.13.3. Четыре резистора R 1 ,R 2 ,R 3 ,R 4 (их называют плечами моста ) соединены в кольцевой замкнутый контур. Точки соединения сопротивлений называют вершинами моста .

Цепи, соединяющие противоположные вершины, называют диагоналями. Диагональ ab содержит источник питания и называется диагональю питания . Диагональ cd , в которую включен индикатор Г , называется измерительной диагональю . В мостах постоянного тока в качестве индикатора обычно используется гальванометр.

В общем случае зависимость протекающего через гальванометр тока I г от сопротивления плеч, сопротивления гальванометра R г и напряжения питания U имеет вид

Измерение сопротивления может производиться в одном из двух режимов работы моста: уравновешенном либо неуравновешенном. Мост называется уравновешенным, если разность потенциалов между вершинами c и d равна нулю, а, следовательно, и ток через гальванометр равен нулю.

Из (13.1) следует, что I г = 0 при

. (13.2)

Это условие равновесия одинарного моста постоянного тока можно сформулировать следующим образом: для того, чтобы мост был уравновешен, произведения сопротивлений противолежащих плеч моста должны быть равны. Если сопротивление одного из плеч моста (например, R 1) неизвестно, то уравновесив мост путем подбора сопротивлений плеч , находим из условия равновесия

В реальных мостах постоянного тока для уравновешивания моста регулируются отношение и сопротивление плеча , которые, соответственно, называют плечами отношения и плечом сравнения.

В состоянии равновесия моста ток через гальванометр равен нулю и, следовательно, колебания напряжения питания и сопротивления гальванометра влияния на результат измерения не оказывают (важно лишь, чтобы чувствительность гальванометра была достаточной для надежной фиксации состояния равновесия). Поэтому основная погрешность уравновешенного моста определяется чувствительностью гальванометра, чувствительностью схемы, погрешностью сопротивлений плеч, а также сопротивлениями монтажных проводов и контактов. При измерении малых сопротивлений существенным источником погрешности может явиться сопротивление проводов, с помощью которых измеряемый резистор подключается к входным зажимам моста, так как оно полностью входит в результат измерения. Поэтому нижний предел измерения одинарного моста ограничен значениями сопротивления порядка 1 Ом . Верхний же предел измерения 10 6 … 10 8 Ом ограничивается чувствительностью гальванометра. При больших значениях измеряемого сопротивления токи в плечах моста очень малы и чувствительности гальванометра недостаточно для четкой фиксации равновесия. Для измерения малых сопротивлений (от 1 до 10 -8 Ом ) применяют двойные мосты.

Двойной мост постоянного тока . Схема двойного моста представлена на рис. 13.4 .

Для исключения влияния сопротивлений соединительных проводов и переходных сопротивлений контактов измеряемое сопротивление присоединяется по четырехзажимной схеме включения: двумя токовыми зажимами в цепь источника питания моста, а двумя потенциальными – в измерительную цепь. Аналогичные зажимы имеет образцовое сопротивление . В цепь источника питания моста входит регулировочное сопротивление , измеряемое сопротивление , образцовое сопротивление (одного порядка по величине с ) и малого сопротивления .

Сопротивления плеч R 1 ,R 2 ,R 3 и R 4 , входящие в измерительную цепь, выбирают достаточно большими (сотни и тысячи Ом ), поэтому влияние сопротивлений монтажных проводов и переходных сопротивлений в контактах пренебрежимо мало.

При равновесии моста формула для определения сопротивления имеет вид

. (13.3)

При соблюдении равенства

(13.4)

и достаточно малом сопротивлении вторым членом формулы (13.3) можно пренебречь. Тогда формула (13.3) упрощается до следующей

.

Равенство (13.4) должно соблюдаться постоянно, поэтому резисторы R 1 ,R 2 и R 3 ,R 4 регулируются при помощи спаренных органов управления. Резистор представляет собой короткий отрезок медной шины большого сечения.

Промышленностью выпускаются одинарные и одинарно-двойные мосты постоянного тока классов точности от 0.005 до 5.

Измерительные мосты переменного тока .

Для измерения емкости, индуктивности, взаимной индуктивности и тангенса угла потерь конденсаторов применяются мосты переменного тока, схемы которых отличаются большим разнообразием. Кроме простых четырехплечих мостовых схем существуют и более сложные мостовые схемы. Эти схемы путем последовательных эквивалентных преобразований могут быть приведены к простой четырехплечей схеме, которая является, таким образом, основной.

Схема одинарного четырехплечего моста переменного тока приведена на рис. 13.5. Так как мост питается напряжением переменного тока, то в качестве индикатора в нем применяются электронные милливольтметры переменного тока, либо осциллографические индикаторы нуля.

В общем случае сопротивления плеч моста переменного тока представляют собой комплексные сопротивления вида . Аналогично соотношению (13.2) условие равновесия одинарного моста переменного тока имеет вид:

Записав это выражение в показательной форме, получим

где - модуль комплексного сопротивления; - фазовый сдвиг между током и напряжением в соответствующем плече.


Соотношение (13.5) распадается на два скалярных условия равновесия:

(13.6)

Отсюда следует, что в схеме моста переменного тока равновесие наступает только при равенстве произведений модулей комплексных сопротивлений противолежащих плеч и равенстве сумм их фазовых сдвигов. При этом нужно иметь в виду, что при изменении значений активных и реактивных составляющих одновременно изменяются и модуль, и фаза, поэтому мост переменного тока можно привести к состоянию равновесия лишь большим или меньшим числом переходов от регулирования одного параметра к регулированию другого.

Второе уравнение (13.6) показывает, какими по характеру должны быть сопротивления плеч мостовой схемы, чтобы обеспечить возможность ее уравновешивания. Так, например, если в двух смежных плечах включены активные сопротивления (φ = 0), то в двух других смежных плечах обязательно должны быть сопротивления одного характера – или индуктивности, или емкости.

Для измерения емкости конденсаторов без потерь используется мостовая схема, приведенная на рис. 13.6, а. Условие равновесия для этой схемы имеет вид

где - образцовый конденсатор переменной емкости, откуда

Мостовая схема для измерения индуктивности приведена на рис. 13.6, б. В качестве плеча сравнения здесь также используется конденсатор переменной емкости . Полагая, что активное сопротивление катушки пренебрежимо мало (), получим условие равновесия

Мосты переменного тока работают обычно на низких частотах 100 Гц и 1000 Гц. При работе на повышенных частотах погрешности измерения резко возрастают.

Семестровая работа по метрологии на тему "Измерение сопротивления".

Фрагменты из реферата

  • Введение
    • Метод амперметра-вольтметра
    • Метод непосредственной оценки
    • Измерение очень больших сопротивлений
  • Измерение сопротивления при переменном токе
    • Измеритель иммитанса
    • Измерительная линия
  • Выводы

Введение

Электрическое сопротивление - основная электрическая характеристика проводника, величина, характеризующая противодействие электрической цепи или ее участка электрическому току. Также сопротивлением могут называть деталь (её чаще называют резистором) оказывающую электрическое сопротивление току. Электрическое сопротивление обусловлено преобразованием электрической энергии в другие виды энергии и измеряется в Омах.

Сопротивление (часто обозначается буквой R) считается, в определённых пределах, постоянной величиной для данного проводника и её можно определить как...

  • R - сопротивление;
  • U - разность электрических потенциалов на концах проводника, измеряется в вольтах;
  • I - ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.

Для практического измерения сопротивлений применяют множество различных методов, в зависимости от условий измерения и характера объектов, от требуемой точности и быстроты измерений. Например различают методы для измерения сопротивления при постоянном токе и при переменном, измерение больших сопротивлений, сопротивлений малых и ультрамалых, прямые и косвенные и т.д.

Целью работы является выявление основных, наиболее часто встречающихся в практике, методов измерения сопротивлений.

Измерение сопротивления при постоянном токе

Основными методами измерения сопротивления постоянному току являются косвенный метод, метод непосредственной оценки, а также мостовой метод. Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности измерений. Из косвенных методов наиболее универсальным является метод амперметра-вольтметра.

Метод амперметра-вольтметра

Данный метод основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (а) и измерение малых сопротивлений (б). По результатам измерения тока и напряжения определяют искомое сопротивление.

Для схемы (а) искомое сопротивление и относительную методическую погрешность можно определить по формулам: ...

где Rx - измеряемое сопротивление, а Rа - сопротивление амперметра.

Для схемы (б) искомое сопротивление и относительная методическая погрешность измерения определяются по формулам: ...

Из формулы видно, что при подсчете искомого сопротивления по приближенной формуле возникает погрешность, оттого, что при измерении токов и напряжений во второй схеме амперметр учитывает и тот ток, который проходит через вольтметр, а в первой схеме вольтметр измеряет напряжение помимо резистора еще и на амперметре.

Из определения относительных методических погрешностей следует, что измерение по схеме (а) обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме (б) - при измерении малых сопротивлений. Погрешность измерения по данному методу рассчитывается по выражению: ...

«Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежание нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального».

Достоинство схем метода измерение амперметром и вольтметром заключается в том, что по резистору с измеряемым сопротивлением можно пропускать тот же ток, как и в условии его работы, что является важным при измерении сопротивлений, значения которых зависят от тока.

Метод непосредственной оценки

Метод непосредственной оценки предполагает измерение сопротивления постоянному току с помощью омметра. Омметром называют измерительный прибор непосредственного отсчёта для определения электрических активных (активные сопротивлений также называют омическими сопротивлениями) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, тераомметры, гигаомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

По принципу действия омметры можно разделить на магнитоэлектрические - с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные, которые бывают аналоговые или цифровые.

«Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен Ом до нескольких мегаом измеритель и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе и отклонение подвижной части прибора a пропорциональны: I = U/(r0 + rx), где U - напряжение источника питания; r0 - сопротивление измерителя. При малых значениях rx (до нескольких ом) измеритель и rx включают параллельно».

За основу логометрических мегаомметров берется логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения таких измерений, в подобных приборах обычно используют механический индуктор - электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый резистор включается в цепь обратной связи (линейная шкала) или на вход усилителя. Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

«При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют так называемый метод четырехпроводного подключения. Сущность метода состоит в том, что используются две пары проводов - по одной паре на измеряемый объект подается ток определенной силы, с помощью другой пары с объекта на прибор подаётся падение напряжения пропорциональное силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь».

Мосты для измерения сопротивления на постоянном токе

Для измерения сопротивления на постоянном токе широко используются одинарные мосты. Одинарными мостами называют четырехплечие мосты с питанием от источника постоянного тока. Существует ряд конструкций этих приборов с различными характеристиками. Погрешность моста зависит от пределов измерения и указывается обычно в паспорте моста.

Конструктивно мосты оформляются в виде переносных приборов; они рассчитаны на работу с собственным или наружным нуль-индикатором. При измерении малых сопротивлений на результат измерения существенное влияние оказывают сопротивления контактов и соединительных проводов, суммируемые с измеряемым сопротивлением. Для уменьшения этого влияния используют специальные способы присоединения Rx к мосту, для чего мост имеет четыре зажима:

................................

................................

Измерительная линия

Это устройство для исследования распределения электрического поля вдоль СВЧ-линии передачи. Измерительная линия представляет собой отрезок коаксиальной линии или волновода с перемещающимся вдоль него индикатором, отмечающим узлы (пучности) электрического поля. С помощью измерительной линии исследуется распределение напряженности электромагнитного поля, из которого определяются коэффициент стоячей волны как отношение амплитуд волны в пучности и узле и фаза коэффициента отражения по смещению узла. Зная эти параметры, по круговой диаграмме полных сопротивлений можно найти полное сопротивление. Измерения производятся с использованием измерительного генератора в качестве источника сигнала. Для отсчета показаний используются, как правило, гальванометр или измеритель отношений напряжений. Измерительные линии применяются на частотах от сотен мегагерц до сотен гигагерц.

«Линия состоит из трех основных узлов: отрезка передающей линии с продольной узкой щелью, зондовой головки и каретки с механизмом для перемещения зондовой головки вдоль линии. Зондовая головка представляет собой резонатор, возбуждаемый зондом - тонкой проволокой, погруженной через щель во внутреннюю полость волновода. Глубину погружения зонда в линии регулируют специальным винтом, расположенным сверху зондовой головки. Внутри резонатора помещен полупроводниковый детектор, связанный с индикаторным прибором. При перемещении зонда вдоль линии, внутри которой имеется электромагнитное поле, в зонде наводится электродвижущая сила, пропорциональная напряженности поля в сечении расположения зонда. Эта э. д. с. возбуждает резонатор, создавая в нем электромагнитные колебания. Для уменьшения искажающего действия зонда на электромагнитное поле в линии и повышения чувствительности линии объемный резонатор зондовой головки настраивают в резонанс с частотой электромагнитных колебаний».

Для измерения полного сопротивления цепи также используется устройство, называемое измерителем полных сопротивлений. Измерители полного сопротивления имеют меньшую чувствительность, чем измерительные линии, однако они имеют существенно меньшие размеры, особенно в нижней части диапазона частот. Коэффициент стоячей волны, как и в измерительных линиях, определяется из отношения показаний низкочастотного индикатора при экстремальных значениях сигнала. Импеданс исследуемого объекта находят по круговой диаграмме полных сопротивлений исходя из значений коэффициента стоячей волны и фазы коэффициента отражения.

Измерение ультрамалых сопротивлений

В профессиональной и радиолюбительской практике приходится встречаться с необходимостью измерения ультрамалого сопротивления. К числу задач, требующих измерения сопротивлений вплоть до 1 мОм с заданной точностью, относятся, например, изготовление шунтов (в том числе и для измерительных приборов), измерение переходного сопротивления контактов реле, переключателей и т. п. Аналогичная задача возникает и при необходимости отбора мощных полевых транзисторов.

Выводы

Для измерения сопротивлений существует множество самых разнообразных методов. Все они отличаются друг от друга. И в каждом случае необходимо выбирать индивидуальный метод для измерения. Наиболее распространен метод косвенного измерения сопротивлений - это метод измерений через амперметр и вольтметр. Он применяется во множестве устройств по измерению сопротивления как постоянному, так и переменному току. Тем не менее, не всегда можно использовать обыкновенные вольтметры и амперметры для измерения напряжения и тока, поскольку они могут давать погрешность, например при измерении очень малых сопротивлений ввиду наличия сопротивления соединяющих проводов и контактов. Поэтому для грамотного измерения сопротивления важно выбрать метод, при котором погрешность измерений будет минимальна.

Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток I x , но и ток I v , протекающий через вольтметр. Поэтому сопротивление

R x = U / (I – U/R v ) (110)

где R v - сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра U A = IR А. Поэтому

R x = U/I – R А (111)

где R А - сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений - схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током I v , а во второй - падением напряжения UА, будет невелика по сравнению с током I x и напряжением U x .

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением R x (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания - в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

R x = (R 1 /R 2)R 3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление R x (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 - гальванометр, а к зажимам 5 и 6 - источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление R x отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением R x и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями R x и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

R x = R 0 R 1 /R 4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления R x . Это позволяет проградуировать шкалу гальванометра в единицах сопротивления R x или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением R x (рис. 341) и добавочным резистором R Д в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора R Д ток в цепи зависит только от сопротивления R x . Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением R x подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор R д, в цепь другой катушки - резистор сопротивлением R x .

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

части логометра зависит от отношения I1/I2. Следовательно, при изменении R x будет изменяться угол? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой - к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку - с зажимом Л.

Измерение тока , потребляемого электрическими цепями, производится амперметрами - электроизмерительными приборами, включенными последовательно в цепь, в которой измеряется ток. Обмотку амперметра выполняют из небольшого числа витков толстого провода, поэтому она характеризуется оченьмалым сопротивлением. Малое сопротивление необходимо для того, чтобы сопротивление цепи, в которой производится измерение тока, при включении амперметра практически не изменялось. При этом мощность, потребляемая прибором, также оказывается небольшой.

Включенные таким образом амперметры используются как приборы непосредственной оценки - они показывают непосредственно числовое значение измеряемого тока.

В цепях постоянного тока в основном используются амперметры магнитоэлектрической, реже - электромагнитной систем. Обмотка амперметра может допускать ограниченное значение измеренного тока. Для расширения предела измерения амперметра в электрических цепях постоянного тока используют шунты - специальные тарированные резисторы, включаемые параллельно с амперметром (рис. 4, а ).

Сопротивление шунта R ш, как следует из схемы (рис. 4,а ), включено параллельно сопротивлениюR а обмотки амперметра, поэтому токI электрической цепи распределяется по соответствующим параллельным ее ветвям обратно пропорционально сопротивлениям:

I а / I ш = R ш / R а, I ш = I а R а / R ш,

где I ш - ток в цепи шунта;I а - ток в цепи амперметра (показание амперметра).

а )б )

Для схемы (см. рис. 4, а ) справедливо следующее соотношение между токами:

I = I а + I ш.

С учетом этого измеряемый ток в электрической цепи можно определить по показаниям амперметра и известным значениям сопротивлений обмотки амперметра и шунта:

I = (1 + R а /R ш)I а = K ш I а,

где шунтирующий множитель К ш = 1 +R а /R ш.

Из уравнения видно, что для расширения предела измерения амперметра в 2 раза сопротивление шунта должно быть таким же маленьким, как и сопротивление амперметра R ш = R а. Для увеличения предела измерений вN раз сопротивление шунта должно быть меньше сопротивления амперметра в (N – 1) раз:

R ш = R а / (N – 1).

В ряде случаев шкала амперметра градуируется с учетом наличия шунта, при этом измеряемый ток в электрической цепи отсчитывается непосредственно по шкале прибора.

Измерение напряжения в электрических цепях осуществляется с помощью вольтметров - электроизмерительных приборов, включенных параллельно участку цепи, на котором измеряется напряжение. Обмотку вольтметра выполняют из большого числа витков тонкого провода, поэтому она характеризуется оченьбольшим сопротивлением. Большое сопротивление необходимо для того, чтобы сопротивление участка цепи, на котором производится измерение напряжения, при включении вольтметра практически не изменялось. При этом мощность, потребляемая прибором, оказывается небольшой.

Включенные таким образом вольтметры используются как приборы непосредственной оценки - они показывают непосредственно числовое значение измеряемого напряжения.

В цепях постоянного тока обычно используются вольтметры магнитоэлектрической и электромагнитной систем. С целью расширения предела измерения вольтметров последовательно с обмоткой включают тарированные добавочные резисторы, помещаемые внутри прибора или отдельно от него (см. рис. 4, б ).

При наличии добавочного сопротивления R доб, включенного последовательно с обмоткой вольтметра, имеющей сопротивлениеR в, подлежащее измерению напряжениеU распределяется пропорционально этим сопротивлениям:

U в / U доб = R в / R доб, U доб = U в R доб / R в,

где U в - напряжение на зажимах вольтметра (показания вольтметра);U доб - напряжение, приложенное к добавочному сопротивлению.

Измеряемое напряжение U = U в + U доб. С учетом этого измеряемое напряжение определяют по показаниям вольтметраU в и известным сопротивлениям обмотки вольтметра и добавочного сопротивления:

U = (1 + R доб /R в)U в = K доб U в,

где добавочный множитель К доб = 1 +R доб /R в.

Для расширения пределов измерения значений напряжения в N раз сопротивление добавочного сопротивления должно быть больше большого внутреннего сопротивления вольтметра в (N ‑ 1) раз.

R доб = R в (N  1).

Во многих случаях шкала вольтметра градуируется с учетом включенного последовательно с его обмоткой добавочного сопротивления, при этом измеряемое напряжение, действующее на зажимах электрической цепи, отсчитывается непосредственно по шкале прибора.

Измерение электрических сопротивлений осуществляется разными методами. Широко используется метод амперметра и вольтметра, основанный на применении закона Ома к участку электрической цепи, который содержит измеряемое сопротивление. По падению напряжения на участке цепи и току представляется возможным определить его сопротивлениеR x:

R x = U /I ,

где U - напряжение, подводимое к измеряемому сопротивлению;I - ток в цепи измеряемого сопротивления.

Измерение больших электрических сопротивлений методом амперметра и вольтметра осуществляется по схеме (рис. 5,а ) и используется в тех случаях, когда измеряемое сопротивление значительно больше сопротивления обмотки амперметра, последовательно с которой оно включено. При этом пренебрегают падением напряжения на сопротивлении обмотки амперметра, считая, что подводимое напряжение полностью приложено к измеряемому сопротивлению. При точном определении измеряемого сопротивления с учетом ошибки, вносимой амперметром, его значение рассчитывается по формуле

R x = (U R а I )/I ,

где R а - сопротивление обмотки амперметра.

Измерение малых электрических сопротивлений методом амперметра и вольтметра осуществляется по схеме (рис. 5,б ), которая позволяет исключить влияние сопротивления обмотки амперметра на точность определения измеряемого сопротивления и используется в тех случаях, когда сопротивление обмотки амперметра соизмеримо с измеряемым сопротивлением. При этом пренебрегают током через большое сопротивление обмотки вольтметраR в. Для точного определения сопротивления с учетом погрешности, вносимой вольтметром, его значение рассчитывается так:

R x = U /(I U /R в).